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Motor imagery (MI) is an endogenous mental process and is commonly used as an
electroencephalogram (EEG)-based brain–computer interface (BCI) strategy. Previous
studies of P300 and MI-based (without online feedback) BCI have shown that
mental states like fatigue can negatively affect participants’ EEG signatures. However,
exogenous stimuli cause visual fatigue, which might have a different mechanism than
endogenous tasks do. Furthermore, subjects could adjust themselves if online feedback
is provided. In this sense, it is still unclear how fatigue affects online MI-based BCI
performance. With this question, 12 healthy subjects are recruited to investigate this
issue, and an MI-based online BCI experiment is performed for four sessions on
different days. The first session is for training, and the other three sessions differ
in rest condition and duration—no rest, 16-min eyes-open rest, and 16-min eyes-
closed rest—arranged in a pseudo-random order. Multidimensional fatigue inventory
(MFI) and short stress state questionnaire (SSSQ) reveal that general fatigue, mental
fatigue, and distress have increased, while engagement has decreased significantly
within certain sessions. However, the BCI performances, including percent valid correct
(PVC) and information transfer rate (ITR), show no significant change across 400 trials.
The results suggest that although the repetitive MI task has affected subjects’ mental
states, their BCI performances and feature separability within a session are not affected
by the task significantly. Further electrophysiological analysis reveals that the alpha-
band power in the sensorimotor area has an increasing tendency, while event-related
desynchronization (ERD) modulation level has a decreasing trend. During the rest time,
no physiological difference has been found in the eyes-open rest condition; on the
contrary, the alpha-band power increase and subsequent decrease appear in the eyes-
closed rest condition. In summary, this experiment shows evidence that mental states
can change dramatically in the intensive MI-BCI practice, but BCI performances could
be maintained.
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INTRODUCTION

Motor imagery (MI)-based brain–computer interface (BCI)
provides a novel communication method by decoding a human’s
motor intention from brain signals such as electroencephalogram
(EEG) (He et al., 2020). Among various neural signatures,
the endogenous oscillations from the sensorimotor cortex, i.e.,
sensorimotor rhythms (SMRs), are often used to decode MI
(Wolpaw and Wolpaw, 2012). Currently, SMR-based MI-BCI
enables the control of a robotic arm (Meng et al., 2016), virtual
helicopters (Royer et al., 2010), communication (Perdikis et al.,
2014), and video games (Bonnet et al., 2013). However, the
usage of MI-BCI outside laboratories is currently still limited
since many factors affect the performance of MI-BCI, such as
the psychological state (Nijboer et al., 2010) and training effect
(Meng and He, 2019).

Among various factors, fatigue effects during prolonged
BCI operation are usually recognized to be negative factors
(e.g., in P300-BCI) (Käthner et al., 2014). Another non-BCI
study has shown that one session of MI training does not
induce neuromuscular fatigue (Rozand et al., 2014). This could
be generally considered as follows: EEG is a highly non-
stationary signal, and a dramatic variation of features would
be detrimental to the performance of BCI during prolonged
operation. According to the research of Simon (Simon et al.,
2011) and Seo (Seo et al., 2019), the power density of the
alpha band increases with the degree of fatigue. And previous
magnetoencephalography studies have also shown that physical
fatigue (Tanaka and Watanabe, 2011) may influence the beta-
band (13–30 Hz) activity during the operation of MI-BCI. The
SMRs include both alpha and beta rhythms, which indicates
that fatigue may impact the MI-BCI performance by influencing
those rhythms. Furthermore, previous studies have shown that
fatigue and other mental state changes may negatively affect BCI
performance (Nijboer et al., 2010; Myrden and Chau, 2015).
But few studies focus on the fatigue effects induced by MI-
BCI operation itself. To our knowledge, only Talukdar (Talukdar
et al., 2019) reports that the alpha power increases and the MI
feature separability decreases during the prolonged MI tasks.
Note that the common spatial pattern (CSP) was used to extract
features in Talukdar’s offline analysis. However, without the
online behavioral performances, the results of Talukdar and his
colleagues can only reveal the fatigue effects on offline feature
separability of MI-BCI. Thus, the fatigue effects on the MI-BCI
with feedback require further investigations.

Rest is usually considered to be a solution to relieve fatigue
in BCI and other applications. But the effects and efficiencies
of different rest conditions are not clear in MI-BCI application.
An early study (Marx et al., 2004) uses functional MRI to prove
that patterns of associated brain activations during eyes-open and
eyes-closed rest in darkness are different. Another EEG study
(Boytsova and Danko, 2010) also reveals that the rest conditions
differ in the variation of band power in EEG signals. These
studies imply that different rest conditions might influence the
efficiencies of rest differently.

This work aims to investigate the fatigue effects on MI-
BCI with feedback, the impacts of rest conditions on the BCI

performances (if fatigue effects exist), and electrophysiological
indicators during prolonged MI-BCI operation. With the
questions in mind, we hypothesize that BCI performance and
electrophysiological indicators would change after a prolonged
MI-BCI process due to fatigue; furthermore, rest conditions
might alter the fatigue process significantly and subsequently
affect the BCI performance and electrophysiological indicators.
We designed protocols based on the hypothesis and assume that if
the subjectively reported mental states (especially fatigue) change
after a session of intensive BCI operation, then the operation
time is considered long enough to induce fatigue. A randomized
complete block design is utilized to contrast the rest conditions
and restrict the learning effect on an MI-based online BCI with
400 trials of intensive training tasks.

MATERIALS AND METHODS

Data Acquisition
Subjects
Fourteen healthy right-handed subjects participated in this study.
Two subjects were unable to achieve acceptable performance
(60% PVC) in the first session; thus, they were excluded from the
experiment. The remaining 12 subjects finished all four sessions
of experiments. The average age of the subjects was 22.2 ± 1.9
(mean ± SD) years. All of them were required to have a good
rest and avoid caffeine consumption 1 day before the experiment.
There were six BCI-naïve subjects in this study, and others have
limited experience with MI-BCI experiments. The Institutional
Review Board of Shanghai Jiao Tong University approved
all procedures and protocols. Written informed consent was
required for participation in the experiment.

Electroencephalogram Acquisition
The experiment was conducted in an electromagnetically
shielded room. Subjects sat in front of a 24.5-inch LCD monitor
at a distance of ∼70 cm. The EEG signals were measured
with a 64-channel (63 channels exclude earlobe) g.HIamp (g.tec,
Schiedlberg, Austria) system at a sampling rate of 1,200 Hz and
band-pass filtered from 0.1 to 100 Hz. The electrodes on the left
earlobe and forehead [AFz in extended 10–20 system (Nuwer
et al., 1998)] were used as reference and ground, respectively.
The impedances of all the active electrodes (g.SCARABEO) were
kept below 30 k�. A notch filter of 50 Hz was applied to the
raw EEG signals.

Questionnaire
Multidimensional fatigue inventory (MFI) (Smets et al., 1995)
and short stress state questionnaire (SSSQ) (Helton, 2004) were
used to measure subjects’ fatigue levels. The MFI contained 20
items covering general fatigue, physical fatigue, mental fatigue,
reduced motivation, and reduced activity, aiming to grade the
fatigue level in different types. As a supplement of MFI-20, the
SSSQ was used for the assessment of task-induced subjective
feelings. The SSSQ was a 24-item questionnaire differentiating
stress into three aspects—engagement, distress, and worry—
which revealed the change of emotional condition across the
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experiment. Each item was graded into five levels: totally
inconsistent, slightly inconsistent, unsure, slightly consistent,
and totally consistent. The two questionnaires were combined
together and stored in an Excel sheet. Each subject was
required to complete the self-reported questionnaires before and
instantaneously after the experiment. Because all the subjects
were native Chinese speakers, the questions were translated into
Chinese by a well-trained bilingual (the questions were given in
Supplementary Data Sheet 1).

Experimental Setup
In order to contrast the different rest conditions, each subject
was required to finish four sessions of the experiment, including
one training session and three experimental sessions with various
resting ways: no rest, 16-min eyes-open rest, and 16-min eyes-
closed rest. In the training session, subjects were instructed to
be familiarized with the MI-BCI task. Learning effect would
inevitably emerge within and across sessions, which might
interact with the factor of fatigue. Since learning effect was not
a focus of this study, we would like to suppress the confounding
factor of learning substantially. It is reported that subjects have
significant improvements (R-square values increase) during the
first few sessions of BCI operation (Meng and He, 2019). Thus,
the factor of learning process could be restricted to the first
session (400 trials, more than the previous study) to a certain
degree. Furthermore, each subject finished three experimental
sessions on different days, and the resting approach was arranged
in a randomized complete block design regarding the rest
conditions. Three rest conditions yielded six possible orders; the
randomized complete block design went through the six orders
twice (12 subjects), further restricting the possible confounding
effect of learning. An experimental scenario is illustrated in
Figure 1A.

The session and trial structures are shown in Figure 1E, and
different sessions varied in a randomly assigned resting way. Each
session consisted of 400 trials in total, distributed equally in two
runs. At the beginning as well as at the end of each session,
subjects were required to fill the questionnaires independently.
A MI task of standard left vs. right was conducted in each trial
(Meng et al., 2017; Meng and He, 2019). Four hundred trials
were separated half-and-half by a resting period (or immediately
continued in no-rest session, which means run-2 was performed
instantaneously after run-1 in no-rest session). During the rest
period, a customized BCI2000 (Schalk et al., 2004) application
showed a green cross at the center of the screen in the eyes-
open rest condition or played an audio stimulus in the eyes-closed
rest condition. The screenshots of four different stages in a single
trial are shown in Figure 1D. In each MI task trial, there were
four phases included: a 2-s “Pre Feedback” period after the target
appeared; a 3-to-6-s “Feedback” period after cursor appeared;
a 0.5-s “Post Feedback” period after the cursor hits or misses
the target or a 6-s limit passed without a hit or a miss; and
a 3.5-s “Inter-trial Interval” with a black screen between each
trial. Subjects were required to control the cursor to hit the
correct target as quickly as they can (through performing the
kinesthetic motor imagination from a first-person perspective)
(McFarland and Wolpaw, 2008).

Three different resting conditions were designed as follows:
in the no-rest condition, 201st to 400th trials were immediately
followed after the first 200 trials. The eyes-open rest condition
is shown in Figure 1B, and the subjects were required to stare
at the green cross on the screen and maintain a stable sitting
position in a period of 16 min. The eyes-closed rest condition
is shown in Figure 1C. During the 16 min of eyes-closed rest,
the subjects were required to keep their eyes closed and sit still.
Additionally, in order to engage the subject involved in the task
during the eyes-closed rest, the subject should step on the pedal
according to an audio stimulus. The sound of a “beep” stimulus
was randomly played 14–23 times within 16 min (uniformly
distributed), and the pedal’s input was simultaneously recorded
by the BCI2000 software.

Data Processing
Questionnaire
Each question in SSSQ has a score between 0 and 5, while
the item in MFI-20 has a score between 0 and 20. In order
to reduce the influence of individuals’ subjective differences,
the questionnaire scores before each session were regarded as a
baseline. The difference of the questionnaire scores between prior
to and post each session was calculated to evaluate the changes
of mental states.

Brain–Computer Interface Behavioral Performances
In the online experiments, the signals of C3 and C4 (including
surrounding channels) were processed by a small Laplacian
spatial filter (McFarland et al., 1997), and an autoregressive (AR)
method (McFarland and Wolpaw, 2008) was used to estimate the
alpha-band (8–13 Hz) power spectrum. Then, the difference of
spectrum between C3 and C4 was normalized (the power value
minus its average value of the past 18 s and then divided by its
SD in this duration). Here, the normalizer was performed as an
adaptive classifier, and it was used to counteract the adverse effect
of EEG signals’ non-stationary. Finally, the normalized feature
was used to control the speed of a circular cursor as feedback.
There were three possible results for the control of each trial:
hit, miss, or abort.

As the BCI performance criteria, percent valid correct (PVC)
(Wolpaw and Wolpaw, 2012; Meng et al., 2016) and information
transfer rate (ITR) (Wolpaw et al., 2000; Gao et al., 2014) were
calculated. The PVC was the percent of hit trials divided by the
summation of hit and miss trials. ITR was calculated based on
PVC and the completion rate. Both PVC and ITR were calculated
every 25 trials as a block. And ITR was converted into the average
information transferred per trial, which made ITR values also
between 0 and 1. Additionally, in each session, two runs’ PVC and
ITR were separated equally in the middle (200 trials finished), and
then the prior and post resting blocks were compared to assess the
BCI performance variation within a session.

Electrophysiology Analysis
As shown in Figure 2, EEG data were analyzed with a MATLAB
toolbox EEGLAB (Delorme and Makeig, 2004). First, artifacts
were corrected with the Artifact Subspace Reconstruction
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FIGURE 1 | Experimental design. (A) Illustration of a subject controlling a cursor by imagining the movement of hands. (B) Illustration of a subject staring on the
green cross in the center of the screen in the eyes-open rest condition. (C) Illustration of a subject stepping on the pedal according to an audio stimulus in the
eyes-closed rest condition. (D) Screenshots of four different stages in a single trial. (E) Illustration of a session and a trial structure.

approach (Chang et al., 2018). Second, the signals were band-
pass filtered into 0.2–45 Hz, then the data were downsampled
to 200 Hz, and independent component analysis [based on
Tony Bell’s infomax algorithm (Bell and Sejnowski, 1995)] was
performed on the data of each session to remove artifacts further.

Time–frequency analysis was performed to obtain logarithmic
spectral power density. For the convenience of visualization
and statistical analysis, the power density value was segmented
into 1-s epochs for rest state or a 2-s epoch in each control
trial (0–2 s after cursor appeared) and then averaged within a

frequency band of interest to get the mean power spectrum for
each epoch. Further, changes of band power were visualized in
each channel and brain topography, with statistical significance
thresholding (corrected p-value < 0.05). Similarly, the event-
related desynchronization (ERD) results were also based on the
time–frequency analysis, with a 2-s baseline period (2 s before the
target appeared) subtracted.

The ERP was extracted from the data preprocessed by
independent component analysis. Two seconds of baseline
was subtracted from the control data of each trial. Then,
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FIGURE 2 | Data analysis plan: electrophysiology analysis; offline features separability analysis.

an average of signal amplitude after the target and cursor
appeared was calculated, respectively (ERP results are given in the
Supplementary Material).

Offline Feature Separability
The online BCI performances provided us a direct indicator of
the fatigue effects. However, the adaptive classifier might hide
subtle variations of EEG features (the normalizer; see section
“Brain–Computer Interface Behavioral Performances”). As an
additional index, offline feature separability was computed to
evaluate the discriminative power of the MI features. Both band
power (processed by the small Laplacian spatial filter used in the
online experiment) and CSP features were extracted from the raw
EEG signals (channels: FC3, FC4, C5, C3, C1, C2, C4, C6, CP3,
and CP4; time period: 0–2 s after cursor appeared). Then the
Fisher score (Talukdar et al., 2019) and Kullback–Leibler (Shenoy
et al., 2006) divergence were computed. The process is shown in
Figure 2.

Statistical Analysis
Non-parametric hypothesis testing methods were used in this
study, due to the unknown distribution of the data and a
limited number of subjects (most of the results did not meet
the normal distribution). The Scheirer–Ray–Hare test (Scheirer
et al., 1976) was performed for the data reflecting the mental
state changes. The Scheirer–Ray–Hare test is a non-parameter
alternative to multifactorial repeated measures ANOVAs, and
the two within-subject factors were rest condition and measured
time (before or after the rest) in this study. Then, as a post hoc
test that compares the individual groups in pairs, the sign
test was used to assess the variation within each session and
the variation differences between sessions (rest conditions).
The BCI behavioral performances were calculated, and the
performance results before rest were matched with the results
after rest to perform the Scheirer–Ray–Hare test and the sign
test. Additionally, the Scheirer–Ray–Hare test and the sign test
were also used to assess whether the electrophysiology features
significantly changed during the MI-BCI operation. Meanwhile,
statistical analysis of every topographic map was corrected by

the Benjamini and Hochberg method (Benjamini and Hochberg,
1995), based on the number of channels (63 channels).

RESULTS

Questionnaire
The average group difference of the SSSQ scores between the
pre- and post-BCI training is shown in Figure 3A. For all
of the three states in Figure 3A, the Scheirer–Ray–Hare test
indicated the following: the main effects of the rest condition
were not significant (p = 0.28, 0.53, and 0.36, respectively);
the main effects of the measured time (before or after the
experiment) were significant on “Engagement” and “Distress”
(p = 0.02, 0.01, and 0.52, respectively); the interaction effects
of the rest condition and measured time were not significant
(p = 1.00, 0.97, and 0.92, respectively). Further post hoc test
(sign test) showed detailed variations. The average scores of
“Engagement” decreased in all three sessions, and the statistical
analysis revealed that the difference was significant in the no-
rest session. The variation of “Engagement” was −0.27 ± 0.08
[average ± standard error of mean (SEM), p = 0.01] in the
no-rest session; −0.17 ± 0.10 (p = 0.11) in the eyes-open
rest session; and −0.25 ± 0.12 (p = 0.22) in the eyes-closed
rest session. The average scores of “Distress” increased in all
three sessions, and there was a significant increase in the eyes-
open rest session. The variation of “Distress” was 0.28 ± 0.13
(p = 0.18) in the no-rest session; 0.24 ± 0.05 (p = 0.002) in
the eyes-open rest session; and 0.35 ± 0.16 (p = 0.11) in the
eyes-closed rest session. The average score of “Worry” remains
the same. The variation of “Worry” was 0.09 ± 0.08 (p = 0.77)
in the no-rest session; −0.01 ± 0.10 (p = 0.75) in the eyes-
open rest session; and 0.02 ± 0.12 (p = 0.75) in the eyes-closed
rest session. Additionally, no significant difference was found
between sessions (p ≥ 0.1) in SSSQ.

Variations of MFI-20 scores are shown in Figure 3B. For all of
the five states in Figure 3B, the Scheirer–Ray–Hare test indicated
the following: the main effects of the rest condition were not
significant (p = 0.18, 0.56, 0.83, 0.53, and 0.73, respectively);
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FIGURE 3 | The results of the questionnaire (scores after experiment minus scores before). (A) The SSSQ (0–5 each state) score variations after the experiment.
(B) The MFI-20 (0–20 each state) score variations after the experiment. Error bars indicate the standard error of mean (SEM) scores. ∗p ≤ 0.05. SSSQ, short stress
state questionnaire; MFI, multidimensional fatigue inventory.

FIGURE 4 | The BCI performances. (A) The performances of each subject (numbered) and average performance of all the subjects (AVG). (B) The PVCs of 1–200
trials compared with 201–400 trials for all the subjects. (C) The ITR per trial of 1–200 trials compared with 201–400 trials for all the subjects. Error bars indicate the
SEM. BCI, brain–computer interface; PVC, percent valid correct; ITR, information transfer rate; SEM, standard error of mean.

the main effects of the measured time were significant on four
states except “Reduced Activity” (p = 0.001, 0.02, 0.001, 0.80,
and 0.03, respectively); and the interaction effects of the rest
condition and measured time were not significant (p = 0.92,
0.73, 0.55, 0.79, and 0.21, respectively). A subsequent post hoc
test (sign test) showed detailed variations. The average scores
of “General Fatigue” increased in all three sessions, and there
were significant variations in the eyes-open rest and eyes-closed
rest. The variation of “General Fatigue” was 2.6 ± 2.5 (p = 0.22)
in the no-rest session; 3.5 ± 3.3 (p = 0.02) in the eyes-open
rest session; and 2.9 ± 2.2 (p = 0.001) in the eyes-closed rest
session. “Mental Fatigue” also increased in all three sessions, and
there were significant variations in the eyes-open rest and eyes-
closed rest. The variation of “Mental Fatigue” was 1.4 ± 3.5
(p = 0.11) in the no-rest session; 2.4 ± 3.3 (p = 0.008) in the
eyes-open rest session; and 3.0 ± 2.6 (p = 0.001) in the eyes-
closed rest session. The state “Physical Fatigue” also increased in
all the sessions but was not statistically significant (p ≥ 0.05). The
state “Reduced Motivation” only significantly increased 1.5 ± 0.8

(p = 0.001) in the eyes-open rest session, but others remained
almost unchanged (p ≥ 0.1) for both “Reduced Activity” and
“Reduced Motivation.” Meanwhile, only the state “Reduced
Motivation” was significantly different between the no-rest and
eyes-open rest sessions (p = 0.02) in MFI-20; the other differences
between sessions were not significant (p ≥ 0.1).

Brain–Computer Interface Behavioral
Performance
The average BCI performances of all the 12 subjects in three
sessions are shown in Figure 4A. The average PVCs of all subjects
were well above chance level. The PVC ranged from 56.74%
(subject 11) to 92.84% (subject 1), and the average PVC for all
subjects was 77.1% ± 4.6%. The average ITR (in bit per trial) for
all the subjects was 0.251 ± 0.074 bit/trial. Similar to the PVC,
the ITR ranged from 0.039 (subject 11) to 0.545 bit/trial (subject
1). Additionally, a significant difference in performance between
subjects was found.
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FIGURE 5 | The band power changes during 1–120 trials (61–120 vs. 1–60, feedback period) of all the sessions. (A) Theta (4–8 Hz) power change of the right
target. (B) Alpha (8–13 Hz) power change of the right target. (C) Beta (13–30 Hz) power change of the right target. (D) Theta (4–8 Hz) power change of the left
target. (E) Alpha (8–13 Hz) power change of the left target. (F) Beta (13–30 Hz) power change of the left target. ∗p ≤ 0.05; both black and white stars were used for
better visualization.

The PVC and ITR of each session prior to and post to the
resting period are shown in Figures 4B,C, respectively. Each
session contained all of the subjects’ data and was divided into 1–
200 trials and 201–400 trials according to the resting period. For
the PVCs in Figure 4B, the Scheirer–Ray–Hare test indicated that
the main effect of the rest conditions, the main effect of measured
time, and the interaction effect were not significant (p = 0.52, 0.81,
and 0.85, respectively). Similarly, the three effects above on ITR
shown in Figure 4C were not significant as well (p = 0.48, 0.66,
and 0.89, respectively). Furthermore, comparisons within each
session (before and after rest) and between different sessions (rest
conditions) were assessed with a post hoc sign test, respectively.
Still, none of the results was significant (p ≥ 0.08), which means
that the effects of the rest conditions and measured time were not
significant on the PVC and ITR.

Electrophysiology During the Motor
Imagery Task
Band Power Change During the Motor Imagery Task
Band power change was found during the MI task, which
supported that the experiment was long enough to induce
electrophysiology changes. Meanwhile, the changes after a
various duration of rest revealed different effects of rest on
the band powers.

Band power change at the beginning might be different
than the change across the whole session. Thus, band power
changes in the feedback period of the first 200 trials from
three sessions (before the rest period) were first pooled together
and analyzed. And the result began to show noticeable changes
after 120 trials (about 18–24 min), as shown in Figure 5. No
significant difference was found in the theta-band (4–8 Hz)
power. But the alpha-band (8–13 Hz) power in channels located
at the sensorimotor area had significantly increased. On the
contrary, the beta-band (13–30 Hz) power over the frontal area
increased the most.

Second, all the 400 trials (60–80 min) were pooled together
and analyzed for the no-rest session since no separate rest period
was involved in this session. Figure 6 displays the change of the
theta-, beta-, and alpha-band power for a long time BCI operation
(400 trials, more than 60 min) in the no-rest session during the
feedback period. In Figure 6, both the right and left targets caused
the theta (4–8 Hz) power to decrease in some channels, while the
beta (13–30 Hz) power increased instead. However, the alpha (8–
13 Hz) power increased the most, statistically significant in all 63
channels after the correction (Benjamini and Hochberg method).

Third, considering that the alpha (8–13 Hz) power was used
for the online control, the change of the alpha power may
influence the online BCI performance. In contrast, the theta and
beta powers do not directly affect the performance. Thus, it was
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FIGURE 6 | The band power changes during the no-rest session, 201–400 vs. 1–200 trials, feedback period. (A) Theta (4–8 Hz) power change of the right target.
(B) Alpha (8–13 Hz) power change of the right target. (C) Beta (13–30 Hz) power change of the right target. (D) Theta (4–8 Hz) power change of the left target.
(E) Alpha (8–13 Hz) power change of the left target. (F) Beta (13–30 Hz) power change of the left target. ∗p ≤ 0.05.

more necessary to perform a detailed analysis of the alpha power
than the theta and beta powers, to find out the effects of rest
condition, time, and interaction on band power. Figure 7 displays
the effects of rest conditions, the measured time, and their
interaction on the alpha power during the feedback period (the
first 2 s after the cursor appeared, and the alpha power analysis
for baseline period was given in Supplementary Material). Data
from the three sessions were used in this analysis. The color
map in Figure 7 indicates the p-value of the Scheirer–Ray–
Hare test on each channel where a corrected p-value below 0.05
(Benjamini and Hochberg method) was marked with a star. The
effects of rest conditions were significant on the left target task
over the whole brain, as shown in Figure 7D, but only two
channels were significant on the right target task, as shown in
Figure 7A. Meanwhile, the effect of the measured time was
significant on both the right and left target tasks, as shown in
Figures 7B,E.

Furthermore, Figure 7F shows that the interaction effects
between rest conditions and time were significant on the left
target task. All of the 63 channels popped up in the significance
analysis. However, Figure 7C displays no significant interaction
on any channel, during the right target task.

The Scheirer–Ray–Hare test support that the effects of rest
conditions and the measured time were significant, but more
detailed comparisons were necessary to investigate how the
conditions of the rest/rest-conditions influence the alpha power
change. The alpha-band power variations for each session in
the feedback period are shown in Figures 8A–C. Data of the

right target task were equally separated to contrast the variation
before and after the resting period. The alpha power of most
channels increased in the three sessions. However, the increase
was weaker in the eyes-closed rest session. Figures 8D–F show
the comparison of differences between sessions. At the parietal–
occipital area, the eyes-closed resting ways had an inhibitory
effect against the increasing tendency of the alpha power. Two
adjacent channels popped up in the significance analysis (see
Figure 8F). However, the effect of the eyes-open rest was
not significant yet as compared with the no-rest session (see
Figure 8D).

The alpha-band power variations during the left target task
for each session are shown in Figures 9A–C. The average
change of the alpha-band power was basically consistent with
the right target task. However, the statistical analysis showed a
subtle difference. Figures 9D–F show the differences of variation
between sessions, and the results displayed more clustered
channels of significance over the parietal–occipital region than
those in Figures 8D–F. The effect of the eyes-closed rest was
significantly different from other sessions, especially in the
parietal and occipital areas (see Figure 9F). Thus, in the left
target task, the eyes-closed rest had a more substantial inhibitory
effect against the increase of the alpha power at the parietal and
occipital areas. Meanwhile, a similar phenomenon with smaller
clusters happened in the eyes-open rest session (see Figure 9D).
Figure 9E displays the comparison between the eyes-closed and
eyes-open sessions and proved that the effect of the eyes-closed
rest was stronger.
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FIGURE 7 | Statistical analysis results for the effects of rest conditions, the measured time, and the interaction on alpha power in the feedback period. (A) The effect
of rest conditions during the right target. (B) The effect of the measured time during the right target task. (C) The effect of the interaction during the right target task.
(D–F) The effect of the rest conditions, measured time, and their interaction during the left target, respectively. *p ≤ 0.05.

Event-Related Desynchronization Results
The band power feature was based on the ERD. Thus, an
equivalent analysis of ERD amplitude over two hemispheres
might provide us in-depth information to understand the
unchanged BCI performance.

The experimental conditions were the same before the rest
period, regardless of the assigned rest condition. Thus, data of
the first 200 trials from all three sessions were pooled together.
ERD of C3 and C4 in the first 200 trials for all sessions is shown
in Figure 10A (right target). The absolute amplitude of ERD for
both C3 and C4 was more prominent in the 1–100 trials, while C3
had a greater ERD than C4, which was reasonable during a right-
hand MI task. The topographic map of variation and statistical
analysis results in Figure 10B also proved that compared with
that of the 1–100 trials, ERD of the 101–200 trials is more negative
on both sides for the task of right target, but no significant
difference was found between the two sides. Furthermore, in the
control task of the left target, ERD also decreased before rest, as
the average variation topographic map shown in Figure 10C, but
less significant channels emerged.

Offline Feature Separability
The offline feature separability could supplement the online
performance evaluation and may further verify the unchanged
BCI performance results. As shown in Figure 11, the change
of the offline feature separability depends on subjects. The four
feature separability indexes seemed to decrease in the no-rest

session, but none was statistically significant. In addition, the
number of increased subjects is shown in the legend of Figure 11,
which had a chance level of around six increases (4/12, 5/12,
or 6/12 subjects).

Electrophysiology During Rest
All of 12 subjects correctly responded to the audio stimulus
during the eyes-closed rest, by stepping on the pedal within 3 s
after the “beep” sound. It meant that none of the subjects fell
asleep during the rest period. An interesting phenomenon was
found during the rest period. The theta-band (4–8 Hz) power
significantly increased during the eyes-closed rest, but the band
power remained basically unchanged during the eyes-open rest.
Figure 12A shows that the plot of the theta power changes in
different brain areas under different resting ways (Figure 12
includes data of 11 subjects because the data of a subject during
eyes-open rest contain artifacts). Figures 12B,C show the average
variations of the theta-band power between the early and late
stages of the rest period under different rest conditions. The
theta-band power in all channels increased in the eyes-closed
rest condition, while that power in the eyes-open rest condition
remained unchanged in most channels.

As Figure 12D shows, although the alpha power under the
eyes-open rest demonstrated no significant change across the rest
period, the change of the alpha-band power displayed a different
tendency under the eyes-closed rest. During the eyes-closed rest,
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FIGURE 8 | The alpha-band (8–13 Hz) power changes (201–400 vs. 1–200 trials, feedback period) in three sessions for the right target task. (A) Alpha power
changes during the no-rest session. (B) Alpha power changes during the eyes-open rest session. (C) Alpha power changes during the eyes-closed rest session.
(D) Differences of band power change between the eyes-open session and the no-rest session. (E) Differences of band power change between the eyes-closed
session and the eyes-open session. (F) Differences of band power change between the eyes-closed session and the no-rest session. ∗p ≤ 0.05.

an increasing tendency was found in the first 110 s, while the
last 850 s had a decreasing tendency. This phenomenon showed
statistical significance in all channels; Figures 12E,F also show
that the variation was stronger in the occipital area. Note that
both Figures 12E,F show the variation of the eyes-closed rest.

The beta-band power change is presented in Figures 12G–I.
Band power remained unchanged in the eyes-open rest
condition, while the eyes-closed rest caused an increase and
subsequent decrease only in the parietal–occipital area. This
variation was similar to the alpha-band power, but the amplitude
of increase and decrease was smaller.

In summary, we found that general fatigue, mental fatigue,
and distress have significantly increased while engagement
has decreased after a session of intensive MI-BCI operation
(time effect). BCI performances (PVC and ITR) and offline
feature separability were stable within a session. Further
electrophysiological analysis revealed that the alpha and beta
powers significantly increased within the session, while the
theta power had slightly decreased due to repeated task trials.
Furthermore, the alpha ERD amplitude decreased within a
session. Additionally, the change of the alpha power was found
during both the rest period and task period after the rest, but
the effect of rest was not significant on altering mental states
such as alleviating fatigue. Due to BCI performance, prior- and
post-BCI training was not significantly changed (see the results of
section “Brain–Computer Interface Behavioral Performances”), it

was expected that the rest would not have effects on changing
BCI performance.

DISCUSSION

Previous studies showed that electrophysiological signals like
spectral powers are correlated with BCI performance (Blankertz
et al., 2010). Both the alpha and beta bands were commonly
used for MI-BCI control. However, previous studies also showed
that fatigue affects both the alpha-band (Cao et al., 2014; Seo
et al., 2019; Jacquet et al., 2021) and beta-band (Tanaka and
Watanabe, 2011) activities. Thus, the effects of fatigue on MI-
BCI are worth investigating. The change of BCI performances
and electrophysiological indicators during prolonged MI-BCI
operation and the rest are discussed below.

Effects of Prolonged
Motor-Imagery-Brain-Computer
Interface Operation
The questionnaire results confirm the assumption that the mental
state changes (especially the general fatigue and mental fatigue
increased) were induced, as Figure 3 shows. The changes indicate
that our prolonged MI-BCI operation was long enough to alter
the mental states of users. But the results in Figure 4 show
that there was no significant change in BCI performance of the
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FIGURE 9 | The alpha-band (8–13 Hz) power changes (201–400 vs. 1–200 trials, feedback period) in three sessions for the left target task. (A) Alpha power
changes during the no-rest session. (B) Alpha power changes during the eyes-open rest session. (C) Alpha power changes during the eyes-closed rest session.
(D) Differences of band power change between the eyes-open session and the no-rest session. (E) Differences of band power change between the eyes-closed
session and the eyes-open session. (F) Differences of band power change between the eyes-closed session and the no-rest session. ∗p ≤ 0.05.

FIGURE 10 | The alpha (8–13 Hz) ERD changes before rest period in all sessions. (A) The ERD of C3 and C4 in the first 200 trials, right target. (B) The ERD change
before rest, right target. (C) The ERD change before rest, left target. ∗p ≤ 0.05. ERD, event-related desynchronization.

cursor control task. Further analysis in Figures 5–10 revealed
that the prolonged MI-BCI operation could significantly alter
electrophysiological indicators. Especially, the alpha-band power
increase over the whole head was consistent with the literature
(Cao et al., 2014; Seo et al., 2019; Jacquet et al., 2021), which might
be associated with an increased mental effort to maintain a state
of alert wakefulness (Klimesch, 1999).

Furthermore, since the online control signals were
extracted from the channels around C3 and C4, and based
on the alpha rhythm, the modulation of the alpha rhythm
may increase due to the alpha-band power increase. But
the ERD results in Figure 10 demonstrated a decreasing
tendency, which contradicts this speculation. Nevertheless,
the online performance and offline feature separability
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FIGURE 11 | The change of offline features separability during the no-rest session (201–400 vs. 1–200 trials). (A) The Fisher score changes of band power feature
and CSP feature. (B) The Kullback–Leibler divergence changes of band power feature and CSP feature. Error bars indicate the SEM. CSP, common spatial pattern;
SEM, standard error of mean.

results (see Figures 4, 11) support the notion that the
increased power amplitudes and altered mental states did
not significantly impact the BCI behavioral performance during
the MI-BCI operation.

There might be several reasons to explain these results. First,
although the previous study suggested that the strength of the
SMR power is related to the MI-BCI performance (Blankertz
et al., 2010) in a group of 80 subjects, the predictor of SMR
was calculated from a 2-min recording under “relax with eyes
open.” This predictor, obtained in a short period, neglected the
dynamic property of the alpha power for an individual in a
single session. In another study, a positive correlation of the
beta-band power and BCI performance was found by Foong
(Foong et al., 2019) in 11 subjects’ stroke rehabilitation study.
In this 6-week long-term rehabilitation period, 18 sessions of
BCI experiments were performed on different days per subject.
However, the positive correlation between the beta-band power
changes and the BCI performance may not hold in a single
session. The current study showed that the power in different
frequency bands calculated in a single session did not affect
the performance of BCI. Thus, the previous correlative results
of the alpha-band power in a brief period and the beta-
band power in a long-term period did not contradict this
study’s results.

Second, Talukdar et al. (2019) reported that the alpha power
increases and the offline MI feature separability decreases with
mental fatigue during prolonged MI tasks. In their study, no
instantaneous feedback was provided during the 3 s of MI
period. But in our experiment, instantaneous online feedback
was provided on the screen, and an adaptive classifier (the
normalizer) was implemented. Thus, subjects could adapt to the
variation of BCI performance if fatigue might deteriorate the
performance. Further analyses of offline feature separability did
not show any significant changes, which coincided with the no
change of BCI performance. However, the current analysis could
not entirely exclude the complex effect of an adaptive classifier on

the feature’s distribution. Thus, we have to interpret no significant
change of feature separability with caution.

Meanwhile, our results demonstrated that the beta-band
(13–30 Hz) power also increases during prolonged MI-BCI
operation. The increase of the beta-band power was consistent
with experiment 2 of Cao’s work (Cao et al., 2014) but differed
from another study about the mental fatigue induced by mental
arithmetic tasks (Trejo et al., 2015). Moreover, the contradictive
results of the beta-band power were consistently reported in
the literature (Tran et al., 2020). Therefore, it might mean that
the beta power change with the fatigue might depend on how
fatigue was induced.

The theta-band (4–8 Hz) power had no significant change in
the first 120 trials and slightly decreased in the no-rest session
across 400 trials of MI tasks. In Cao’s study, the theta power
increased (in experiment 1, 2.5 min) or remained unchanged
(in experiment 2, 7.2 min) as the task progresses (Cao et al.,
2014); the variation of theta power change depended on the
experimental design. Note that the BCI operation of Cao’s work
was conducted within 10 min, which was much shorter than our
study (more than 60 min), and the theta power only increased
in experiment 1 with a shorter time. Meanwhile, in another
study about MI-induced fatigue (non-BCI), the theta power
decreased with time in 53-min knee MI experiments (Jacquet
et al., 2021), which is consist with our results in Figures 6A,D
(across the 400 trials, 65 min on average). Thus, the different
experiment durations and BCI tasks might cause the various
theta power changes.

Although we perform a separate training session before
the formal data collection, the training effect might still
exist. However, the randomized complete block design, which
restricted the nuisance factor of training effect on the BCI
performance, could potentially compare treatment impacts on
MI-BCI performance as homogenous as possible. Thus, the
training factor might not be a confounding factor to the current
study’s results.
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FIGURE 12 | Band power analysis for rest task (frontal: FPx AFx Fx; parietal: FCx Cx CPx; occipital: Px POx Ox Ix). (A) Theta-band (4–8 Hz) power graph according
to brain area. (B) Topographic map of theta (4–8 Hz) variation during eyes-open rest. (C) Topographic of theta (4–8 Hz) variation during eyes-closed rest.
(D) Alpha-band (8–13 Hz) power graph according to brain area. (E) Topographic of alpha (8–13 Hz) variation during the first 110 s of eyes-closed rest.
(F) Topographic of alpha (8–13 Hz) variation during the next 850 s of eyes-closed rest. (G) Beta-band (14–24 Hz) power graph according to brain area.
(H) Topographic map of beta (14–24 Hz) variation during the first 110 s of eyes-closed rest. (I) Topographic map of beta (14–24 Hz) variation during the next 850 s of
eyes-closed rest. ∗p ≤ 0.05.

Effects of Rest
During the rest period, no electrophysiological indicator change
had been found during eyes-open rest; on the contrary, an
alpha-band power increase and subsequent decrease appeared in
the eyes-closed rest condition. These phenomena demonstrated
that the rest conditions with eyes open or closed might cause
different physiological activities, even though subjects kept awake
during both rest conditions. Furthermore, Boytsova and Danko

showed that the alpha-band power was higher in the resting state
with eyes closed than eyes open (Boytsova and Danko, 2010),
which was consistent with our data. But the authors mentioned
neither the duration of the rest nor the increasing and decreasing
processes. The long rest durations of 16 min in our study might
explain the inconsistency between research results.

Interestingly, the rest process influenced the
electrophysiological indicators during the rest and affected
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different band powers after the rest. As Figures 7–9 show,
process of the rest/rest-process caused the alpha-band power
to increase differently between each session. Especially at the
parietal and occipital areas, both resting ways had an inhibitory
effect against the increasing tendency of the alpha-band power.
And this effect under the eyes-closed rest was more substantial
than that under the eyes-open rest. Therefore, if the fatigue
effects induced the alpha-band power increase, the inhibitory
effect against the increasing tendency of the alpha-band power
might reveal the positive impact of the rest against the fatigue.
However, the influence of rest condition on BCI performance
and mental states were not found (see sections “Questionnaire”
and “Brain–Computer Interface Behavioral Performance”).

Limitations and Future Work
It has to be acknowledged that the experimental setup in this
study was only a typical demonstration for MI-BCI operation.
The prolonged BCI operation includes MI, watching a screen,
and feedback process. Fatigue could be induced by a combination
of these factors or their interaction. We cannot precisely separate
which factors caused the fatigue, which was not the focus of this
study. We have utilized both the SSSQ (for assessment of task-
induced subjective feelings) and the MFI-20 (for assessment of
possible long-term subjective feelings) to assess the subjective
fatigue feelings with the aim to provide comprehensive insights
about the time-on-task influence. However, the MFI scores
may lack the sensitivity to assess the subjective feelings of
mental fatigue. Task-Induced Fatigue Scale (TIFS: Desmond and
Matthews, 1998) or a post-task workload measure such as the
NASA-TLX (Hart and Staveland, 1988) might be better in the
subjective assessment of mental fatigue, which will be considered
in our future work.

Further, our experiment lasts for more than 1 h in each session,
but there is a 3.5-s inter-trial interval between two trials. A break
of idle state is typical in an MI-BCI setup, but it might reduce
the mental workload. It is worth investigating whether the results
of basic cursor control tasks still hold for more complicated
and challenging situations such as continuous cursor tracking
(Edelman et al., 2019). Furthermore, this study was conducted in
a group of healthy subjects with an average age of 22. Therefore,
the current results might not easily extrapolate to the senior
people and patient group.

CONCLUSION

We investigated if intensive and prolonged MI-BCI operation
would affect MI-BCI performance, electrophysiological
indicators, and mental states in a group of 12 healthy subjects.
Our results indicated that prolonged MI-BCI operation might
significantly affect the electrophysiological indicators and mental
states but might not affect the BCI performance and feature
separability. The alpha and beta bands’ power increased across
the task progression, but the alpha ERD modulation level
seems to decrease. Furthermore, the eyes-closed rest caused
the alpha-band power increase and subsequent decrease during
a separate rest block and has a more substantial effect than

the eyes-open rest on inhibiting the increase in the alpha-
band power in the parietal and occipital areas. Altogether, the
results of this study revealed that the fatigue effects during
prolonged MI-BCI operation might not be a crucial factor for
the online BCI performance even though subjective fatigue
was successfully induced, and different rest conditions altered
the electrophysiological indicators differently. In a typical BCI
experiment of 1-h duration or a little above (two tasks of MI,
with feedback), a short inter-trial interval might be enough to
counteract the effect of fatigue. Therefore, an extra-long break
might not be necessary for a BCI use within an hour. The present
results explored the fatigue effects on MI-BCI performance and
may give valuable inspiration to designing a robust MI-BCI.
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