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Functional magnetic resonance imaging (fMRI) has become one of the most widely
used noninvasive neuroimaging technique in research of cognitive neurosciences and of
neural mechanisms of neuropsychiatric/neurological diseases. A primary goal of fMRI-
based neuroimaging studies is to identify biomarkers for brain-behavior relationship and
ultimately perform individualized treatment outcome prognosis. However, the concern
of inadequate validation and the nature of small sample sizes are associated with
fMRI-based neuroimaging studies, both of which hinder the translation from scientific
findings to clinical practice. Therefore, the current paper presents a modeling approach
to predict time-dependent prognosis with fMRI-based brain metrics and follow-up data.
This prediction modeling is a combination of seed-based functional connectivity and
voxel-wise Cox regression analysis with built-in nested cross-validation, which has been
demonstrated to be able to provide robust and unbiased model performance estimates.
Demonstrated with a cohort of treatment-seeking cocaine users from psychosocial
treatment programs with 6-month follow-up, our proposed modeling method is
capable of identifying brain regions and related functional circuits that are predictive
of certain follow-up behavior, which could provide mechanistic understanding of
neuropsychiatric/neurological disease and clearly shows neuromodulation implications
and can be used for individualized prognosis and treatment protocol design.

Keywords: prediction modeling, fMRI, treatment outcome, Cox regression, functional connectivity,
neuromodulation implications

INTRODUCTION

Since the initial demonstration of blood-oxygen-level-dependent (BOLD) signal in vivo in early
1990s (Ogawa et al., 1990), functional magnetic resonance imaging (fMRI) has become a
noninvasive neuroimaging technique widely used in research of cognitive neurosciences, as well as
in understanding of neural mechanisms of neuropsychiatric/neurological diseases. For example, in
exploring neurobiological mechanisms of substance use disorder, a highly relapsing chronic brain
disease (Dutra et al., 2008; Koob and Volkow, 2016; Volkow et al., 2016) currently without effective
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treatments, imaging biomarkers based on both resting-state
fMRI (Zhai et al., 2021) and task-evoked fMRI (Luo et al.,
2013) have shown prediction validity of relapse to cocaine use
following treatment. Such neuroimaging-based studies provide
mechanistic understanding of relapse to drug use and suggest
neural targets for the development of neuromodulation (e.g.,
transcranial magnetic stimulation/TMS) treatment protocols.

Over the past three decades, in spite of advances in both
imaging acquisition and analysis techniques, which have greatly
enhanced our understanding of brain function and dysfunction,
two major concerns have been associated with fMRI-based
neuroimaging studies that hinder the translation from scientific
knowledge to clinical practice. One concern is lack of appropriate
validation in fMRI data analyses. A primary goal of fMRI-
based neuroimaging research is to identify biomarkers that
can be used to establish the relationship between brain and
behavior and ultimately perform individualized predictions of
health/prognosis outcomes (Gabrieli et al., 2015; Shen et al.,
2017). However, the term of “prediction” was often misused when
actual results reported were association/correlation that related
brain measures with behavioral assessments/treatment outcome
within samples being tested (Meng et al., 2017; Shen et al., 2017).
A recent review on neuroimaging studies claiming prediction
validity using fMRI data indicates that among 100 studies from
2017 to 2019, over 40% claimed prediction without any cross-
validation (Poldrack et al., 2020). These in-sample correlational
models without proper cross-validation tend to provide inflated
prediction accuracy due to overfitting, resulting in difficulties in
generalizability (Whelan and Garavan, 2014; Shen et al., 2017).
Another concern is the relatively small sample size in fMRI-based
neuroimaging studies (Turner et al., 2018; Szucs and Ioannidis,
2020), partially due to the large financial expenses associated with
fMRI scanning, as well as difficulties associated with recruiting
certain types of patients/participants. Among the 100 studies
examined, more than 70% were with a sample size less than
100, and more than 50% were with a sample size less than 50
(Poldrack et al., 2020). The small sample size nature of fMRI-
based neuroimaging studies can further intensify the problem
of overfitting in prediction analyses (Whelan and Garavan,
2014). Previous studies have suggested the utilization of nested
cross-validation in prediction, which has been demonstrated to
be able to provide robust and unbiased model performance
estimates, and outperform some other commonly used cross-
validation methods (such as K-fold cross-validation) especially
in applications with small sample sizes (Varma and Simon, 2006;
Vabalas et al., 2019).

Therefore, we present here an analytical approach to predict
time-dependent follow-up behaviors by imaging metrics from
resting-state fMRI and demonstrated the approach in a cohort
of treatment-seeking cocaine users. Our prediction modeling
is a hybrid of hypothesis-driven and data-driven approaches
built upon a combination of seed-based functional connectivity
and voxel-wise Cox regression. The seed-based functional
connectivity serves as the hypothesis-driven part, which is
hypothesis specific (e.g., implication for neuromodulation target
selection) and ensures the interpretability of results. The
Cox regression was originally introduced for survival analysis

(Cox, 1972). Due to the mathematical similarity between survival
and the relapse to drug use (time-dependent binary outcome),
the Cox regression model is an ideal statistical tool for probing
brain—relapse relationship. For example, it has been utilized in
predicting cocaine relapse with the brain activation induced by a
stop-signal inhibition task as measured by fMRI (Luo et al., 2013).
Also utilized under the resting-state, the Cox model yielded
high accuracy in predicting cocaine relapse with functional
connectivity (Geng et al., 2017). Therefore, we choose the Cox
regression model for the study of relapse during follow-up after
treatment. The whole prediction modeling pipeline is organized
into a nested cross-validation loop. Detailed procedures are
described below.

MATERIALS AND EQUIPMENT

The prediction method that we proposed here is based on a
voxel-wise Cox regression of resting-state fMRI and treatment
outcome. The whole procedure is cross-validated, potentially
utilizable on novel patients/subjects to predict their treatment
outcome prospectively. Here we list all the materials and
equipment that we used to conduct the prediction modeling: A
functional magnetic resonance imaging (fMRI) dataset acquired
from an MRI scanner and a post-treatment follow-up dataset
of relapse to drug use. Tools for image pre-processing and
functional connectivity analyses include the AFNI (v17.0.061)
and SPM2 software packages. The computational pipeline
of relapse prediction, including voxel-wise Cox regression,
prediction model fitting, cross-validation, and post-hoc analyses,
were developed with Matlab (R2020b, The MathWorks, Inc.,
Natick, MA, United States).

Methods
Participants and Clinical Assessment Procedures
To demonstrate our relapse prediction modeling, we employed
imaging and behavioral data collected from a cohort of
45 treatment-seeking cocaine dependent participants who
underwent and completed psychosocial treatment from local
residential treatment programs using the Minnesota Model
Psychosocial treatment approach (Cook, 1988). Several clinical
measurements were assessed including the Inventory of Drug
Use Consequences (InDUC) which assess the life problems
related to drug use (Tonigan and Miller, 2002), Cocaine Craving
Questionnaire (CCQ-Brief), years of cocaine use, days of cocaine
use in the past 90 days, and days since last cocaine use.
Following discharge from the psychosocial treatment program,
participants were followed up for 168 days or until relapse,
whichever was earlier. Abstinence was verified by weekly phone
interviews and/or in-person urine drug screens. Date of relapse
was recorded as the day of drug use or the day of the first
missed appointment if lost to follow-up. Participants who failed
to maintain abstinence were then discharged from the study.
The study was reviewed and approved by the Institutional

1http://afni.nimh.nih.gov/afni/
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Review Boards of the University of Texas Southwestern Medical
Center and the Veterans Administration North Texas Health
Care System. Written informed consent was obtained from each
participant. Summary of the demographic information of the
cohort is presented in Table 1 (n = 43 after excluding two
participants for excessive head motion during fMRI scanning, see
section “Computational Pipeline of Relapse Prediction” in the
section “Methods”). More detailed information on participants’
inclusion/exclusion, treatment/assessment procedures have been
described previously (Zhai et al., 2021).

Magnetic Resonance Imaging/Functional Magnetic
Resonance Imaging Scanning Parameters
For each participant, a whole-brain BOLD resting-state fMRI
dataset of 6 min was acquired from a 3T Philips MRI scanner
with an eight-channel radio-frequency coil (Philips Medical
Systems, Best, Netherlands). Images were collected in the axial
plane parallel to the AC-PC line using a single-shot, echo-planar
imaging sequence (TE = 25 ms, TR = 1.7 s, flip angle = 70◦,
spatial resolution = 3.25 mm × 3.25 mm × 3 mm with
no gap). Participants were instructed to keep their heads still
and eyes open during the resting-state scan. A high-resolution
anatomical T1-weighted image was also acquired from each
participant using a 3D magnetization-prepared rapid gradient-
echo sequence (TE = 3.8 ms, TR = 8.2 ms, flip angle = 12◦, spatial
resolution = 1 mm× 1 mm× 1 mm).

Computational Pipeline of Relapse Prediction
The relapse prediction modeling that we developed and
demonstrated here was inspired by the connectome-based
predictive modeling proposed by Shen et al. (2017). Generally,
our methodological pipeline was a combination of seed-based
functional connectivity and voxel-wise Cox regression of
functional connectivity and treatment outcome in a nested
cross-validation fashion, which consisted of six logical elements:
(1) image preprocessing; (2) functional connectivity calculation;
(3) voxel-wise Cox regression analysis; (4) thresholding
and generating composite indices; (5) Cox model fitting
for brain-behavior relationship and model evaluation (ROC
analysis); and (6) cross validation and permutation test.
Procedural steps are illustrated in Figure 1 and described
in details below.

TABLE 1 | Demographic, clinical and head-motion assessments.

CD cohort
(n = 43)

Age 43.42 ± 7.19

Sex (M/F) 38/5

Edu (years) 12.49 ± 2.11

Cocaine use (years) 8.28 ± 5.22

Nicotine use (CPD) 11.42 ± 10.36

Mean head motion (mm) 0.09 ± 0.03

CD, cocaine dependent; Edu, years of education; CPD, cigarettes per day.

The first step was image pre-processing that included:
discarding the first five volumes to allow the magnetic resonance
signal to reach steady state, slice timing correction (3dTshift,
AFNI), volume registration (3dvolreg, AFNI), polynomial
detrending (up to the 3rd order, 3dDetrend, AFNI) and head
motion correction (3dTproject, AFNI). Signals from white
matter and cerebrospinal fluid (CSF) were treated as a marker
of non-neuronal noise and were regressed out (3dTproject,
AFNI). A band-pass filter was applied to select low-frequency
fluctuations between 0.012 and 0.1 Hz (3dTproject, AFNI)
(Fransson, 2005). The fMRI data were normalized to standard
MNI image space and resampled to a 2-mm isotropic resolution
(SPM12). Head motion was also evaluated at the frame-by-
frame level to further control for image quality using pair-wise
displacement calculated based on the Euclidean distance
(1d_tool.py, AFNI). Volumes with displacement >0.35 mm were
censored; participants were excluded if their mean head motion
across volumes were greater than 0.2 mm or their percentage
of censored volumes exceeding 20%. Two participants were
excluded due to head motion exceeding this threshold, leaving
43 participants in the subsequent analytical steps.

Step two was to select a seed or region-of-interest (ROI)
based on specific hypothesis and calculate its whole-brain
functional connectivity (Figure 1A). The dlPFC has been utilized
as stimulation target for high frequency rTMS treatment that
reduced craving for nicotine and cocaine (Politi et al., 2008; Li
et al., 2013; Pripfl et al., 2014). Here, we chose an ROI on the
left dlPFC for demonstration due to its promising role in the
treatment of cocaine dependence as stimulation target of high
frequency rTMS (Terraneo et al., 2016), as well as the high validity
in predicting cocaine relapse with its downstream functional
circuits (Zhai et al., 2021). Whole-brain functional connectivity
maps were obtained by calculating the cross-correlation (CC)
between the time series of the seed and that of each voxel
in the whole-brain (3dDeconvolve, AFNI). The CC maps were
then Fisher’s Z-transformed with the inverse hyperbolic tangent
function Z = atanh(cc) (3dcalc, AFNI) as the resting-state
functional connectivity (rsFC) maps for subsequent analyses.

Step three was to conduct the voxel-wise Cox regression
analysis on the rsFC generated in the previous step and the
relapse information (days till relapse) obtained during the follow-
up period (Figure 1B): h (Xi, t) = h0(t)e

∑
j xijbj , where Xi is the

linear combination of the predictor variables/covariates for the
ith participant h (Xi, t), is the hazard rate at time t for Xi, h0(t) is
the baseline hazard rate function, and xijbi within the exponential
term represents the loglinear regression. The voxel-wise beta
coefficient maps (beta map) of all participants were obtained in
this step (Figure 1C), and the whole-brain relative hazard ratio
(HR) maps can further be calculated with the exponential of
the beta values.

Step four was to generate composite indices. All beta/HR maps
were voxel-wisely thresholded at a given threshold (e.g., p< 0.001
as demonstrated here). This is an initial thresholding serving
the purpose of pre-selection of those voxels with functional
connectivity relates to relapse the most, and was arbitrarily
chosen based on empirical experience, similarly as demonstrated
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FIGURE 1 | Schematic diagram of analytical pipeline. Illustration of our analytical procedures using one exemplar seed ROI, adapted from Zhai et al. (2021). First, an
ROI is selected as a seed (A); the whole-brain rsFC of this seed is calculated for each participant (B); a voxel-wise Cox regression is conducted using rsFC and days
until relapse to generate beta maps (C); beta maps of Cox regression is thresholded (D); generation of indexP and indexR by linearly summation of the rsFC values
within the thresholded beta maps for the negative and positive beta voxels, respectively (E); construction of the final prediction model by fitting indexP and indexR
into the Cox model (F); procedures B to F were organized in a nested cross-validation loop, and after each participant is left out once, an ROC analysis evaluates the
final prediction model (G). rsFC, resting-state functional connectivity; ROI, region-of-interest; ROC, Receiver-Operating-Characteristics.

in the connectome-based predictive modeling (Shen et al.,
2017). These thresholded beta/HR maps were subsequently
used to generate a set of “protective circuits” (voxels with
negative beta values/HR value less than 1, indicating less risk
of relapse with stronger functional connectivity), and a set of
“risk circuits” (voxels with positive beta values/HR value greater
than 1, indicating higher risk of relapse with stronger functional
connectivity), as well as two composite indices: indexP and
indexR by linear summation of functional connectivity from all
voxels within the “protective” and the “risk” circuits, respectively
(Figures 1D,E).

Step five was the final Cox model fitting for brain-behavior
relationship using these two composite indices, with age,
sex, years of education (edu), daily cigarette use (CPD)
and head motion during fMRI scan (HM) as covariates:
h (Xi, t) = h0(t)e(indexP × βP + indexR × βR +age × βA + sex × βS

+ edu × βE + CPD + βC + HM ×βH), (Figure 1F), and Receiver-
Operating-Characteristic (ROC) analysis for model evaluation
(Figure 1G). Step three to step five (Figures 1B–F) was organized
into a nested cross-validation loop, where the voxel-wise
Cox regression and thresholding serve the purpose of feature
selection, and the final Cox fitting with the two composite indices
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works as final model generation. The loop was repeated n times
(n equals the number of participants), and each time a new model
was developed from scratch with the n-th participant being left
out. After the nested cross-validation loop was completed, the
thresholds array for the cross-validated ROC analysis for model
evaluation was generated with the actual predictor values (i.e.,
indexR and indexP, as well as other covariates such as age and
years of education etc.) of each participant and the model that
was generated with this participant being left out (Figure 1G).

In the final step, permutation test was performed to
determine statistical significance based on empirical distribution
determined with the permutation. We repeated the entire analysis
10,000 times, each time with the predictor (composite indices)
and outcome (days till relapse) pairs randomly permuted to
generate the data/model specific empirical null distribution for
the area-under-the-curve (AUC) values of the ROC curve. The
p-value of the AUC was then derived based on the ranking of the
actual AUC value in this empirical null distribution.

Furthermore, our prediction modeling can be adapted into
different settings based on specific applications. For example,
in order to evaluate the prediction potential of our composite
indices in early relapse prediction, we generated an early relapse
prediction model with the indexP and indexR to predict cocaine
relapse at an early follow-up cut-off of 30-day follow-up, as well
as an intermediate prediction model with follow-up cut-off at
90-day, using the pipeline described above.

Post-hoc Analyses of Disease Subtyping
We performed several post-hoc analyses to further utilize
our prediction modeling to explore brain mechanisms of
cocaine addiction and to assess individual difference in the
brain (functional connectivity) versus behavioral (relapse)
relationship. First, we binarized the HR maps of all leave-
one-out steps, and then stacked them together to generate
a heat map of relapse relevant functional circuits. This heat
map was further arbitrarily thresholded based on the majority
of leave-one-out steps (e.g., > 85% as demonstrated here)
to demonstrate the group-level protective and risk circuits.
We then extracted the averaged functional connectivity from
each of the 43 participants within the group-level protective
and risk circuits as the input for our post-hoc analyses,
defined as the idxP_ph, and the idxR_ph, respectively, for
the protective and risk circuits (note here the suffix “ph”
stands for post-hoc, to be differentiated from the composite
indices “indexP” and “indexR” used in the abovementioned
prediction modeling section). Linear regression analysis was
conducted to explore the relationship between the idxP_ph
and the idxR_ph. To identify potential subtypes of cocaine
dependence, we also conducted the k-means clustering in
the P-R space (idxP_ph and idxR_ph). The optimal number
of clusters was determined by visual inspection with the
“elbow criterion” at a cluster number so that adding another
cluster only grants minimal returns (variance explained) with
the increment of cost (overfitting). The “elbow curve” was
depicted as

∑
Dwithin/

∑
Dbetween, where

∑
Dwithin is the sum of

within cluster distances and
∑

Dbetween is the sum of between
cluster distances.

(ANTICIPATED) RESULTS

Demographic and Clinical
Characterization
The current cohort of 43 participants included five females and
38 males with a mean (SD) age of 43.4 (7.2). Table 1 lists the
demographic information, clinical and head-motion assessments.
The clinical characterization of cocaine relapse during the follow-
up is illustrated in Figure 2; as shown in the Kaplan–Meier curve,
during the early relapse at cut-off of 30-day, 22 out of 43 (51.2%)
failed to remain abstinent; by the end of the 6-month follow-up
period, 35 out of 43 (81.4%) participants had relapsed.

The Predicative Region-of-Interest of
Cocaine Relapse
The prediction modeling we proposed here will grant the final
results of (1) a specific ROI (e.g., dlPFC) that is identified
predictive of certain behavior (e.g., cocaine relapse), with
prediction accuracy evaluated with the AUC value of the ROC
curve; and (2) a set of protective circuits and risk circuits that
are underlying the prediction. In our previous investigation on
the dlPFC ROIs across the entire surface area of bilateral dlPFC,
three dlPFC loci were identified significantly predictive of cocaine
relapse with their corresponding protective and risk functional
circuits (Zhai et al., 2021). Here we choose the predictive ROI
on the left dlPFC to demonstrate the anticipated results of our
prediction modeling pipeline (Figure 3). As Figure 3A shows,
the demonstrative left dlPFC ROI is locate at MNI coordinates
of [−48, 30, 34]. Figure 3B demonstrates the prediction accuracy
of 83.9% as measured by the AUC value of the ROC curve. The
statistical significance is confirmed by the p-value of 0.0005 based
on the empirical null-distribution generated with the permutation
test. The predictive ROI associated group-level protective and
risk functional circuits are recapped in Figure 3C. More detailed
descriptions and discussions on these functional circuits can
be found in the “predictive ROI-1” section of Zhai et al.
(2021). We further tested whether clinical measurements could
predict cocaine relapse by utilizing the same prediction modeling
method proposed here, and the clinical measurements tested here
included the InDUC, CCQ, cocaine use years, days of cocaine
use in the past 90 days, and days since last cocaine use. None of
these measurements significantly predicted cocaine relapse (see
Supplementary Table 1 for details).

Early and Intermediate Relapse
Prediction of the Predictive
Region-of-Interest
The composite indices (indexP and indexR) of the protective and
risk circuits associated with the predictive ROI can also be used to
build other prediction models such as the early and intermediate
relapse prediction models. By setting up the cut-off follow-up
time at 30 days, an early relapse prediction model (Figure 4A)
predicted cocaine relapse with a relatively lower, but statistically
significant AUC value of 0.714 of its ROC curve. For comparison,
we also built an intermediate prediction model (Figure 4B) that
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FIGURE 2 | Clinical characterization of cocaine relapse. The Kaplan–Meier curve illustrates the survivorship of participants in terms of maintaining abstinence.

FIGURE 3 | Predictive ROI location, model prediction accuracy, and associated functional circuits. Adapted from Zhai et al. (2021), panel (A) shows the location and
MNI coordinates of the predictive dlPFC ROI; the prediction accuracy measured with the area-under-the-curve (AUC) of the receiver-operating-characteristic (ROC)
curve and its corresponding statistical significance is demonstrated in panel (B); and the functional circuits associated with this dlPFC ROI that were used to
generate the composite indexP and indexR for subsequent early relapse prediction is recapped in panel (C). ROI, region-of-interest; ROC,
Receiver-Operating-Characteristics; AUC, area-under-the-curve; dlPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobule; IFG, inferior frontal gyrus; PCC,
posterior cingulate cortex; FFA, fusiform face area; vmPFC, ventromedial prefrontal cortex.

was capable of predicting cocaine relapse with an AUC value of
0.833 of its ROC curve by setting the cut-off follow-up time at
90 days. Statistical significance was verified with the permutation
test based empirical null-distribution curves, which showed p-
values of 0.0249 and 0.0010 for the early and intermediate relapse
prediction models, respectively.

Post-hoc Analyses of Disease Subtyping
For post-hoc analyses exploring the protective-risk relationship,
we first defined idxP_ph and idxR_ph as the averaged functional

connectivity from each of the 43 participants within the group-
level protective and risk circuits, respectively (note here the
suffix “ph” stands for post-hoc, to be differentiated from the
composite indices “indexP” and “indexR” used in the prediction
modeling section). As Figure 5A shows, the post-hoc indices
idxP_ph and idxR_ph showed significant negative correlation
(R2 = 0.402, p < 0.0001). For potential subtyping of cocaine use
disorder in terms of vulnerability to relapse, we also conducted
the k-means clustering in the two-dimensional space of (idxP_ph,
idxR_ph). Figure 5B shows the “elbow curve” depicted as the
ratio of the sum of within cluster distances to the sum of
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FIGURE 4 | Predict validity of the early and intermediate relapse prediction models. The prediction accuracy using the functional circuits of the identified predictive
dlPFC ROI is illustrated in panel (A) for the early relapse prediction model where the follow-up cut-off is at 30 days, and in panel (B) for the intermediate relapse
prediction model where the follow-up cut-off is at 90 days. ROC, Receiver-Operating-Characteristics; AUC, area-under-the-curve; dlPFC, dorsolateral prefrontal
cortex; ROI, region-of-interest.

between cluster distances from k = 2 to k = 11. Here k = 4 was
selected as the number of clusters as it represents a good balance
between the benefit and the cost based on visual inspection of
the elbow curve. The clustering result is shown in Figure 5C.
Each of the four clusters represents a specific subtype of cocaine
dependent participants. Cluster I is at the bottom-right corner
(green diamond, n = 7, median days till relapse = 168 days) of
the (idxP_ph, idxR_ph) space, Cluster II at the top-left corner
(magenta triangle, n = 15, median days till relapse = 7 days),
and Cluster III and Cluster IV are in the middle (yellow circle,
n = 11, median days till relapse = 25 days; and cyan square,
n = 9, median days till relapse = 60 days). Note here all post-hoc
analyses conducted in the (idxP_ph, idxR_ph) space were with
a sample size of 42, as one participant was excluded since both
post-hoc indices were beyond the three-standard-deviation range.
Corresponding results with this participant included can be seen
in Supplementary Figure 1.

DISCUSSION

We presented here a modeling approach to predict time-
dependent follow-up behaviors by fMRI-based brain metrics, and
demonstrated the utility of the approach in predicting relapse
to drug use following a psychosocial treatment in a cohort of
treatment-seeking cocaine users. This modeling is a combination
of seed-based functional connectivity and voxel-wise Cox
regression organized in a nested cross-validation fashion, which
is suitable for investigation of brain-behavior relationships
reliably in patient cohorts with small-to-moderate sample sizes.

Neural Mechanisms and Individual-Level
Relapse Prediction
As demonstrated in the prediction of cocaine relapse in Figure 3,
our proposed modeling method is capable of identifying a
prediction model in which functional connectivity of a specific

brain region predicts individual’s relapse behaviors with high
accuracy. The nature of the Cox regression results in two
functional brain circuit sets, one protective and one risk that
collectively underlie the high prediction validity. As such, these
two functional circuits could be considered a system-level neural
mechanism of cocaine relapse. The ROC analysis that yielded the
high AUC value is within the nested cross-validation framework,
which indicates the model’s prediction potential on independent
participants. Although the proposed model is built upon the
6-month follow-up data, the identified protective and risk
functional circuits are also capable of predicting early relapse.
As shown in Figure 4, using the indices (indexP and indexR)
from the same functional circuits derived from the 6-month
model, prediction of early relapse (30 day) can also be achieved
with a relatively lower but statistically significant prediction
accuracy (AUC of 0.714).

Based on the post-hoc analyses, the post-hoc protective factor
(idxP_ph) and the risk factor (idxR_ph) are negatively correlated,
suggesting participants with higher protective capability tend to
have lower risk factor, and vice versa. Further clustering analysis
on the (idxP_ph, idxR_ph) space identified four subtypes of
cocaine relapse related participants. Subtype I (N = 7) had highest
values of the idxP_ph and lowest idxR_ph, and held the longest
time till relapse (median of 168 days till relapse). Subtype II
(N = 15), on the contrary, had lowest values of the idxP_ph and
highest idxR_ph, and were all early relapse participants with the
shortest time till relapse (median of 7 days till relapse). Subtypes
III (N = 11) and IV (N = 9) fell between the subtypes I and
II. Participants in these two subgroups showed similar levels of
idxP_ph and idxR_ph with moderate days till relapse (median of
25 and 60 days till relapse, respectively). These results suggest
that using the protective and risk indices, potential subtypes
may be characterized for novel/independent participants by
simply measuring their resting-state fMRI and calculating the
values of these fMRI indices. These imaging metrics may be
used to guide the design of personalized treatment strategies
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FIGURE 5 | Post-hoc results and disease subtyping. Panel (A) shows
significant negative correlation between the post-hoc protective and risk
indices. Panel (B) demonstrates the “elbow curve” for cluster number
selection in clustering analysis for disease subtyping. Panel (C) illustrates four
potential subtypes of cocaine dependent participants as indicated by our
clustering result, Subtype I at the bottom-right corner with longest abstinent
days (green diamonds), Subtype II at the top-left corner with the shortest days
till relapse (magenta triangles), and Subtypes III and IV in-between with
moderated days till relapse (yellow circles and cyan squares). The five solid
stars within the corresponding symbol shapes label the five female
participants in current demonstrative cohort.

specific to individuals (e.g., to promote the protective circuits
for participants with a high risk index but without matched
protective index; or to inhibit the risk circuits for participants
with a strong, intact protective index).

Neuromodulation Implications
As in our demonstration of relapse prediction, a dlPFC
ROI located at MNI coordinates [−48, 30, 34] was found to
be highly predictive with its functional circuits (Figure 3).
The prediction modeling proposed here is capable of
identifying brain ROIs, whose functional circuits are closely
related to certain behaviors/treatment outcomes. This
shows the potential utility of the prediction modeling in
selecting brain sites for neuromodulation-based treatment of
neuropsychiatric/neurological disorders. In neuromodulation
(e.g., TMS) treatment, one of the critical issues is to determine
the effective stimulation site. Intuitively, in a direct search
among M different brain sites with N participants in each site
to evaluate treatment efficacy (a total of M × N participants),
a potential optimal stimulation site would be determined by
comparing the group outcomes of these M clinical studies.
Furthermore, other than the stimulation location, the large
parameter space (e.g., frequency, intensity, etc.) makes such
clinical investigations impractically costly and time consuming
to undertake in a systematic and comprehensive manner, and
no such effort has been made in neuropsychiatric disorders
other than medication-resistant depression (Fox et al., 2012).
An alternative strategy is a two-stage approach combining
neuroimaging-based search for relevant brain areas and the
actual neuromodulation on these limited and specific sites. In
the first stage, imaging data are collected ideally at the baseline
and after a traditional treatment (non-neuromodulation, such
as psychosocial treatment), and then location-specific imaging
measures (e.g., functional connectivity) are identified that are
related to treatment outcome. These locations are therefore
considered as potential treatment sites. Then in the second stage,
these candidate sites are further confirmed for their treatment
efficacy with actual neuromodulation. The first stage can be
done in a systematic and comprehensive manner covering a
large brain area (e.g., dlPFC) while only few most relevant
brain locations being tested in the second stage, thus greatly
reducing the number needed for neuromodulation-based clinical
investigations. Our previous study utilizing this modeling
technique investigated 98 ROIs covering the entire surface of the
bilateral dlPFC and identified three ROIs predictive of cocaine
relapse (Zhai et al., 2021), with one on the left side being spatially
proximal to an actual dlPFC stimulation site that showed
promising treatment efficacy in a clinical study treating cocaine
addiction (Terraneo et al., 2016). This is a perfect example of
potential applications of our proposed modeling approach in the
first stage for identification of potential effective TMS sites, which
can then be used to guide experimental designs in the second
stage for validation of these potentially effective TMS targets.

Limitations
Several limitations should be considered regarding our analysis.
We have a moderate sample size less than 50, and an unbalanced
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sex (five females and 38 males), which makes the dataset less
ideal. However, there are practical difficulties associated with
research on psychiatric diseases such as addiction, especially with
a longitudinal follow-up up to 24 weeks. Combined with proper
modeling and validating method, the current dataset is capable of
providing at least novel hypothesis (i.e., the identified predictive
ROI and its functional circuits) to be further tested clinically (i.e.,
neuromodulation treatment efficacy). Our sample included only
five females and future work should address the possibility of
gender differences.

Conclusion
Demonstrated with a treatment-seeking cocaine addiction
cohort, we presented here a prediction-modeling method
that combines the hypothesis-driven seed-based functional
connectivity and the Cox regression-based prediction with built-
in nested cross-validation to assess treatment outcome (relapse
to drug use). Other than predicting certain behaviors/treatment
outcomes at individual level, specific brain regions, as well
as their functional circuits, relevant to the behavioral/clinical
assessments can also be identified using this modeling method.
Functional connectivity of the brain circuits showing protective
or risk effect on drug relapse may be used for disease subtyping.
Taken together, the prediction modeling method presented here
is capable of identifying brain regions and related functional
circuits that are predictive of certain behavior/treatment
outcome, which clearly shows neuromodulation implications
and can be used for individualized prognosis and treatment
protocol design.
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