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Amyloid-β (Aβ) plaques and tau protein tangles in the brain are now widely recognized
as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy
detectable on brain magnetic resonance imaging (MRI) scans. One of the particular
neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on
has been one of the research focuses in the AD pathophysiological progress. This
work proposes a novel framework, Federated Morphometry Feature Selection (FMFS)
model, to examine subtle aspects of hippocampal morphometry that are associated with
Aβ/tau burden in the brain, measured using positron emission tomography (PET). FMFS
is comprised of hippocampal surface-based feature calculation, patch-based feature
selection, federated group LASSO regression, federated screening rule-based stability
selection, and region of interest (ROI) identification. FMFS was tested on two Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohorts to understand hippocampal alterations
that relate to Aβ/tau depositions. Each cohort included pairs of MRI and PET for AD,
mild cognitive impairment (MCI), and cognitively unimpaired (CU) subjects. Experimental
results demonstrated that FMFS achieves an 89× speedup compared to other
published state-of-the-art methods under five independent hypothetical institutions.
In addition, the subiculum and cornu ammonis 1 (CA1 subfield) were identified as
hippocampal subregions where atrophy is strongly associated with abnormal Aβ/tau.
As potential biomarkers for Aβ/tau pathology, the features from the identified ROIs had
greater power for predicting cognitive assessment and for survival analysis than five
other imaging biomarkers. All the results indicate that FMFS is an efficient and effective
tool to reveal associations between Aβ/tau burden and hippocampal morphometry.

Keywords: Alzheimer’s disease, amyloid-β (Aβ)/tau, magnetic resonance imaging (MRI), hippocampal
morphometry, federated learning
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INTRODUCTION

Alzheimer’s disease (AD) is now viewed as a gradual process
that begins many years before the onset of detectable clinical
symptoms. Measuring brain biomarkers and intervening at
preclinical AD stages are believed to improve the probability
of therapeutic success (Brookmeyer et al., 2007; Sperling et al.,
2011; Jack et al., 2016). Amyloid-β (Aβ) plaques and tau tangles
are two specific protein pathological hallmarks of AD and
are believed to induce neurodegeneration and structural brain
atrophy consequentially observable from volumetric magnetic
resonance imaging (MRI) scans (Jack et al., 2008; Selkoe and
Hardy, 2016; Gordon et al., 2019; La Joie et al., 2020). Brain
Aβ and tau pathology can be measured using positron emission
tomography (PET) with amyloid/tau-sensitive radiotracers or by
using lumbar puncture to measure these proteins in samples
cerebrospinal fluid (CSF). Even so, these invasive and expensive
measurements are less attractive to subjects in the preclinical
stage, and PET scanning is also not as widely available as MRI.

In the A/T/N system – a recently proposed research
framework for understanding the biology of AD – the presence
of abnormal levels of Aβ (A in A/T/N) in the brain or
CSF is used to define the presence of biological AD (Jack
et al., 2016). An imbalance between production and clearance
of Aβ occurs early in AD and is typically followed by the
accumulation of tau (T in A/T/N) protein tangles (another
key pathological hallmark of AD) and neurodegeneration (N
in A/T/N) detectable on brain MRI scans (Hardy and Selkoe,
2002; Sperling et al., 2011; Jack et al., 2016). Therefore, there
has been great interest in developing techniques to associate
Aβ and tau deposition with MRI measures (Tosun et al., 2013,
2014, 2016, 2021; Ten Kate et al., 2018; Petrone et al., 2019;
Ansart et al., 2020; Ezzati et al., 2020; Sun et al., 2020; Dahl
et al., 2021). In the structural MRI, the hippocampus is a
primary target region across the spectrum of dementia research
from clinically normal to late stages of AD (Shi et al., 2011;
Li B. et al., 2016; Dong et al., 2019; Cullen et al., 2020).
Cognitively unimpaired (CU) individuals with abnormally high
Aβ burden have faster progression of hippocampal volume
atrophy (Insel et al., 2017; Zhang et al., 2020). Additionally,
tau burden in the brain, assessed using PET tracers, also
strongly correlates with subsequent hippocampal volume atrophy
(La Joie et al., 2020).

However, the influence of Aβ/tau pathology on regional
hippocampal atrophy in AD is still not fully understood. A study
by Hanko et al. (2019) examined correlations between 3D
hippocampal shape measures and Aβ/tau burden in 42 subjects
and reported a significant association between tau burden and
atrophy in specific hippocampal subregions [cornu ammonis
1 (CA1) and the subiculum], but detected no Aβ-associated
hippocampal regions of interest (ROIs). Our previous studies
observed an association between hippocampal morphometry and
Aβ burden on 1,101 subjects (Wu et al., 2018, 2021) and found
significant Aβ-associated hippocampal subregions in the CA1
subfield and the subiculum (Wu et al., 2020). Overall, studies
of hippocampal ROIs in larger cohorts tend to be more highly
powered and reliable.

Integrating data from multi-sites is common practice for
large sample sizes and increased statistical power. An important
direction of interest in multi-site neuroimaging research is
federated learning – which offers an approach to learn from
data spread across multiple sites without having to share the raw
data directly or to centralize in any one location. In many cases,
different institutions may not be readily able to share biomedical
research data due to patient privacy concerns, data restrictions
based on patient consent or Institutional Review Board (IRB)
regulations, and legal complexities; this can present a major
obstacle to pooling large scale datasets to discover robust and
reproducible signatures of specific brain disorders. To remedy
this distributed problem, a large-scale collaborative network,
ENIGMA consortium, was built (Thompson et al., 2020).
However, most ENIGMA meta-analytic studies currently focus
on univariate measures derived from brain MRI, diffusion tensor
imaging (DTI), electroencephalogram (EEG), or other data
modalities, and relatively few have studied multivariate imaging
measures. Federated learning models, such as decentralized
independent component analysis (Baker et al., 2015), sparse
regression (Plis et al., 2016), and distributed deep learning
(Kaissis et al., 2021; Stripelis et al., 2021; Warnat-Herresthal et al.,
2021), have made solid progress with leveraging multivariate
image features for statistical inferences, allowing iterative
computation on remote datasets. Some other recent studies focus
on multivariate linear modeling (Silva et al., 2020), federated
gradient averaging (Remedios et al., 2020), and unbalanced
data for multi-site (Yeganeh et al., 2020). To our knowledge,
these methods have not yet been applied to detect multimodal
associations in AD research, such as finding anatomically
abnormal regions on MRI that are associated with Aβ/tau
pathology defined using PET.

Here we propose a novel framework, Federated Morphometry
Feature Selection (FMFS), to detect the association between
hippocampal morphometry markers and Aβ/tau burden. FMFS
calculates patch-based surface morphometry features from brain
MRI scans of people with AD, mild cognitive impairment
(MCI), and CU subjects. With our novel federated feature
selection method based on group LASSO regression, we apply
the proposed framework to assess hippocampal ROIs associated
with Aβ/tau burden (note that by ROIs, we mean subregions and
advanced morphometric features on the 3D hippocampal surface,
which may have a finer scale than currently defined subregions of
the hippocampus).

To test the added value of distributed computing, we
also hypothesize that the proposed framework could leverage
distributed computational models to improve the statistical
power to identify the influence of Aβ/tau pathology on regional
hippocampal morphometry. To examine the value of subregional
hippocampal features as effective biomarkers of AD progression,
we train several regression models with the features from the
ROIs to predict the cross-sectional Mini-Mental State Exam
(MMSE) score (Folstein et al., 1975) – a very widely used
clinical measure of disease severity in AD. In addition, we
use a separate dataset to demonstrate our ROIs offer superior
performance relative to several other univariate measures in a
survival analysis of MCI conversion to AD. Our work generalizes
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and enriches federated learning research by explicitly selecting
(and visualizing) key regional features. By increasing access to
information from large-scale imaging datasets and computing
efficiency, FMFS may offer an efficient and effective screening
tool to reveal the associations between Aβ/tau burden and
hippocampal morphology across the dementia spectrum, and the
features on ROIs could provide a means for screening individuals
prior to more invasive Aβ/tau burden assessments that might
determine their eligibility for interventional trials.

SUBJECTS AND METHODS

Subjects
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.1

The ADNI was launched in 2003 as a public–private partnership
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of
MCI and early AD. For up-to-date information, see www.adni-
info.org. From the multiple phases of ADNI – ADNI 1, ADNI 2,
ADNI GO, and ADNI 3 – we analyzed two sets of scans for the
study of Aβ deposition and tau deposition. For the Aβ deposition
study, we analyzed a total of 1,127 pairs of images from 1,109
subjects (18 of them have two pairs from different visiting dates),
including 1,127 T1-weighted MR images and 1,127 florbetapir
PET images. Similarly, we obtained 925 pairs from 688 subjects
(191 of them have more than one pair from different visiting
dates) of MRI scans and AV1451 PET images for the study
of tau deposition.

In addition to each brain MRI scan, we also analyze
the corresponding MMSE scores (Folstein et al., 1975). For
amyloid PET, we utilize centiloid measures (Navitsky et al.,
2018). Operationally, there have been widely accepted efforts to
reconcile differences among different amyloid radiotracers using
a norming approach called the centiloid scale (Klunk et al., 2015;
Rowe et al., 2017). ADNI florbetapir PET data are processed
using AVID pipeline (Navitsky et al., 2018), which are converted
to the Centiloid scales according to their respective conversion

1adni.loni.usc.edu

equations (Navitsky et al., 2018; Su et al., 2019). For flortaucipir
tau-PET – in a similar fashion to Aβ – tau data are reprocessed
using a single pipeline consistent with (Sanchez et al., 2021), so
that the standardized uptake value ratio (SUVR) from different
ADNI study sites can be analyzed together. In this work, we
examine two regional SUVR for tau deposition, corresponding
to Braak12, and Braak34 (Schöll et al., 2016; Baker et al., 2017a,b;
Maass et al., 2017). Table 1 shows the demographic information
from the two cohorts that we analyzed.

Proposed Pipeline
In this work, we develop a FMFS model to detect the influence
of Aβ and tau deposition on hippocampal shape deformity and
to better support the future prediction of AD pathology as
shown in Figure 1. In panel (1), each institution first extracts
the morphometric features locally. The hippocampal structures
are segmented from registered brain MR images and smoothed
hippocampal surfaces are further generated. After the surface
parameterization and fluid registration, the hippocampal radial
distance (RD) and tensor-based morphometry (TBM) features
are calculated at each surface point. Each institution selects
patches on each hippocampal surface and reshapes the grouped
features (RD or TBM on each patch are one group) of each subject
to a vector. Next, in panel (2), taking each Aβ/tau measurement
as the dependent variable, the institutions perform the federated
feature selection model on these patches of features to generate
local hippocampal ROIs for each Aβ/tau measurement.

Image Processing
Using the FIRST algorithm from the FMRIB Software Library
(FSL), hippocampal structures are segmented in the MNI152
standard space (Patenaude et al., 2011; Paquette et al., 2017;
Figure 1B). Surface meshes are constructed based on the
hippocampal segmentations with the marching cubes algorithm
(Lorensen and Cline, 1987) and a topology-preserving level set
method (Han et al., 2003). Then, to reduce the noise from
MR image scanning and to overcome partial volume effects,
surface smoothing is applied consistently to all surfaces. Our
surface smoothing process consists of mesh simplification using
progressive meshes (Hoppe, 1996) and mesh refinement by
the Loop subdivision surface method (Loop, 1987; Figure 1C).
Similar procedures adopted in a number of our prior studies
(Wang et al., 2010, 2012; Colom et al., 2013; Luders et al., 2013;

TABLE 1 | Demographic information for the participants we studied from the ADNI.

Cohort Group Sex (M/F) Age MMSE Centiloid

Aβ (n = 1,127) AD (n = 173) 98/75 75.0 ± 7.8 22.7 ± 2.9 72.0 ± 40.2

MCI (n = 516) 291/225 72.6 ± 7.8 28.0 ± 1.7 42.0 ± 40.7

CU (n = 438) 200/238 74.5 ± 6.5 29.0 ± 1.2 24.4 ± 33.3

Cohort Group Sex (M/F) Age MMSE Braak12 Braak34

Tau (n = 925) AD (n = 115) 62/53 76.0 ± 8.5 22.0 ± 4.5 2.39 ± 0.60 2.51 ± 0.73

MCI (n = 278) 158/120 74.6 ± 7.9 27.9 ± 2.1 1.82 ± 0.46 1.92 ± 0.46

CU (n = 532) 210/322 73.4 ± 7.1 29.1 ± 1.1 1.58 ± 0.23 1.73 ± 0.21

Values are mean ± standard deviation, where applicable.
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FIGURE 1 | System pipeline. Panel (1) shows the steps for each institution to extract morphometric features locally. The hippocampal structures are segmented from
registered brain MR images and smoothed hippocampal surfaces are then generated (A–C). After the surface parameterization and fluid registration, the
hippocampal radial distance (RD) and tensor-based morphometry (TBM) features are calculated at each surface point (D). Each institution selects patches on each
hippocampal surface and reshapes the grouped features of each subject into a vector (E,F). Next, in panel (2) (G,H), taking Aβ/tau measurements as dependent
variables, the institutions perform the federated feature selection model on these patches of features to generate hippocampal local regions of interest (ROIs) for
each Aβ/tau measurement.

Monje et al., 2013; Shi et al., 2013a,b, 2015) show that the
smoothed meshes are accurate approximations to the original
surfaces, with a higher signal-to-noise ratio (SNR).

Using the holomorphic flow segmentation method (Wang
et al., 2007), each hippocampal surface is parameterized with
refined triangular meshes, and the parameterized surfaces
are then registered to a standard rectangular grid template
using a surface fluid registration algorithm (Shi et al., 2013a).

After parameterization and registration, we establish a one-to-
one correspondence map between hippocampal surfaces. Each
surface has the same number of vertices (150 × 100). As
illustrated in Figure 1D, the intersection of the red curve and
the blue curve is a surface vertex, and at each vertex, we adopt
two kinds of morphometry features, the RD (Pizer et al., 1999;
Thompson et al., 2004) and measures derived from surface
TBM (Davatzikos, 1996; Thompson et al., 2000; Woods, 2003;
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Chung et al., 2008). The RD (a scalar at each vertex) represents
the thickness of the shape at each vertex relative to the
medial axis; this primarily reflects surface differences along the
surface normal directions. The medial axis is determined by the
geometric center of the isoparametric curve on the computed
conformal grid (Wang et al., 2011). The axis is perpendicular to
the isoparametric curve, so the thickness can be easily calculated
as the Euclidean distance between the core and the vertex
on the curve. TBM examines the Jacobian matrix J of the
deformation map that registers the surface to a template surface
(Shi et al., 2013a). For TBM,

√
det (J) was computed at each

vertex, and this value reflects how the surface area changed
around the vertex (expansion or atrophy). Additionally, we used
the heat kernel smoothing algorithm (Chung et al., 2005; Shi
et al., 2015) to refine the surface features. Since the surface of
the hippocampi in each brain hemisphere has 15, 000 vertices
and each vertex has one RD and one TBM, the final feature
dimensionality of both hippocampi combined, for each subject,
is 60,000 [(15, 000 + 15, 000) × 2].

Finally, on each hippocampal surface (100 × 150 vertices), we
uniformly selected 2, 500 patches of size 2 × 3, and RD and TBM
in one patch were considered as a group of features, respectively
(Figure 1E). We selected this patch size of 2 × 3 to increase
the robustness of the feature selection model, but also because
it does not have an adverse impact on the feature visualization.
The grouped features for each subject are reshaped to a vector
(Figure 1F) and will be further processed with our FMFS model.

Federated Group LASSO Regression
Group LASSO (Yuan and Lin, 2006) is a widely used technique
for group-wise feature selection in high dimensional data.
A group-LASSO linear regression has the following optimizing
problem:

min
β ∈ Rp

F (β) =
1
2
∣∣∣∣y− G∑

g=1

Xgβg
∣∣∣∣2

2

+ λ

G∑
g=1

wg
∣∣∣∣βg

∣∣∣∣
2, (1)

where Xg ∈ RN × pg is the feature matrix, and y denotes the N
dimensional response vector. Group LASSO divides the original
feature matrix X ∈ RN × p into G different groups, where Xg
represents the features in gth group and wg is the weight for
this group. After solving the group LASSO problem, we get the
G solution vectors, β1, β2, ..., βG. The dimensionality of each
group, pg , can be arbitrary and the whole solution vector β is
[β1, β2, ..., βG] ∈ Rp. Additionally, λ is a positive regularization
parameter to control the sparsity of the solution vector, and wg is
the weight for gth group of features.

There are many optimization methods to solve the group
LASSO problem; block coordinate descent (BCD) (Qin et al.,
2013) is one of the most efficient. Instead of updating all the
variables at the same time, BCD only updates one or several
blocks of variables at each epoch. Therefore, for the group LASSO
problem, it can optimize one group of variables while keeping
the other ones fixed. Based on this idea, we proposed a federated
block coordinate descent (FBCD) to solve our problem.

Li Q. et al. (2016) proposed an optimization model, the local
query model (LQM), which preserves the data privacy at each
institution. We assume that there are I institutions, and each of
them owns a private data set (Xi, yi). We can reformulate the
problem (1) as

minβ
I∑

i=1

f i (Xi, yi
;β
)
+ λ

G∑
g=1

wg
∣∣∣∣βg

∣∣∣∣
2, (2)

where f i (Xi, yi
; β
)
=

1
2

∣∣∣∣yi
−
∑G

g = 1 Xi
gβg
∣∣∣∣2

2
is the least square

loss of the ith institution. We then have the global gradient,

∇f
(
X, y;β

)
=

I∑
i=1

∇f i (Xi, yi
; β
)
=

I∑
i=1

(
Xi)T (Xiβ − yi). (3)

Each of the local institutions calculates its own gradient
locally and uploads it to the master server. The master server
will compute the global gradient, ∇f

(
X, y; β

)
, by adding

all ∇f i (Xi, yi
; β
)
. It then assigns the global update gradient

∇f
(
X, y; β

)
back to all the local institutions to compute β.

Then, β is updated locally with the shrinkage function at
the 6th line of Algorithm 1. Our proposed FBCD method is
outlined in Algorithm 1.

ALGORITHM 1 | Federated block coordinate descent (FBCD).

Input: Data pairs from the i institutions
(
X1, y1) , ..., (X i, yi) , ..., (X I, yI) with

group information and the regularization parameter λ

Output: The learned solution β

Initialize: β = 0 ∈ Rp

1: while convergence and maximum number of iterations are not reached do

2: Randomly select gth group to optimize

3: Compute the local gradient of gth group:

∇f i
(
X i

g

)
=

[
X i

g

]T (
X i

gβ− yi
)

4: Compute the global gradient by LQM: ∇f
(
Xg
)
=

∑I
i = 1 ∇f i

(
X i

g

)
5: βg = βg −∇f

(
Xg
)
/
∣∣∣∣Xg

∣∣∣∣2
2

6: βg =


βg −

λwg∣∣∣∣βg

∣∣∣∣
2

βg, if
∣∣∣∣βg

∣∣∣∣
2 >

λwg∣∣∣∣Xg

∣∣∣∣2
2

0 ∈ Rpg , if
∣∣∣∣βg

∣∣∣∣
2 ≤

λwg∣∣∣∣Xg

∣∣∣∣2
2

Federated Screening for Group LASSO
Finding the optimal value for the regularization parameter
λ is a common problem in LASSO techniques. The most
frequently used methods, such as cross-validation and stability
selection, solve it by trying a sequence of regularization
parameters, λ1 > ... > λκ ; this can be very time-consuming.
Instead, the enhanced dual polytope projection rule (EDPP)
(Wang et al., 2015) achieved a 200× speedup on the cross-
validation in real-world applications, by using information
derived from the solution of the previously tried regularization
parameter. For the group LASSO problem, the gth group of
features Xg can be discarded if it satisfies the screening rule,∣∣∣∣Jg
∣∣∣∣

2 ≤ wg (2λ− λmax) where λmax = maxg

∣∣∣∣Lg

∣∣∣∣
2

wg
and Jg
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and Lg are the elements of J and L defined in Algorithm 2. The
screening rule is based on the uniqueness and non-expansiveness
of the optimal dual solution, because the feasible set in the
dual space is a convex and closed polytope. More information
on EDPP may be found at the following GitHub: http://dpc-
screening.github.io/glasso.html.

Following the screening rule, we further propose a federated
screening rule for group LASSO, named federated dual polytope
projection for group LASSO (FDPP-GL), to rapidly locate the
inactive features in a distributed manner while preserving data
privacy at each institution (Figure 1G). We summarize the
method in Algorithm 2. In the algorithm, we estimate the
maximum regularization parameter, λmax. The input sequence
of parameters, λ1, λ2, ..., λκ, should be no greater than λmax.
Based on the solutions with the sequence of regularization
parameters, we can then perform stability selection (Meinshausen
and Bühlmann, 2010) to select significant features that are most
related to the corresponding y (Figure 1H).

ALGORITHM 2 | Federated dual polytope projection for group LASSO
(FDPP-GL).

Input: Data pairs of the i institutions
(
X1, y1) , ..., (X i, yi) , ..., (X I, yI) with

information of G groups and regularization parameters λ1 > λ2 > ... > λκ

Output: The optimal solution β∗ (λ1) , β
∗ (λ2) , β

∗ (λκ )

1: Li
=
(
X i)T yi , then computes L =

∑I
i = 1 Li by LQM

2: λ0 = λmax = maxg

∣∣∣∣Lg

∣∣∣∣
2

wg
, Lg represents all the elements in gth group

3: Qi
= argmaxxi

g

∣∣∣∣Lg

∣∣∣∣
2

wg
, compute S =

∑I
i = 1

(
Qi)T yi by LQM

4: for k ← 1 to κ do

5: θ i (λk−1
)
=


yi
−
∑G

g = 1 xi
gβ
∗
g(λk−1)

λk−1
, if λk−1 ∈ (0, λ0)

yi

λ0
, if λk−1 = λ0

6: vi
1

(
λk−1

)
=


yi

λk−1
− θ i (λk−1

)
, if λk−1 ∈ (0, λ0)

QiS, if λk−1 = λ0

7: vi
2

(
λk, λk−1

)
=

yi

λk
− θ i (λk−1

)
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2 then

14: All elements in βg (λk) are zero

15: Discard features from data if the corresponding coefficients in βg (λk) are 0

16: Solve the optimal solution, β∗ (λk), by Algorithm 1

Morphometry Feature Selection and Visualization
We carry out the proposed federated group LASSO method to
measure how significantly the patches of features are related to
the response y. Given a decreasing sequence of regularization
parameters, λ1, ..., λκ, we learn a set of corresponding models,
β (λ1) , ..., β (λκ). We perform stability selection by counting the
frequency of non-zero entries in the learned models and visualize
the frequency on the surface. The counted frequency on each
vertex is normalized to 1–100 and then mapped to a color bar. For
better visualization, we smooth the values on each surface with a

2 × 3 averaging filter. The regions with higher frequency values
will be assigned warmer colors, as illustrated in the subfigure (h)
of Figure 1. In other words, these areas have more significant
associations with y.

Performance Evaluation Protocol
To further validate whether these identified hippocampal ROIs
are related to Aβ/tau deposition, we used RD and TBM features
of these ROIs to predict MMSE scores based on random
forest, multilayer perceptron (MLP), and LASSO regression
models. Ten-fold cross-validation was adopted to evaluate the
performance of the models, and root mean squared error
(RMSE) was used for measuring the prediction accuracy.
Meanwhile, we also compared the prediction results of ROI-
related features with the results of the whole hippocampal
features and Aβ/tau measures.

We also tested the computing efficiency with the 1,127
subjects for the study of Aβ. Firstly, we randomly assign the
1,127 subjects to five institutions, of which each has almost
the same number of subjects and one computation node. After
uniformly selecting 100 regularization parameters from 1.0 to 0.1,
we performed stability selection with our proposed framework,
FMFS, FBCD (FMFS without the screening rule), as well as
the state-of-the-art distributed alternating direction method of
multipliers (DADMMs) (Boyd et al., 2011). Besides this, we also
repeated the same experiments with different dimensionality
of features by randomly down-sampling and up-sampling the
original features.

RESULTS

Efficiency Evaluation
A significant innovation of FMFS is that we introduce a screening
rule during the group LASSO feature selection stage, which highly
improves the computation speed compared to the DADMMs
algorithm (Boyd et al., 2011). Moreover, we also compare
FMFS with the Gauss-Southwell-Lipschitz rules (GSL) for block
coordinate descend in Nutini (2017). Besides, we also tested
the running time of FBCD in our federated framework without
the screening rule.

We simulated the distributed condition on a cluster with
several conventional ×86 nodes, of which each contains two
Intel Xeon E5-2680 v4 CPUs running at 2.40 GHz. Each parallel
computing node has a full-speed Omni-Path connection to every
other node in its partition. A total of 1,127 subjects for the
Aβ deposition study were randomly assigned to five simulated
institutions, each of which has almost the same number of
subjects and one computation node. We uniformly selected 100
regularization parameters from 1.0 to 0.1 and ran all three
methods with the same experimental set-up. Under different
morphometry feature resolutions (where we randomly down-
sampled or up-sampled the dimension of the features), our
FMFS method achieved a speedup of 62–, 80–, 86–, and 89-fold,
compared to DADMM as shown in Figure 2. For FBCD, our
FMFS has a speedup of 54–, 72–, 80–, and 86-fold. For GSL, our
model has a speedup of 12–, 15–, 15–, and 17-fold.
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FIGURE 2 | Comparison analysis of computation efficiency. For the morphometry features with different resolutions, our framework achieves a speedup of 62–, 80–,
86–, and 89-fold, compared to DADMM. For FBCD, our FMFS has a speedup of 54–, 72–, 80–, and 86-fold. For GSL, our model has a speedup of 12–, 15–, 15–,
and 17-fold.

Amyloid-β and Tau Associated
Hippocampal Morphometry
We employed stability selection with our FMFS model to select
the ROIs (subregions of the hippocampal surfaces) related to
Aβ and tau. We respectively standardize the two types of input
features, RD and TBM, for each subject, using Z-scores, and
adopt the centiloid value as the measure of Aβ burden and
Braak12 and Braak34 measures for tau deposition. Since the
regularization parameters can control the sparsity of the solution
vector and further influence the area of the ROIs, we uniformly
generated 100 regularization parameters between 0.01 and 0.001,
which may lead to a reasonable size for the selected ROIs.
After training the model, we got 100 solution vectors, of which
the dimensionality is 60,000, since each of the left and right
hippocampal surfaces contains 15,000 vertices, and each vertex
has two features. Then, we performed stability selection by
counting the non-zero entries for RD and TBM on the same
vertex. The counted frequency on each vertex was normalized to
0–100 and then mapped to a color bar, as shown in Figures 3–5.
For better visualization, we smoothed the values on each surface
by a 2 × 3 averaging filter. The warmer color areas have a
higher frequency value and have stronger associations with the
responses, i.e., brain global Aβ and tau burden.

In this experiment, we first ran the proposed model on the
cohorts for Aβ and tau deposition. As illustrated in the top
left picture of Figures 3–5, the morphometric abnormalities
mainly happen in specific hippocampal subregions, namely the
subiculum and CA1. Additionally, we separately studied the ROIs
for groups of CU, MCI, and AD subjects. As shown in the rest of
the three panels in Figures 3–5, the morphometric associations
are strongest in the subiculum and CA1 at the early stages; but
with the progression of AD, the distortions are more focal in
subiculum. Specifically, the results for CU subjects are shown
in the top right panel of each figure, where the warmer colored
regions are widespread in both the subiculum and CA1 areas.
However, in the results for the AD group, the warmer colored
regions mainly focus on the area of the subiculum.

Association Analysis Between Features
on Regions of Interest and Measure for
Amyloid-β and Tau Deposition
In this experiment, we try to demonstrate the morphometric
features of our selected ROIs have stronger correlations with the
measures for Aβ and tau deposition than the other hippocampal
surface features. After performing stability selection, we were
able to rank the vertices related to each measurement of Aβ/tau
deposition. We selected the 3,000 features from the 1,500 top-
ranked vertices for each subject (1,500 RD and 1,500 TBM). For
a fair comparison, we also selected 3,000 features from 1,500
randomly selected vertices for each subject and used them as
features representing differences across the entire hippocampus.
To fit the Pearson Correlation analysis, we converted the features
on ROIs to a single value for each subject. First, as the features
on the ROIs should have stronger predictive power, we used
the frequency on each vertex as a weight to multiply the RD
and TBM on the vertex. And then, we, respectively, summed
up the weighted RD and weighted TBM on the ROIs for each
subject. The value for RD and the value for TBM were further
reduced to a scalar with principal components analysis (PCA).
PCA is an unsupervised model to reduce the dimensionality
of the data while minimizing information loss. It creates new
uncorrelated features which maximize the variance successively.
For the randomly selected features on the whole hippocampal
surface, the RD and TBM were directly summed up without
multiplying the frequency and reduced to a single value with
PCA. In Figure 6, we illustrate the results of Pearson correlation
between morphometric features and measures for Aβ and tau
deposition. The top three subfigures illustrate the correlation
between the values on our selected ROIs and the measure for
Aβ or tau deposition. The bottom three are between the value
on the whole hippocampal surface and the measure for Aβ

or tau deposition. The correlation coefficients and p-values are
shown in each subfigure. The correlation coefficient of Centiloid-
related ROIs is −0.23, and the coefficient for the whole surface
is only −0.1. For Braak12 and Braak34, the coefficients of our
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FIGURE 3 | Visualization of ROIs associated with centiloid (Aβ measurement). The top left figure shows the results for all subjects. The top right is for AD patients.
The bottom two figures are for participants with MCI and for the CU group.

FIGURE 4 | Visualization of ROIs associated with Braak12 (tau measurement). The top left figure shows the results for all subjects. The top right is for AD patients.
The bottom two figures are for participants with MCI and for the CU group.

selected ROIs are −0.37 and −0.29 and the ones for the whole
surface are−0.11 and−0.096. Consequently, the features on our
selected ROIs have more associations to the measure for Aβ or
tau deposition than the other features on the surface.

Predicting Mini-Mental State Exam
Scores Based on Hippocampal Regions
of Interest
In the model of Jack et al. (2016), an abnormal level of Aβ and tau
deposition tends to occur earlier than abnormal cognitive decline
can be detected. In this experiment, we further validated the
ROIs selected by our proposed model in terms of their prediction
accuracy for MMSE score in cohorts where Aβ and tau deposition

were measured separately. After performing stability selection,
we were able to rank the vertices related to each measurement
of Aβ/tau deposition. We selected the 3,000 features from the
1,500 top-ranked vertices for each subject (1,500 RD and 1,500
TBM). Then, we used these features to predict the MMSE score
as described in section “Performance Evaluation Protocol.” For
a fair comparison, we also selected 3,000 features from 1,500
randomly selected vertices for each subject and used them as
features representing differences across the entire hippocampus.
Moreover, we also leveraged the measurements for Aβ or tau
deposition to predict MMSE. In addition, we compare our FMFS
with recursive feature elimination (RFE) (Guyon et al., 2002). The
feature dimensionality of our morphometry feature is 60,000 and
RFE may take tens of days to rank features for such a big dataset.
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FIGURE 5 | Visualization of ROIs associated with Braak34 (tau measurement). The top left figure shows the results for all subjects. The top right is for AD patients.
The bottom two figures are for participants with MCI and for the CU group.
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FIGURE 6 | Pearson correlation between morphometry features and measures for Aβ and tau deposition. The top three subfigures (A,C,E) illustrate the correlation
between the values on our selected ROIs and the measure for Aβ or tau deposition. The bottom three (B,D,F) are between the value on the whole hippocampal
surface and the measure for Aβ or tau deposition. The correlation coefficients and p-values are shown in each subfigure.

For equal comparison, we also selected 1,500 RD and 1,500 TBM
for each measurement of Aβ/tau deposition. To accelerate the
feature selection speed, we randomly select 300 features from the

30,000 RD and use RFE to select the top 15 RD. We repeated the
step 100 times and selected 1,500 RD. With the same strategy,
we also select 1,500 TBM. Then, we used these features to
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train machine learning models, including random forest, MLP,
and LASSO regression. Ten-fold cross-validation was adopted to
evaluate the performance of the models, and RMSE was used for
measuring the prediction accuracy. In Table 2, the top five rows
indicate the results for Aβ deposition, and the rest of the rows
are for different measurements of tau deposition. Hippocampal
ROIs represent the features on our selected ROIs and RFE-
selected represents the features selected by RFE. The RMSEs of
our framework are always the smallest. It is worth noting that
comparing to the RFE method, our proposed FMFS framework
demonstrated significant efficiency improvement. Specifically,
the average running time of the RFE method is 49,319 s while
ours FMFS method 22 s, roughly with 2,240-fold efficiency
improvement. These results demonstrate that the features in the
ROIs selected by our model can always have a stronger predictive
power and predict the MMSE score better than the measurements
of Aβ and tau deposition.

We also perform Pearson correlation between the
morphometry features and MMSE and between the measure
for Aβ or tau deposition and MMSE. We also utilize the same
method as section “Association Analysis Between Features
on Regions of Interest and Measure for Amyloid-β and Tau
Deposition” to convert the multivariate features to a scalar. The
results are shown in Figure 7. The first column is the correlation
between the measures for Aβ and tau deposition and MMSE.
And the second column is the correlation between the features
on our selected ROIs and MMSE. The last column is between
the feature on the whole surface and MMSE. The correlation
coefficients and p-values are shown in each subfigure. In the
study of Aβ deposition, the coefficient for centiloid is −0.36
and the ones for the features on centiloid-related ROIs and the
whole surface are 0.3 and 0.11. In the study of tau deposition, the
coefficient for Braak12 and Braak34 are −0.58 and −0.59. And
the ones for the features on Braak12-related ROIs and Braak12-
related ROIs are 0.29 and 0.28. The coefficient for the features

TABLE 2 | Root mean squared errors for predicting MMSE based on various kinds
of biomarkers and models.

Aβ associated Random forest MLP LASSO

Hippocampal ROIs 2.58 3.00 2.59

Whole hippocampal 2.79 3.96 2.79

Centiloid 3.15 4.01 2.85

RFE selected 2.68 3.67 2.68

Braak12 associated Random forest MLP LASSO

Hippocampal ROIs 2.61 3.20 2.90

Whole hippocampal 3.11 4.24 3.00

Braak12 3.03 4.98 3.03

RFE selected 2.70 3.62 2.98

Braak34 associated Random forest MLP LASSO

Hippocampal ROIs 2.62 3.26 2.86

Whole hippocampal 3.09 4.16 3.02

Braak34 2.81 4.94 3.02

RFE selected 2.85 3.83 2.98

on the whole surface is 0.057. The correlation of the features
on our selected ROIs is stronger than the features on the whole
surface, which demonstrates the effectiveness of our model. The
measures for Aβ or tau deposition have the strongest correlation
with MMSE. But our selected features are multivariate, which
can have better performance in predicting MMSE. Our work
validated the AD progression model and may provide unique
insights for accurately estimating clinical disease burden.

Predicting Clinical Decline in Participants
With Mild Cognitive Impairment
In this experiment, we evaluated the performance of our
features on the ROI in survival analysis by using 118 MCI
participants’ data from a separate dataset (Wang et al., 2021)
from ADNI (Table 3), including 63 MCI converters, who
converted to probable AD in the next 6 years, and 55 MCI
non-converters. Similar to section “Association Analysis Between
Features on Regions of Interest and Measure for Amyloid-
β and Tau Deposition,” we also chose 1,500 RD and 1,500
TBM from the four ROIs (Aβ, Braak12, and Braak34) and
3,000 features from 1,500 random-selected vertices on the
whole hippocampal surface to predict the conversion rates
from MCI to AD, respectively. For comparison, we also
performed the same experiment with the surface area and
volume of the hippocampus. The hippocampal volume and
surface area were calculated with the smoothed hippocampal
structures after linearly registered to the MNI imaging space
(Patenaude et al., 2011; Shi et al., 2013a), and the sum of
the bilateral hippocampal volume and the sum of the bilateral
hippocampal surface area for each subject were used for
this experiment.

To fit the univariate Cox model, we converted the features
on ROIs to a single value for each subject. First, as the features
on the ROIs should have stronger predictive power, we used the
frequency on each vertex as a weight to multiply the RD and
TBM on the vertex. And then, we, respectively, summed up the
weighted RD and weighted TBM on the ROIs for each subject.
The value for RD and the value for TBM were further reduced
to a scalar with PCA. PCA is an unsupervised model to reduce
the dimensionality of the data while minimizing information
loss. It creates new uncorrelated features which maximize the
variance successively. For the randomly selected features on the
whole hippocampal surface, the RD and TBM were directly
summed up without multiplying the frequency and reduced to
a single value with PCA.

Then, the optimal cutoffs for these measurements were
determined with the maximum sensitivity and specificity for
distinguishing MCI converters and non-converters based on
Receiver Operating Characteristic (ROC) analysis (Robin et al.,
2011). The ROC curves are illustrated in Figure 8, and the AUC,
95% confidence interval (CI) of AUC, and the optimal cutoffs are
shown in Table 4.

With the optimal cutoffs, we could divide the whole cohort
into two groups with different measurements. For example, the
subjects with hippocampal volume higher than 7814.9 mm−3

were assigned to a high-value (HV) group, and the rest were
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FIGURE 7 | Pearson correlation between the measures for Aβ and tau deposition and MMSE and between the morphometry features and MMSE. The first column
(A,D,G) is the correlation between the measures for Aβ and tau deposition and MMSE. And the second column (B,E,H) is the correlation between the features on
our selected ROIs and MMSE. The last column (C,F,I) is between the feature on the whole surface and MMSE. The correlation coefficients and p-values are shown
in each subfigure.

into a low-value (LV) group. As expected, AD may decrease the
hippocampal volume as well as the other measurements. Next, we

TABLE 3 | Demographic information for participants with MCI.

Group Sex (M/F) Age MMSE

MCI converter (n = 63) 42/21 75.2 ± 7.0 26.7 ± 1.7

MCI non-converter (n = 55) 38/17 74.7 ± 7.8 27.7 ± 1.4

Values are mean ± standard deviation, where applicable.

fitted a Cox proportional hazard model (Moore, 2008) with the
six measurements separately, and the regression beta coefficients
(β), the hazard ratios (HRs), and statistical significance (p-values)
are shown in Table 4.

Moreover, we calculated the survival probabilities for
conversion to AD in the HV group and the LV group by
fitting Kaplan–Meier curves. The survival probabilities of the
subjects based on hippocampal surface area, volume, the whole
hippocampal features, and the features on ROIs related to
Aβ, Braak12, and Braak34 are shown in Figure 9. Each color
represents the survival curve and 95% CI of one group. Here a
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FIGURE 8 | The ROC analysis results for hippocampal surface area, volume,
the whole hippocampal feature, and the features on ROIs associated with Aβ,
Braak12, and Braak34. The AUC for each measurement is shown in
parentheses.

TABLE 4 | AUC for ROC analysis, optimal cutoffs, and estimated hazards ratios
(HRs) for conversion to AD in MCI patients with high-value and low-value
biomarkers based on a univariate Cox model.

Measurements AUC (95% CI) Cutoff β HR (95% CI) p-Value

Area 0.64 (0.54, 0.74) 8037.8 0.40 2.5 (2.3, 3.2) 0.001

Volume 0.66 (0.56, 0.76) 7814.9 0.41 2.5 (2.2, 3.1) 4.00E−04

Whole_hippo 0.61 (0.51, 0.72) 1.7 0.50 2.0 (1.7, 2.8) 0.007

Centiloid 0.72 (0.63, 0.81) 13.3 0.21 4.7 (4.6, 5.2) 4.00E−05

Braak12 0.74 (0.66, 0.83) −3.0 0.26 3.8 (3.6, 4.3) 4.00E−07

Braak34 0.74 (0.65, 0.83) −7.6 0.29 3.5 (3.3, 4.0) 1.00E−06

log-rank test was used to compare the survival group differences
based on a χ2 test, and the p-values are illustrated in each plot.
A result with a p-value < 0.05 indicates that the two groups
are significantly different in terms of survival time. The features
from our selected ROIs tended to always yield stronger significant
results than the hippocampal surface area, volume, and the whole
hippocampal features.

DISCUSSION

This work proposes a novel framework, FMFS, to efficiently
detect Aβ/tau associated hippocampal morphometry markers at
different clinically defined stages of AD. The first contribution
of this work is that our proposed FMFS model shows excellent
computational efficiency compared to similar federated learning
models, with a speedup of up to 89-fold. Our work may help
accelerate large-scale neuroimaging computations over various
disparate, remote data sources without requiring the transfer
of any individual data to a centralized location. The second
contribution is that the FMFS is an effective tool to select
and visualize the brain imaging feature data. In our previous

studies (Stonnington et al., 2021; Zhang et al., 2021a,b), the
morphometry features always showed excellent performance in
predicting AD progression. However, the major limitation of
these works was that they failed to visualize the disease-related
regions on the surfaces. In the current work, our proposed
FMFS model can well select the features with stronger predictive
power and further visualize the ROIs on the surfaces. The
proposed method is general and may be applied to analyze any
general brain imaging feature data. Moreover, our experimental
results show that morphometric markers from the hippocampal
subiculum and CA1 subfield are apparently associated with
Aβ/tau markers in all the clinically defined stages of AD and, as
AD pathology progress, the ROIs showing associations are more
focal. With two prediction experiments, we further demonstrate
that the morphometric features on our identified ROIs show a
stronger predictive power in predicting MMSE scores and future
clinical decline in MCI patients. All the results indicate that
FMFS is a useful screening tool to reveal associations between
Aβ/tau status and hippocampal morphology across the clinically
normal to dementia spectrum. Aβ/tau-associated features on
ROIs could be used as potential biomarkers for the Aβ/tau
pathology, perhaps as a screening tool prior to using more
expensive and invasive PET techniques.

Amyloid-β/Tau Associated Hippocampal
Morphometry
Amyloid-β and tau proteinopathies accelerate hippocampal
atrophy leading to AD on MRI scans (Maass et al., 2017; Hanko
et al., 2019; Wang et al., 2021). However, the influence of Aβ/tau
deposition on hippocampal morphology in pathophysiological
progression of AD is still not well understood. Some prior
works (Shi et al., 2013a; Tsao et al., 2017; Adler et al., 2018)
demonstrated that CA1 and the subiculum are the ROIs
with the greatest abnormalities in the early stages of the AD
pathophysiological process. Besides, the study of Hanko et al.
(2019) reported a significant association between tau burden and
atrophy in specific hippocampal ROIs (CA1 and the subiculum),
but detected no Aβ-associated hippocampal ROIs in the 42
subjects they studied.

Our work applies two kinds of morphometry measures (RD
and TBM) and the novel FMFS framework to two datasets
to study fine-scale morphometric correlates of Aβ and tau
deposition. Both results are consistent with the prior studies
noted above. Besides, we also studied the influence of Aβ/tau
burden on hippocampal morphometry at different stages of
AD. As the results show in Figures 3–5, Aβ/tau associated
hippocampal ROIs are more focal as AD pathology progresses,
especially at the final stage of AD itself.

Predictive Power of the Features on
Regions of Interest
To verify the clinical value of these identified ROIs, we
compared their prediction performances to global hippocampal
morphometry and Aβ/tau measures using three different
machine learning models. As shown in Table 2, the features on
our identified ROIs have superior performance for predicting
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FIGURE 9 | The survival probability analysis for progression to AD in MCI patients based on hippocampal surface area (A), volume (B), the whole hippocampal
features (C), and the features on ROIs related to Aβ (D), Braak12 (E), and Braak34 (F). The p-values are from the log-rank test. The red curve represents the
high-value (HV) group for each measurement, and the blue one represents low-value (LV) group.
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clinical scores, which followed our initial hypothesis. Compared
to randomly selected features, the features on ROIs show stronger
predictive power, which illustrates the promise of our FMFS
model. Additionally, these Aβ/tau-associated features always
performed better than the measurements of Aβ/tau, and could
be used as a potential biomarker for Aβ/tau pathology, especially
as a screening indicator.

In addition, the results in section “Predicting Mini-Mental
State Exam Scores Based on Hippocampal Regions of Interest”
further proved the stronger predictive power of the ROIs in
survival analysis (of conversion from MCI to AD). Here, the
univariate biomarker computed from our ROIs had better
performance than the traditional hippocampal volume, which
suggested the potential ability of our ROIs to study AD
as a univariate biomarker. Consequently, both experiments
demonstrated the effectiveness of the FMFS model.

Stability Analysis
To test whether the performance of our FMFS model could
be affected by kinds of data distribution across institutions,
we performed fivefold cross-validation on the dataset for the
study of Aβ under three conditions, including a data-centralized
condition and data distributed across three institutions and five
institutions. We simulated the distributed condition on a cluster
with several conventional ×86 nodes, of which each contains
two Intel Xeon E5-2680 v4 CPUs running at 2.40 GHz. Each
institution is assigned one computing node. For each training
data set, we randomly assigned the subjects to three institutions,
five institutions, or a single institution. Besides, we also compared
the performance of FMFS with DADMM and FBCD under the
five-institution conditions. We perform cross-validation a total
of 10 times with a sequence of regularization parameters, 1, 0.5,
and 0.1, and with all the other experimental set-ups being the
same as in the previous experiment. The average RMSE for the
prediction of MMSE was employed to evaluate the prediction
accuracy during training and testing, as shown in Table 5.

Additionally, we tried to collect datasets from different
institutions and studies to validate the stability of our federated
model in the real-world condition. Besides ADNI, we also
collected MRI scans from other institutions, including 307
cognitively unimpaired subjects from Open Access Series of
Imaging Studies (OASIS) (Marcus et al., 2010) and 38 MCI
patients from Arizona APOE cohort study (AZ) (Caselli et al.,
2009). The datasets for the study of Aβ and tau are treated
as two institutions’ data. Therefore, in this experiment, we

TABLE 5 | Average RMSE for predicting MMSE with FMFS across different
institutional settings.

λ FMFS (1) FMFS (3) FMFS (5) FBCD (5) DADMM (5)

Train 1.0 2.80 2.80 2.80 2.80 2.80

0.5 2.70 2.70 2.70 2.70 2.70

0.1 2.43 2.43 2.43 2.43 2.44

Test 1.0 2.79 2.79 2.79 2.79 2.79

0.5 2.71 2.71 2.71 2.71 2.71

0.1 2.60 2.60 2.60 2.60 2.61

TABLE 6 | Average RMSE for predicting MMSE with FMFS across datasets from
different institutions.

λ Centralized FMFS (4) FBCD (4) DADMM (4)

1.0 2.73 2.73 2.73 2.73

0.5 2.56 2.56 2.56 2.56

0.1 2.33 2.33 2.33 2.33

have four institutions, Aβ for ADNI, tau for ADNI, OASIS,
and AZ. In the four-institution condition, each institution was
assigned one computing node and all the other parameter
settings were the same. Then, we fit the features of these data
and MMSE in our FMFS as well as FBCD and DADMM.
FMFS are validated at data-centralized and the four-institution
condition. FBCD and DADMM are only under the four-
institution condition. The average RMSE for the prediction of
MMSE was used to evaluate the prediction accuracy. The results
of the training loss are shown in Table 6. The results indicated
that different kinds of institutional distributions did not strongly
influence our FMFS model.

Limitations and Future Work
Despite the promising results are obtained by applying FMFS,
there are two important caveats. First, this work is based on cross-
sectional data. It would also be valuable to track the longitudinal
hippocampal ROIs deformity as Aβ/tau change over time. In
the future, we plan to conduct longitudinal association analyses
of hippocampal features and their relation to Aβ/tau burden.
Second, This work only studied the hippocampal structures,
but other structures, such as the ventricles, and cortical surface
metrics such as gray matter thickness or volume (Chou et al.,
2009; Doherty et al., 2015) are also affected by AD pathology.
We hypothesize that our proposed framework will contribute
more to these high-dimensional features. Therefore, in the
future, we will collect more dataset to explore more Aβ/tau-
associated brain regional abnormalities. This future work will
help shed new light on the relationship of component biological
processes in AD.

CONCLUSION

This work proposes a novel high-dimensional federated feature
selection framework, FMFS, to study the Aβ/tau burden
associated with abnormalities in hippocampal subregions on
two datasets. Experimental results showed that FMFS encoded
hippocampal features at different clinical stages that were
associated with Aβ/tau burden. As the clinical symptoms
worsen, these ROIs appear to be more focal. Our novel
proposed framework achieved superior performance in efficiency
compared to a similar feature selection method. To the best of
our knowledge, this is the first feature selection model to study
hippocampal morphometric changes with Aβ/tau burden across
the AD spectrum. More importantly, this model can visualize
brain structural abnormalities affected by AD proteinopathies.
Beyond brain MRI, our framework may also be applied to any
other kinds of medical data for feature selection.
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