
fnins-15-771947 December 2, 2021 Time: 10:3 # 1

ORIGINAL RESEARCH
published: 03 December 2021

doi: 10.3389/fnins.2021.771947

Edited by:
Gong-Jun Ji,

Anhui Medical University, China

Reviewed by:
Alexandra Philipsen,

University Hospital Bonn, Germany
Bhaskar Sen,

Microsoft, United States

*Correspondence:
Weiming Zeng

zengwm86@163.com

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 07 September 2021
Accepted: 05 November 2021
Published: 03 December 2021

Citation:
Zhang H, Zeng W, Deng J, Shi Y,

Zhao L and Li Y (2021) Brain
Relatively Inert Network: Taking Adult

Attention Deficit Hyperactivity
Disorder as an Example.

Front. Neurosci. 15:771947.
doi: 10.3389/fnins.2021.771947

Brain Relatively Inert Network:
Taking Adult Attention Deficit
Hyperactivity Disorder as an Example
Hua Zhang1, Weiming Zeng1* , Jin Deng2, Yuhu Shi1, Le Zhao1 and Ying Li1

1 Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China, 2 College of Mathematics
and Informatics, South China Agricultural University, Guangzhou, China

Resting-state functional MRI (rs-fMRI) has been increasingly applied in the research
of brain cognitive science and psychiatric diseases. However, previous studies only
focused on specific activation areas of the brain, and there are few studies on the
inactivation areas. This may overlook much information that explains the brain’s cognitive
function. In this paper, we propose a relatively inert network (RIN) and try to explore its
important role in understanding the cognitive mechanism of the brain and the study
of mental diseases, using adult attention deficit hyperactivity disorder (ADHD) as an
example. Here, we utilize methods based on group independent component analysis
(GICA) and t-test to identify RIN and calculate its corresponding time series. Through
experiments, alterations in the RIN and the corresponding activation network (AN) in
adult ADHD patients are observed. And compared with those in the left brain, the
activation changes in the right brain are greater. Further, when the RIN functional
connectivity is introduced as a feature to classify adult ADHD patients from healthy
controls (HCs), the classification accuracy rate is 12% higher than that of the original
functional connectivity feature. This was also verified by testing on an independent public
dataset. These findings confirm that the RIN of the brain contains much information that
will probably be neglected. Moreover, this research provides an effective new means
of exploring the information integration between brain regions and the diagnosis of
mental illness.

Keywords: activation network, relatively inert network, functional MRI, group ICA, functional connectivity, adult
ADHD

INTRODUCTION

The identification of resting-state networks (RSNs) in the brain from resting-state functional MRI
(rs-fMRI) time series (TC) and the analysis of functional connectivity have revealed much about
the macroscopic spatio-temporal organization of the brain. The brain’s acquisition of information
and decision-making is a manifestation of a range of neural activities. These processes involve a
wide range of functional brain networks. Activation responses of voxels are often associated with
the multifunctional collaboration of the brain. So even in the same network, different regions may
show different levels of activation, and different activation levels can reflect different responses of
neurons to different tasks. However, in previous studies, more have been conducted on activated
areas of the brain (activation values above a certain threshold). Few have researched relatively inert
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regions of the brain, ignoring important information about the
presence of relatively inert areas. Therefore, this prompted us to
study it and try to discover its important role in the discovery of
biomarkers of mental illness through this study.

In this paper, we define relatively inactive regions in the
RSN as relatively inert networks (RINs), and we explore the
important role of RINs in brain cognition in terms of network and
functional connectivity. The method of brain activation detection
includes correlation analysis (Bandettini, 2010), general linear
model (Friston et al., 2010), cluster analysis (Smolders et al.,
2007; Slavakis et al., 2018), principal component analysis (PCA)
(Andersen et al., 1999; Smith et al., 2014), and independent
component (IC) analysis (ICA) (Mckeown et al., 1998; Lin et al.,
2010; Du and Fan, 2013; De Blasi et al., 2020). Among them,
correlation analysis and general linear models require a prior
given stimulus function, so they are more suitable for data
analysis of task fMRI. For resting-state data, the detection of
activation is equivalent to the identification of RSN. ICA is one
of the most widely used methods for estimating brain functional
networks. And it is suitable not only for task-state data but
also for the study of resting-state data without the need for
a priori knowledge. It models fMRI data as linear combinations
of independent sources and can identify cross-individual patterns
and common cohesive components. Since ICA generates ICs in
any order, to make ICs comparable across subjects, we used the
group ICA (GICA) method to identify RSNs in healthy subjects
and attention deficit hyperactivity disorder (ADHD) patients in
this study. We stitched fMRI data along the time dimension
and implemented ICA on group data; then we used the group
information-guided ICA (GIG-ICA) method (Du and Fan, 2013)
to obtain group-level ICs; and subject-level ICs were obtained
from the group-level ICs.T-test-based methods were then used to
identify RINs and the corresponding activation networks (ANs).
To better mine the information in RINs, this paper provides a
method to estimate RINs and AN TC.

ADHD is a neuropsychiatric disorder that affects young
children and adolescents. However, ADHD is not a child-
specific disorder; it is a chronic process with symptoms that
last until adulthood, including remission cases, by up to 50%
(Shaw et al., 2013; Rovira et al., 2020). The common behavioral
manifestations of ADHD are attention deficit, hyperactivity,
and impulsivity (Schneider et al., 2006; Spencer et al., 2007;
Roshannia et al., 2021). ADHD patients usually present with
a variety of concomitant disorders, and they are overlain by
one or more concomitant psychological disorders, such as
addiction, borderline disorder, depression, bipolar disorder, and
anxiety disorders (Ashcroft et al., 2015; Schiweck et al., 2021).
Due to misunderstandings and lack of knowledge about this
disease, many people with ADHD are misdiagnosed and often
fail to receive effective treatment (Kooij et al., 2010). At the
same time, the falsifiability based on the diagnostic scales is
also very worrying (Smith et al., 2017; Becke et al., 2021).
Therefore, the diagnosis of adult ADHD is more difficult
compared with childhood ADHD. Studying structural and
functional changes in adult ADHD and further investigating
potential biomarkers related to their neural mechanisms are
essential for their early detection and more effective treatment

(dos Santos Siqueira et al., 2014; Kessler et al., 2014; Buitelaar
et al., 2021; Duan et al., 2021; Versace et al., 2021). In recent
years, rs-fMRI has been enhanced in the field of ADHD
and has acquired many influential neurocognitive networks
(Beckmann et al., 2005; Power et al., 2011). Previous studies
have identified changes in functional connectivity between
the default mode network (DMN) and networks that support
attention and cognitive control in ADHD patients (Sudre et al.,
2017), and abnormal network connectivity is related to the
severity of symptoms (Qian et al., 2019). However, it is unclear
whether these also appear in RINs and whether abnormal
changes occur in RINs.

This paper is the first to study the RIN of the brain and to
use adult ADHD data as an example to explore its application in
the research and diagnosis of mental diseases. Figure 1 shows the
entire research process. In the first step (Figure 1A), the GICA
method is used to obtain RSN, and then it is selected. In the
second step (Figure 1B), the RIN and AN were identified, and
then the corresponding TC were estimated using our proposed
method. Finally, (Figure 1C) the extracted features were analyzed
and used for the training and testing of the support vector
machine (SVM) classifier. We observed that RIN and AN were
significantly different between adult ADHD patients and healthy
controls (HCs). Also, we compared the differences in functional
network connectivity (FNC) between the two groups of subjects.
In addition, the identification of adult ADHD patients from HCs
by a model based on FNCs with RINs and ANs was significantly
better than that by a model characterized by original functional
connectivity. This was also verified based on independent dataset
testing. These suggest that the RIN also plays an important role
in brain information transmission.

MATERIALS AND METHODS

Independent Component Analysis
The ICA method assumes that the observed random signal X
obeys the model as follows (Mckeown et al., 1998):

X = AS (1)

Since the number of voxels in spatio-temporal fMRI data is
much more than the number of time points, the spatial ICA
method is usually more suitable for modeling given fMRI data.
X = (x1, x2,. . . xt , . . . xk)T represents a random variable in the
spatial ICA, K is the number of time points, xt is a vector of length
L, and X represents a given 3D fMRI image with L voxels at time
K. S = (S1, S2,. . . SN)T is N unknown and mutually independent
source signals (corresponding to the function network), A is an
unknown mixing matrix, and the purpose of ICA is to estimate
the mixing matrix A and the source signal S only through X.
The ICA model has two assumptions about the source signal:
one is that the observed signal is a linear combination of several
statistical independent source signals and the other is that the
distribution of the source signal is non-Gaussian (at most one
can be Gaussian).

Since both A and S are unknown, their exact values cannot be
calculated in the actual solution. The separation matrix W and
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FIGURE 1 | Flowchart of the research method. (A) Extraction of the RSN using GIG-ICA. (B) Identification of the RINs and the ANs, and calculation of the
corresponding time-series. (C) The analysis process based on RINs and ANs.

the estimate Y can be estimated by optimizing the independence
of S. For example, the classic ICA method uses minimizing
mutual information (Amari et al., 1996), and Hyvarinen used
maximizing non-Gaussian (measured by negentropy or kurtosis)
to estimate these components (Hyvarinen, 1999). Specifically, it
finds a separation matrix W by constantly updates and iterations:

Y = (WA) S = S̃ (2)

When W is closer to A−1, Y is closer to S.

Group Independent Component Analysis
An effective method of multi-subject analysis is GICA (Allen
et al., 2012), which can identify ICs at the group level and
reconstruct the independent specific subject components at the
subject level. Compared with ICA for each subject separately,
it is easier for GICA to establish a direct correspondence of
different subject ICs. First, the group IC (GIC) is calculated by the
GICA method, and then specific subject ICs are reconstructed by
using the GIC. Common reconstruction methods include GICA
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(Chen et al., 2008), constrained ICA (cICA) (Wei and Rajapakse,
2005), spatio-temporal regression (Nickerson et al., 2017), and
GIG-ICA (Du and Fan, 2013). In this paper, the GIG-ICA is
used to extract brain functional networks in fMRI data, and
specifically, the method transformed this process into the multi-
objective optimization problem described in (3).

max
{
Q(wi) = {E [G(Yi)]− E [G (z)]}2

C (wi) = φ {Yi,Ri}
s.t. ‖ wi ‖= 1

(3)

Q(wi) is the negative entropy of Yi, which is the ith estimated
IC, Yi = wT

i X̃; X̃ is the random vector after PCA whitening, and
Ri represents the spatial reference that is the GIC of the zero
mean and unit variance in the previous step after normalization.
E[.]represents a mathematical expectation, G[.]is an arbitrary
non-quadratic function, and z is a Gaussian variable with zero
mean unit variance. C(wi), which is specifically defined as φ{Yi,
Ri}=E[Yi Ri], is used to measure the closeness between the
estimated component Yi and the reference Ri. By solving the
multi-objective optimization problem, the optimal separation
column vector wi is generated to maximize the independence
of Yi and maximize the proximity of the reference Ri and the
independence of Yi at the same time. To solve the multi-objective
optimization problem, it is usually necessary to find the Pareto
optimal set or its subset and to strictly evaluate which specific
compromise solution is more suitable for the researched problem.
To prevent the optimization from being dominated by a larger
cost function, the arctan function is used to normalize Q(wi), and
the objective function is transformed into the following formula:

w∗i = arg maxwi F (wi)

= arg maxwi [a · K (wi)+ (1− a) · C (wi)]
s.t. ‖ wi ‖= 1

0 < a < 1

(4)

Here, a is the weighting parameter, which can be determined
empirically. Use the gradient descent method to continuously
iterate for solving wi, and calculate Yi. The corresponding TC Ti
is equivalent to the mean of blood oxygenation level-dependent
(BOLD) series of all voxels weighted by its associated IC z-score.

Identification of Relatively Inert Network
and Activation Network
During a resting-state scan, the internal network patterns of the
brain may change substantially (Chen et al., 2015). If we focus
only on the activated areas of the brain, it is easy to overlook the
potential information in relatively inert areas. We used the GIG-
ICA method to separate the signals from the rs-fMRI data of HCs,
and we processed the individual components with a one-sample
t-test. We defined the area higher than the threshold µ in each
IC (corresponding to a certain RSN) as AN and the other area as
RIN. Thus, for each RSN, the corresponding AN and RIN can be
further obtained. On this foundation, we propose the following
method to estimate the TC corresponding to each AN and RIN,

and the sum of their TC is the same as the TC of that original IC.

Tacti =
1
Vai

∑v

v=1

(
yiv · dv · fv

)
(5)

Tinei =
1
Vei

∑v

v=1

(
yiv ·

∣∣1− dv
∣∣ · fv) (6)

Tacti represents the TC corresponding to the AN, and
Tinei represents the TC corresponding to the RIN. Veiand Vai
represent the number of voxels in the RIN and AN of the ith
component, respectively. V is the total number of voxels, fv is the
vth column of X, and yiv is the vth value of the ith component.
dv is the vth value of d(V×1), which indicates whether the vth
voxel is activated, 1 indicates activated, and 0 indicates inactive.
So the estimation is equivalent to the mean of BOLD series
of the corresponding areas voxels weighted by the z-score of
their associated IC.

EXPERIMENTS AND RESULTS

Materials and Data Preprocessing
The neuroimaging dataset shared by the University of California,
Los Angeles (UCLA) Neuropsychiatric Research Association
(Poldrack et al., 2016), which includes 138 healthy subjects, 58
subjects with schizophrenia, 49 subjects with bipolar disorder,
and 45 subjects with ADHD, was downloaded. The dataset is
shared through the OpenfMRI project and formatted according
to the brain imaging data structure (BIDS) standard. The
participants were asked to stay relaxed and to keep their eyes
open, without giving them any stimuli or asking them to
respond, and then were scanned to obtain resting-state data
using the 3T Siemens Trio scanner (Siemens Healthineers,
Erlangen, Germany). A total of 152 time points were scanned.
T2∗-weighted echo-planar imaging (EPI) sequence was used
to collect functional MRI data with the following parameters:
repetition time (TR) = 2 s, echo time (TE) = 30 ms, flip angle
(FA) = 90◦, field of view (FOV) = 192 mm × 192 mm (64 × 64
matrix), number of slices 34, and slice thickness = 4 mm. For
more information about the dataset, please refer to the link:
https://openneuro.org/datasets/ds000030. The resting-state data
of healthy and ADHD subjects aged 21–50 years were used in
this paper. The SPM12 software1 was used to preprocess the data
including removal of the first 10 time point images, slice timing
correction, motion correction, spatial standardization using the
Montreal Neurological Institute (MNI) EPI template, and use of
4-mm full width at half maximum (FWHM) Gaussian kernel to
smooth in space. Subjects with excessive motion were excluded,
and 42 healthy and 41 ADHD subjects with matching gender and
age were selected.

To assess the robustness of our results, our method was
replicated on an independent publicly ADHD dataset, publicly
available for download at http://fcon_1000.projects.nitrc.org/
fcpClassic/FcpTable.html. This dataset has 25 ADHD patients
and 84 healthy subjects. These subjects were recruited by the

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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adult ADHD program group at the New York University School
of Medicine, United States. The subjects laid flat in the MRI
machine with their eyes open and in a relaxed awake state. The
scan TR = 2 s, TE = 25 ms, scan resolution was 64 × 64, intra-
slice resolution was 3 mm × 3 mm, slice thickness = 3 mm,
and number of slices was 39, covering the entire brain area;
and a total of 197 time points were scanned. Subjects who
did not undergo psychiatric evaluation or were younger than
20 were excluded. The same preprocessing method used for
the UCLA data was used, and subjects with excessive head
movements were excluded. To avoid a confounding effect due
to an imbalance in the sample, 23 healthy subjects and 24
patients with ADHD were finally selected. The two groups of
subjects were matched in terms of gender and age. All subjects
were between 20 and 50 years of age. The distribution of
the HC-ADHD population for these two datasets is shown in
Figure 2. Table 1 shows the age and gender indices of the two
datasets. According to the results of statistical tests, there were no
significant differences in age and gender between the two groups
for each dataset.

Group Independent Component Analysis
and Component Identification
The PCA is used to reduce the dimensionality of each subject’s
data for simplifying the ICA algorithm. Then the time cascade
method is used to combine all the subjects’ reduced data. Another

FIGURE 2 | The distribution of the control–ADHD population. ADHD, attention
deficit hyperactivity disorder.

TABLE 1 | Age and gender indices of two independent datasets.

UCLA New York

HC ADHD HC ADHD

Number of
participants
Age (years)
Gender (M/F)

42 41 23 24

32.45 ± 9.05 32.85 ± 10.89 34.89 ± 8.387 34.75 ± 9.712

21/21 20/21 14/9 19/5

Statistical test
(p-value):
age/gender

0.85/0.91 0.96 (t-test)/0.19 (chi-square test)

UCLA, University of California, Los Angeles; HC, healthy control; ADHD, attention
deficit hyperactivity disorder.

PCA (group level) was performed to further reduce the time
dimension of the group data to the number of IC, and then
the Infomax algorithm (Bell and Sejnowski, 1995) was applied
to extract the GIC. GIFT software (version 3.0c)2 was used to
perform GICA in the two groups of subjects. Meanwhile, the
minimum description length (MDL) standard (Li et al., 2007)
was utilized to estimate the dimensions to determine the number
of components. HCs were estimated with 30 components, and
ADHD with 29. In order to obtain a reliable GIC, the ICASSO
method (Himberg and Hyvarinen, 2003) was used to repeat the
ICA 20 times. And the GIG-ICA method was used to reconstruct
the corresponding TC and the unique IC of each subject. The IC
that we needed was identified and picked out. In the first step, the
correlation between the spatial map of each component and the
prior mask map of gray matter, white matter, and cerebrospinal
fluid (CSF) provided in the DPABI software package (Yan et al.,
2016) was calculated in the MNI standardized brain space. Since
components with high correlation with prior CSF or white matter
or low correlation with the gray matter may be affected by human
factors (Assaf et al., 2010), they were excluded to ensure that the
selected components are mainly concentrated in the gray matter
area. In the second step, due to the low-frequency characteristics
of the BOLD signal, the power spectrum of the network should
show higher low-frequency spectrum power. Therefore, the ratio
of the low-frequency power to the high-frequency power of each
component was calculated, and the component with a higher
ratio was screened out (most ratios of low-frequency to high-
frequency power of some networks are greater than 10). The
third step is to calculate the spatial correlation between the
remaining components and the eight core intrinsic connectivity
networks (ICNs) reported by Beckmann et al. (2005) and to select
the eight best-matched components with the visual inspection
and correlation coefficients. These eight networks are (a) medial
visual network (MVN), (b) lateral occipital visual cortex (LO),
(c) auditory area network (auditory), (d) sensorimotor area
(sensorimotor), (e) DMN, (f) executive control network (ECN),
and (g) and (h) right-lateralized fronto-parietal network (RFPN)
and left-lateralized fronto-parietal network (LFPN). Figure 3
shows the sagittal, coronal, and cross-sectional planes of the eight
best-matched ICNs. Figure 3A (left) shows the activation peak
coordinates of eight ICNs from a to h in the HC group, and
Figure 3B (right) shows the activation peak coordinates of 8 ICNs
from a to h in the ADHD group. It is worth noting that after
comparing the activation peak coordinates of the eight large-
scale networks of the two groups of subjects, it is found that the
network with the closest peak coordinates in the sensorimotor
area is followed by LO, LFPN, and DMN, while the network
with the largest difference in activation peak coordinates in the
auditory area is followed by RFPN and ECN.

Comparing Group Differences in the
Relatively Inert Networks and the
Activation Networks
A one-sample t-test was used to determine the RINS and ANS of
HCs and ADHD patients. In this way, each RSN could be divided

2http://icatb.sourceforge.net/, version3.0c.
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FIGURE 3 | Eight best-matched intrinsic connectivity networks (ICNs) and their peak activation coordinates. (A) The eight best networks among the 30 components
extracted from HC. (B) The eight best networks among the 29 components extracted from ADHD. HC, healthy control; ADHD, attention deficit hyperactivity disorder.

into AN and RIN. The areas with different activation levels in
the two groups of subjects were counted, and a two-sample
t-test was further performed. Figure 4 shows the areas where
ANs and RINs differed significantly between the two groups of
subjects when the threshold µ = 3 (p < 0.05). There are two
scenarios for this difference. One is that the areas (indicated
by cold areas) are the intersections of the RINs of HCs and
the ANs of adult ADHD; i.e., HCs show no activation, whereas
adult ADHD patients show significant activation. These areas
show abnormally enhanced activation in adult ADHD patients;
the second (indicated by hot area) is that the areas are the
intersections of ANs of HCs and RINs of adult ADHD; i.e., HCs
show activation, but ADHD patients show no activation. In other
words, the activation in these areas is significantly weakened in
adults with ADHD. Some responses in cognitive function are
usually reflected in the brain activation. Statistical analyses were
conducted in these abnormal areas. Compared with those in HCs,
the areas of enhanced activation in adult ADHD patients were
concentrated in the precentral gyrus (Brodmann areas 4 and 6),
insula (Brodmann area 13), postcentral gyrus (Brodmann areas 3,
43, and 40), cuneus (Brodmann areas 7, 18, and 19), and superior
temporal gyrus (Brodmann area 41). The areas of weakened
activation were mainly concentrated in the insula (Brodmann
area 13), superior temporal gyrus (Brodmann area 22), medial
frontal gyrus (Brodmann areas 8, 9, and 10), and inferior parietal
lobule (Brodmann areas 7, 39, and 40). Furthermore, when
analyzing RSN activation in both groups of subjects, it was
found that the activation difference of adult ADHD patients is
distributed in both the left and right hemispheres, compared

with that of the HCs. However, Figure 4 shows that there are
more areas of discrepancy in the right hemisphere than in the
left hemisphere.

Group Differences in Functional Network
Connectively
The FNC reflects, to some extent, the information interaction
between different networks (Power et al., 2011). In this study, the
method in section “Identification of Relatively Inert Network and
Activation Network” was used to estimate the TC corresponding
to the RINs and ANs for each participant. Applying Pearson’s
correlation coefficient to calculate the FNC, a 16× 16 FNC matrix
was obtained for each subject. Figure 5 shows the mean FNC
for each group of subjects. The bottom left corner of the matrix
shows that there is some connectivity between RINs and ANs.
Also, comparing Figures 5A,B, it was observed that AN and RIN
of the same functional network are highly connected for both
ADHD patients and HCs. And the connectivity between RINs
is higher than the connectivity between ANs. In addition, the
differences in functional connectivity between different networks
were more pronounced in HCs than in ADHD patients.

Accurate identification of disease-specific induced changes in
functional connectivity is considered an important task that can
highlight the underlying mechanisms of the disease. Therefore,
a two-sample t-test was performed for each element of the FNC
matrix to compare the different functional connectivity between
the two groups. Figure 6A shows the FNCs with significant
differences between HCs and adult ADHD [µ = 3, p < 0.05,
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FIGURE 4 | Group differences of functional network maps between ADHD
patients and HCs. It is a summary of eight functional network differences. The
intersection of the RIN of the HCs and the AN of the adult ADHD; and the
areas that satisfy the two-sample t-test and have significant differences are
shown as cold areas. The intersection of the AN of HCs and the RIN of adult
ADHD; and the areas that satisfy the significant difference of the two-sample
t-test are shown as hot area. Use thresholds of p < 0.05 and µ = 3 to display
clusters. L, left hemisphere; R, right hemisphere. HC, healthy control; ADHD,
attention deficit hyperactivity disorder; RIN, relatively inert network; AN,
activation network.

false discovery rate (FDR) corrected]. Figure 6B shows the
number of altered connections for each network. It can be found
that the auditory area and RFPN changed the most. Also, the
enhancement and weakening of the FCN were further counted.
Figure 6C shows that the connectivity of ECN_i was significantly
weakened in the ADHD group compared with the HC group.
Meanwhile, compared with HCs, adult ADHD patients show a
very strong connection in most changed FNCs, especially those
involving the auditory area.

Classification Based on Relatively Inert
Networks and Activation Networks
Classification Within University of California, Los
Angeles, Dataset
In order to verify the importance of RINs in assisting the
diagnosis of mental disorders, four different strategies were used
to construct features, namely, the connectivity of the original
functional network (OriginalFNC), the functional connectivity of
ANs (ActFNC), the functional connectivity of RINs (InertFNC),
and the functional connectivity of both ANs and RINs (AllFNC).
SVM models were utilized to classify HC and ADHD. Thirty
percent of the UCLA dataset was used as the test set, and
the remaining part as the training set. Feature selection using
XGBoost (Chen and Guestrin, 2016) and 10-fold cross-validation
was used to train the models. The predicted values of each
strategy were obtained for McNemar’s test. As a result, the
AllFNC classification performance was significantly higher than
the OriginalFNC at µ = 1, 2, and 3 (p < 0.05). Further, the data

FIGURE 5 | The average functional connectivity of each group of subjects. (A)
The FNCs of the HC group. (B) The FNCs of the ADHD group. “_i” represents
the corresponding RIN, and “_a” indicates the corresponding AN. Both
include the RIN and the AN, and µ = 3. FNC, functional network connectivity;
HC, healthy control; ADHD, attention deficit hyperactivity disorder; RIN,
relatively inert network; AN, activation network.

label was randomly shuffled, and the classification was repeated
100 times to test the significance along the massive permutation.
Figure 7 shows the box plots of accuracy, sensitivity, specificity,
and F1-score for 100 classifications of the four features with
different values of the threshold µ.

When µ = 2, AllFNC offers the highest classification (the
average accuracy = 94.2%, sensitivity = 92.1%, specificity = 96.3%,
and F1-score = 93.7%). The next highest is InertFNC
(accuracy = 87.1%, sensitivity = 86.8%, specificity = 87.4%,
F1-score = 86.6%) and then OriginalFNC classification (the
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FIGURE 6 | Group differences in functional network connectively. (A) The FNC with significant differences between HCs and ADHD patients under the two-sample
t-test. Only the case of p < 0.05 (FDR corrected) is shown here, where red indicates that the FNC of ADHD patients is stronger than that of HCs, and blue indicates
that the FNC of ADHD patients is lower than that of HCs. (B) The statistical result of a significant alteration in FNC. The horizontal axis is the functional network, and
the vertical axis is the number of alterations FNCs. RIN, relatively inert network; AN, activation network. (C) The statistics of enhanced and weakened network
connectivity of FNC. Both with µ = 3. FNC, functional network connectivity; HC, healthy control; ADHD, attention deficit hyperactivity disorder; FDR, false discovery
rate.

FIGURE 7 | Box plots comparing the performance of classification using different features. Red represents the OriginalFNC, green represents the ActFNC, blue
represents the InertFNC, and purple represents the AllFNC. (A–D) The horizontal axis is the threshold µ; vertical axis represents the accuracy, sensitivity, specificity,
and F1-score. ∗ indicates p < 0.05, and ∗∗ indicates p < 0.01.

average accuracy = 82.0%, sensitivity = 82.3%, specificity = 82.1%,
F1-score = 81.5%). A two-sample t-test was used, and the results
showed that both AllFNC and InertFNC were significantly better
classified than the OriginalFNC (p < 0.01). Similar results can be
obtained when µ takes other values.

As with most psychiatric disorders, there are no specific
physiological indicators to diagnose adult ADHD (Cortese et al.,
2018). To locate mutations more accurately, a single FNC as a
feature was used to classify adults with ADHD and HCs, and
the experiment was repeated 20 times. Features with F1-scores
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higher than 0.65 were selected under four thresholds (µ).
Table 2 shows the mean of the classification performance of
the four best-performing features that were finally screened.
When they were examined, it was found that all four features
were significantly different, and all showed enhanced ADHD
functional connectivity. The classification results of the four best-
performing features are shown in Table 3. Notably, all four
features were associated with the Auditory_a network. The FNC
between Auditory_a and Sensorimotor_i was used as a feature
for classification with an accuracy of 0.87 and an area under the
curve (AUC) of 0.91.

Generalization to New York Dataset
Sample size has a profound impact on the variability of accuracy
and accuracy estimates (Flint et al., 2021). To avoid exaggeration
of statistical power and classification parameters, independent
publicly available datasets were used to compare the performance
of the original functional connectivity and the functional
connectivity with the introduction of RINs and ANs on the
classification of adult ADHD. Specifically, with the complete
UCLA dataset was trained and tested in New York dataset, which
features different acquisition parameters. It is worth noting that
in practical application scenarios, the labels of the samples are
not available before classification. Therefore, for all test sets,
cICA was utilized to compute a specific set of eight RSNs, which
avoids the restriction in GICA that requires grouping the data
in advance. The computation of features in the UCLA data is
then replicated. Similarly, the XGBoost method is employed to
select the features. Meanwhile, the data were randomly shuffle,
SVM was repeated 100 times for the classification results shown
in Figure 8. The experimental results show that the average
classification accuracy, sensitivity, specificity, and F1-score of the
OriginalFNC100 are 0.438, 0.472, 0.402, and 0.459, respectively,
while the average accuracy, sensitivity, specificity, and F1-score of
the AllFNC100 classifications with the introduction of RIN and
AN are 0.647, 0.675, 0.620, and 0.663, respectively. A two-sample

TABLE 2 | The comprehensive results of the classification performance for
a single feature.

FNC Mean F1-score

RFPN_i Auditory_i 0.69

RFPN_a-Auditory_i 0.72

RFPN_i-Sensorimotor_i 0.72

RFPN_i-Auditory_a 0.74

FNC, functional network connectivity.

TABLE 3 | Best classification performance of a single feature.

FNC Mean F1-score

RFPN_i Auditory_i 0.69

RFPN_a-Auditory_i 0.72

RFPN_i-Sensorimotor_i 0.72

RFPN_i-Auditory_a 0.74

FNC, functional network connectivity.

t-test was further performed on the results of the two methods,
and it was found that their differences were significant (p< 0.01).
Although it is difficult to avoid the degradation of classification
accuracy in the independent dataset because more work related
to feature engineering was not performed (using only functional
connectivity), our method still has a greater advantage over
the OriginalFNC.

Threshold Analysis
After extraction of the IC (corresponding to the functional
network of the resting brain) using the ICA method, the
results are usually Z-transformed. For the determination of brain
activation areas, the area above the threshold is AN, while the area
below the threshold is RIN. The threshold µ can be determined
empirically. To assess the effect of the threshold µ on the study
results, the experiments compared four different FNCs under
different threshold conditions. As the threshold value increases,
the range of AN becomes smaller. Therefore, the threshold value
is usually not set too large. In this study, ECN_i is empty when µ

is not less than 4. Therefore, the differences in FNCs between the
two groups of subjects were compared under four conditions with
threshold µ equal to 1, 2, 3, and 4. Figure 9 shows the FNC with
significant differences between the adult ADHD and HC groups
at different threshold value µ. The results show that when µ is
taken at different values, there is only a small change in functional
connectivity with significant differences between the two groups
of subjects. This also suggests that the changes in FNC differences
between the adult ADHD and HC groups are within acceptable
limits when the thresholds are within a certain range.

To further exclude the effect of different thresholds on the
classification performance of HCs and ADHD patients, the
classification accuracy, sensitivity, specificity, and F1-score were
calculated when the threshold µ was taken with four different
values of 1, 2, 3, and 4 in the experiments in section “Classification
Within University of California, Los Angeles, Dataset.” As shown
in Figure 7, the classification performance using AllFNC is always
the best when µ takes different values. Also, the performance
of classification using only the functional connectivity features
between RINs in most situations is higher than the performance
of the original network functional connectivity. Table 4 shows
the average accuracy, sensitivity, specificity, and F1-score values

FIGURE 8 | Box plot of predicted performance using independent datasets.
Two-sample t-test showing significant differences in all indicators.
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FIGURE 9 | FNC with significant difference between ADHD and HC groups under different threshold µ. (A–D) Different thresholds and the two-sample t-test
p < 0.05 (FDR corrected). Red represents that the functional connectivity of ADHD is stronger than that of HC, and blue represents that the functional connectivity of
ADHD is weaker than that of HC. FNC, functional network connectivity; ADHD, attention deficit hyperactivity disorder; HC, healthy control; FDR, false discovery rate.

for 100 classifications at different threshold values (µ). It can
be demonstrated above that there is no significant effect on the
classification results when the threshold value is 1–4.

DISCUSSION

In this paper, we propose a method for the identification
and estimation of RINs and apply it to the study and
diagnosis of the disease using fMRI data of adult ADHD
as an example. Compared with the traditional methods,
our method focuses not only on the activated areas of the
brain but also on the relatively inert areas of the brain.
The activated areas of the brain are usually delineated
by setting a threshold value. However, brain areas encode
information in multivariate responses, and neural computations
are nonlinear (Cannon et al., 2011). Strictly speaking, the
portion below the threshold (the relatively inert area)
is not completely inactive, and weaker or nonlinear

TABLE 4 | Classification performance of different features under
different thresholds.

Feature Mean
accuracy

Mean
sensitivity

Mean
specificity

Mean
F1-score

- OriginalFNC 0.820 0.823 0.821 0.815

µ = 1 ActFNC 0.820 0.855 0.795 0.815

InertFNC 0.910 0.916 0.909 0.908

AllFNC 0.979 0.981 0.979 0.979

µ = 2 ActFNC 0.849 0.874 0.826 0.848

InertFNC 0.871 0.868 0.874 0.866

AllFNC 0.942 0.921 0.963 0.937

µ = 3 ActFNC 0.886 0.891 0.882 0.886

InertFNC 0.833 0.802 0.873 0.820

AllFNC 0.930 0.925 0.935 0.928

µ = 4 ActFNC 0.853 0.860 0.850 0.849

InertFNC 0.838 0.820 0.856 0.832

AllFNC 0.957 0.960 0.951 0.956

reactions may be present. It is likely that these responses
are not decomposed by ICA (or other methods of matrix
decomposition), since these methods usually assume that
the obtained BOLD signal is a linear accumulation of the
source signal. As a result, we believe that the relatively inert
areas also contain important information that can be used for
disease diagnosis.

Specifically, by comparing ANs and RINs, we identified
abnormal activation areas in the brains of adults with ADHD
compared with healthy subjects. Mainly, the activation was
significantly enhanced in the precentral gyrus (Brodmann areas
4 and 6), postcentral gyrus (Brodmann areas 3, 40, and 43),
and superior temporal gyrus (Brodmann area 41), while the
activation was significantly weakened in the superior temporal
gyrus (Brodmann area 22), medial frontal gyrus (Brodmann areas
8, 9, and 10), insula (Brodmann area 13), and cuneus and inferior
parietal lobule (Brodmann areas 7, 39, and 40). This suggests
that the increased activation in Brodmann areas 4, 6, and 40 in
children with ADHD (Suskauer et al., 2008) did not disappear
in adult patients either. Abnormalities in Brodmann area 4,
which controls behavioral movements, and Brodmann area 8,
which together with Brodmann area 6 constitutes the premotor
cortex, are likely to be associated with overactive symptoms in
ADHD patients. In addition to this, we found changes in both
right- and left-brain activation in adult ADHD patients and more
extensive changes in right brain activation. This is similar to the
changes in the right hemisphere in childhood ADHD patients
(Zou and Yang, 2019).

The results in Figure 5 show that there is a correlation between
RINs and ANs as well as different areas of different networks.
The exchange of information between these areas can be further
explained by the fact that brain processing of complex cognitive
tasks is not only related to ANs, but RINs are also involved.
We also found some weakened connectivity of the auditory area
with other networks in adult ADHD patients. For example, the
functional connection between Auditory_a and Sensorimotor_i,
RFPN_i, and Auditory_i is weakened. This coincides with studies
related to ADHD patients showing deficits in the auditory
area (Serrallach et al., 2016; Bijlenga et al., 2017). And these
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FIGURE 10 | Comparison of the ability of the original network and RINs to detect abnormalities in ADHD patients. (A) The group differences of the original FNC.
A two-sample t-test was used to detect differences between HCs and ADHD patients. Only functional connections with significant differences are shown in the
graph (p < 0.05, FDR corrected). Red color indicates enhanced functional connectivity in ADHD patients, and blue color indicates weakened functional connectivity.
(B) The distribution of the networks involved in the FNC group differences detected by the two approaches. The bottom three plots show the FNC change statistics
for the original network, and the top three plots show the functional connectivity change statistics after the introduction of RINs. In the top plots, the statistics for
each network include the corresponding RIN and AN. For two the left plots, the overall change includes the increase and decrease of functional connectivity; the
middle two plots are the networks with weakened functional connectivity; and the two right plots are the networks with enhanced functional connectivity. RIN,
relatively inert network; ADHD, attention deficit hyperactivity disorder; FNC, functional network connectivity; HC, healthy control; FDR, false discovery rate.

findings could not be obtained using the original functional
connectivity analysis.

Across studies, there appear to be significant network
disruptions involved in ADHD (Cannon et al., 2011). Therefore,
the detection of abnormal connectivity is crucial to further
localize areas associated with psychiatric disorders. We further
compared the ability to detect abnormal FNCs in ADHD patients
using original networks and the introduction of RINs and ANs in
Figure 10. In Figure 10A, the FNC changes in ADHD patients are
mainly concentrated in the RFPN, while the weakened functional
connectivity is reflected in the DMN and ECN. Figure 10B uses
pie charts to count the distribution of functional connectivity
changes. The two plots on the left depict all changes (including
enhancement and weakening). It can be noticed that both results
are similar, but more changes in the auditory area can be detected
with the introduction of RIN. It is worth noting that the four
best-performing features finally filtered in Table 3 are all related
to the auditory network, as evidenced by the results in Table 2.
Therefore, we have reasons to believe that the auditory changes
are real. Moreover, it can also be found in the two plots on the
right in subplot (B). Also, for the weakened connections, the
original network analysis could not find the weakened LFPN
connections. This suggests that the introduction of RINs and ANs
may reveal not only the differences analyzed at the original RSN
level but also the discovery of additional areas associated with

changes in cognitive function in disease. This point is likely to
have been overlooked in past studies.

In addition, features constructed based on RINs and ANs
(functional connectivity is used in this paper) produce a relatively
accurate diagnoses of adult ADHD, with better classification
results than those constructed using the original RSN. This effect
may be related to the use of the large amount of information
present in the RIN. Although it is difficult to avoid the decrease
of accuracy in the independent dataset because we did not do
more work related to feature engineering (using only functional
connectivity), our method still has a greater advantage over the
features constructed by the original RSNs. In addition, features
based on RINs and ANs, such as dynamic functional connectivity
(Sun et al., 2021), dynamic brain fluctuations (Moguilner et al.,
2021), or combined with non-image information features (Riaz
et al., 2018), are expected to lead to better diagnostic results.

CONCLUSION

The exploration of brain RINs has provided new research ideas
to study the integration of information between brain areas and
disease diagnosis. In this study, we achieved the identification
of brain RINs and ANs. Further experiments showed that brain
RINs also contain much information about cognitive functions.
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At the same time, we proposed a new method to achieve diagnosis
and study of adult ADHD patients using FNC of RINs and ANs.
The experimental results showed that our method well improved
the accuracy of disease diagnosis (0.98). This is an initial study
of the efficacy of RINs. The ICA-based method we used is also a
preliminary attempt. In addition, the eight functional networks
we used were not customized for adult ADHD but for the most
classical cognitive functional networks in the brain. Therefore,
our study is also applicable to the study of other psychiatric
disorders, such as bipolar disorder, depression, and Alzheimer’s
disease. Due to time constraints, only functional connectivity
was used in this study. In the future, we will implement more
features such as effective connectivity and dynamic functional
connectivity and will continue to explore more functional brain
integration and disease diagnostic outcomes in brain RINs.
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