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Rapid cycling (RC) burdens bipolar disorder (BD) patients further by causing more severe
disability and increased suicidality. Because diagnosing RC can be challenging, RC
patients are at risk of rapid decline due to delayed suitable treatment. Here, we aimed
to identify the differences in the circulating cell-free DNA (cfDNA) methylome between
BD patients with and without RC. The cfDNA methylome could potentially be developed
as a diagnostic test for BD RC. We extracted cfDNA from plasma samples of BD1
patients (46 RC and 47 non-RC). cfDNA methylation levels were measured by 850K
Infinium MethylationEPIC array. Principal component analysis (PCA) was conducted
to assess global differences in methylome. cfDNA methylation levels were compared
between RC groups using a linear model adjusted for age and sex. PCA suggested
differences in methylation profiles between RC groups (p = 0.039) although no significant
differentially methylated probes (DMPs; q > 0.15) were found. The top four CpG sites
which differed between groups at p < 1E-05 were located in CGGPB1, PEX10, NR0B2,
and TP53I11. Gene set enrichment analysis (GSEA) on top DMPs (p < 0.05) showed
significant enrichment of gene sets related to nervous system tissues, such as neurons,
synapse, and glutamate neurotransmission. Other top notable gene sets were related
to parathyroid regulation and calcium signaling. To conclude, our study demonstrated
the feasibility of utilizing a microarray method to identify circulating cfDNA methylation
sites associated with BD RC and found the top differentially methylated CpG sites were
mostly related to the nervous system and the parathyroid.

Keywords: bipolar disorder, rapid cycling, plasma, cell-free DNA, methylomics, microarray

INTRODUCTION

Bipolar disorder (BD) features recurrent episodes of mania/hypomania and depression,
interspersed with periods of euthymia. Symptoms usually include drastic changes in energy
levels, sleep, thinking, and behaviors, which can significantly disrupt the daily life of BD
patients (Craddock and Sklar, 2013). A mood cycle is defined as the period from the
onset of a mood episode of any polarity to the emergence of another mood episode
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of any polarity. Mood cycles could last for weeks to months.
When four or more distinct mood episodes (manic, hypomanic,
major depressive, or mixed) occur within 12 months, demarcated
by a period of partial or full remission for a least 2 months
or by a switch to an episode of the opposite polarity, the
phenomenon is specified as rapid cycling (American Psychiatric
Association, 2000). Rapid cycling affects a significant proportion
of BD patients with a lifetime prevalence of 33%, particularly
in those with a longer course of illness, early onset age, and
substance abuse (Fountoulakis et al., 2013; Gigante et al., 2016).
It has been suggested that rapid cycling represents a decline
of the disorder; it is associated with more severe disability and
increased suicidality and demands different treatment strategies
(Fountoulakis et al., 2013). However, the diagnosis of rapid
cycling may be difficult since not all rapid cyclers achieve full
remissions between episodes, which may lead to misdiagnosis
such as borderline personality disorder (Mackinnon and Pies,
2006) and delay appropriate treatment.

The etiology of rapid mood cycling is hitherto elusive.
Female sex, BD type II, and antidepressant treatment have been
associated with the risk of rapid cycling (Fountoulakis et al.,
2013). Increased susceptibility to DNA damage, hypothyroidism,
and insulin resistance had also been observed in BD patients with
the rapid cycling feature. However, it remains unclear whether
these factors are the causes of rapid cycling or the consequences
of drug treatment or medical comorbidities (Buoli et al., 2017).
Our group recently reported a genetic association between the
glutamate transporter 2 gene SLC1A2 and rapid cycling in a
group of ∼2,000 depressed patients (Veldic et al., 2019). We
found the minor allele of the single nucleotide polymorphism
(SNP) rs3812778, located downstream of SLC1A2, was associated
with an increased risk of rapid cycling as well as increased
anterior cingulate glutamate levels, implicating genetic effects on
the regulation of mood fluctuation via the synaptic clearance
of glutamate in this brain region (Veldic et al., 2019). While
genetics informs the risks of BD and related features, state-
dependent biomarkers that are associated with mood instability
may help the prognosis and diagnosis of rapid cycling thus need
to be identified.

Circulating cell-free DNA (cfDNA) present in plasma, urine,
cerebrospinal fluid, and other bodily fluids are short DNA
fragments believed to be derived from cells undergoing apoptosis
and necrosis and, possibly, released by active secretion (Wan
et al., 2017). In healthy individuals, cfDNA concentration is
generally low and the majority of plasma cfDNA is released
from cells of hematopoietic lineage and to a lesser extent from
other tissues (Lui et al., 2002; Sun et al., 2015; Moss et al.,
2018), but in certain physiological and clinical conditions, such as
exercise, pregnancy, infection, acute trauma, and transplantation,
cfDNA concentration and/or composition (in terms of the
tissue/cell/donor of origin) were found to be altered (Grace et al.,
2016; Wan et al., 2017; Goh et al., 2018), thus allowing cfDNA
to become a potential biomarker of various conditions and
diseases. For example, screening of cfDNA in maternal serum for
aneuploidy and other genetic conditions of the fetus (by detecting
placenta-derived cfDNA) is now widely applied (Grace et al.,
2016). Serum or plasma cfDNA has demonstrated prognostic

and diagnostic potential in various cancers by detecting tumor-
derived cfDNA (Wan et al., 2017). Since alterations in DNA
methylation have been observed in brain tissues and related cell
types of various psychiatric illnesses, including posttraumatic
stress disorder (Blacker et al., 2019), schizophrenia (Veldic et al.,
2004; Costa et al., 2006; Guidotti et al., 2016), and BD (Guidotti
et al., 2016; Ho et al., 2019), it has been proposed that DNA
methylation may be involved in the etiology and progression
of these illnesses. Methylation patterns in plasma cfDNA may
help to determine the cell or tissue of origin (Moss et al.,
2018; Huang and Wang, 2019; Liu et al., 2019). In psychiatry,
recent reports on altered cfDNA abundance and methylation
level after psychosocial stressor challenge (Hummel et al., 2018)
and increased plasma cell-free mitochondrial DNA (cfmtDNA)
in suicide attempters (Lindqvist et al., 2016) suggest cfDNA
and cfmtDNA could serve as biomarkers for psychological
stress response, suicidal behavior and/or depression. Since rapid
cycling could be difficult to diagnose and demands immediate
personalized treatment strategies to prevent further decline and
to minimize the risk of suicide, the use of biomarkers would
facilitate timely prescription of treatment for BD patients with
rapid cycling. We conducted this study to explore the differences
in the methylomic landscape of plasma cfDNA between BD
patients with and without rapid cycling as foundational work for
identifying BD rapid cycling diagnostic biomarkers with the use
of a microarray method for cfDNA methylation detection. We
hypothesized that BD patients with rapid cycling would have a
different cfDNA methylomic pattern compared to BD patients
without rapid cycling, which might reflect certain physiological
vulnerabilities associated with this specific BD feature.

MATERIALS AND METHODS

Subjects
This study included 93 participants enrolled in the Mayo Clinic
Bipolar Disorder Biobank (Frye et al., 2015). The biobank
was approved by the Mayo Clinic Institutional Review Board,
and recruited patients aged 18–80 years old with a Diagnostic
and Statistical Manual of Mental Disorders 4th Edition Text
Revision (DSM-IV-TR) or DSM-5 diagnosis of bipolar I, bipolar
II, bipolar NOS, or schizoaffective bipolar type. All subjects
provided written informed consent for use of their data and
biospecimens in future studies. Exclusion criteria included
inability or unwillingness to provide written informed consent,
active suicidal ideation, or active psychosis. Clinical phenotypes
were confirmed by the Structured Clinical Interview for DSM-IV
(First et al., 1997). Subjects included in this study had a diagnosis
of BD1 in which 46 subjects had experienced rapid mood cycling
(≥4 distinct mood episodes within a 12-month period) while
47 subjects who did not have such experience were regarded as
non-rapid cycling controls.

Plasma Cell-Free DNA Extraction
Venous blood sample was collected in potassium EDTA tubes
and was centrifuged at 145 g for 12 min with soft deceleration.
The bottom 1/3 of plasma was further centrifuged at 2,300 g for
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10 min, only the top 3/4 of resultant plasma was collected as
platelet-poor plasma which was stored at −80◦C until cfDNA
extraction by QIAamp Circulating Nucleic Acid Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instruction.

Genome-Wide Methylome Profiling of
Plasma cfDNA by 850K MethylEPIC Array
Methylation analysis methods applied were the same as in Ho
et al. (2019). About 25 ng of cfDNA was used for bisulfite
conversion and methylome microarray analysis performed at
the University of Minnesota Genomics Center in a single batch.
Genome-wide methylomic profiling was performed on the 850K
Infinium MethylationEPIC BeadChip platform (Illumina Inc.,
San Diego, CA, United States). Unmethylated and methylated
CpGenome controls and replicates of a reference cfDNA sample
were included in each array to assess inter-array consistency.

Data Processing
Data quality control and statistical analyses were performed in R
software v.3.4.1 with Bioconductor package minfi (Aryee et al.,
2014). No sample was excluded due to low call rates (detection
p < 0.05, apart from one rapid cycling subject’s sample with
p = 0.07). Considering subject samples only, one sample had
a locus detection rate > 99%, 66 samples had between 95 and
98.99%, 22 samples had between 90 and 94.99%, and four samples
had < 89.99% (lowest 88.41%). Probes that failed in one or
more samples, had a single nucleotide polymorphism at the CpG
site, or mapped to non-specific genomic locations were removed.
The probes located on X and Y chromosomes were excluded
from data quality control procedures but included in subsequent
statistical analyses. The initial methylation data contained 865
859 probes. After quality control, 463 050 probes were available
for analysis (see Supplementary Method for the numbers of
probes dropped for specific reasons). Data were normalized
by functional normalization (preprocessFunnorm command in
minfi) which removes between-array variation by regressing out
variability in the control probes on each array (Fortin et al., 2014).
Probes on X and Y chromosomes were normalized according to
the sex of the sample.

Multivariate Analyses
Principal component analysis (PCA) was performed on the
top 2,000 most variable CpG probes considering all samples
(CpG probes with the largest standard deviations in M-values)
but probes located on X and Y chromosomes were excluded.
Association between the clusters and clinical factors were tested
by chi-square and Fisher’s exact tests for categorical variables and
t-tests for continuous variables.

Estimation of Cell-Type Composition in
cfDNA Samples
We used the cell-type methylomic deconvolution algorithm
and reference atlas by Moss et al. (2018) to estimate the
cell-type origin composition in each subject’s plasma cfDNA
sample. Briefly, the method uses non-negative least squares
linear regression to determine the relative contributions of

various cell types to the plasma cfDNA sample. The cell-type
methylomic reference atlas includes ∼8,000 CpGs which are
uniquely hypermethylated and hypomethylated in a certain tissue
or cell type relative to the others (a total of 26 human cell types
and tissues) (Moss et al., 2018).

Identification of Differentially Methylated
Positions
Differentially methylated positions (DMPs; methylation status
at individual sites) were identified by the R Bioconductor
package limma (Ritchie et al., 2015). Differential methylation
analyses were performed comparing rapid cyclers and non-
rapid cyclers using standard limma workflow with unpaired
contrasts with age and sex as covariates. M-values were used for
statistical analysis and β-values were reported for interpretability.
Statistically significant DMP was considered at FDR-adjusted p
(q-value) < 0.15 based on our previous publication using the
same microarray platform (Ho et al., 2019).

Identification of Differentially Methylated
Regions
Differentially methylated regions (DMRs; methylation status
across a genomic region) were identified by the R Bioconductor
package DMRcate (Peters et al., 2015). A DMR was annotated
when a region having at least two CpG sites with FDR-adjusted
p-values at default detection level within a lambda of 220
(since the lengths of most cfDNA fragments range between 120
and 220 bp). Statistically significant DMR between groups was
considered at Stouffer’s p < 0.05 (Ho et al., 2019).

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) to determine if methylation
levels of any gene sets were significantly associated with rapid
cycling was performed using the missMethyl Bioconductor R
package (Phipson et al., 2016). The analysis was performed
on the DMPs at p < 0.05 using the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
sets (Ashburner et al., 2000; Kanehisa et al., 2012). Statistically
significant enrichment was considered at FDR < 0.05.

RESULTS

Subject Characteristics
Subject characteristics are presented in Table 1. Rapid cyclers
and non-rapid cyclers were not significantly different in terms
of age, sex, onset age, substance abuse and dependence history,
the use of lithium, mood stabilizers, and antidepressants, and the
proportion of diabetic subjects. A significantly higher percentage
of subjects were on antipsychotics in the rapid cycling group than
the non-rapid cycling group (65.2% vs. 40.4%).

Multivariate Analysis
PCA identified a remarkable percentage of variance explained by
PC1, which overshadowed the variance explained by other PCs
(Figure 1A). The clustering of samples according to PC1 and PC2
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TABLE 1 | Subject characteristics.

Non-rapid
cyclers
(n = 47)

Rapid
cyclers
(n = 46)

p-value

Age (years ± SD) 46.3± 16.7 44.4± 16.5 0.582

Male (n;%) 20 (42.6%) 18 (39.1%) 0.737

Bipolar Type I (n;%) 47 (100%) 46 (100%) –

Bipolar onset age

≤19 10* 11 0.347

20–49 29 33

50–64 5 1

65–79 2 1

Substance dependence Hx (n;%)†

Alcohol 14 (31.1%) 14 (31.8%) 0.943

Nicotine 17 (37.8%) 18 (39.1%) 0.895

Substance abuse Hx (n;%)†

Cocaine† 5 (11.1%) 4 (9.1%) 0.752

Methamphetamine‡ 3 (6.7%) 3 (6.7%) 1.000

Heroin 0 0 –

Narcotics‡ 3 (6.7%) 5 (10.9%) 0.479

Marijuana‡ 8 (17.8%) 4 (8.9%) 0.215

Psychotropic medications (n;%)

Lithium 17 (36.2%) 15 (32.6%) 0.718

Mood stabilizers 19 (40.4%) 24 (52.5%) 0.256

Antipsychotics 19 (40.4%) 30 (65.2%) 0.017

Antidepressants 22 (46.8%) 25 (54.3%) 0.467

Diabetes (n;%) 8 (17.0%) 4 (8.7%) 0.355

†Based on data on 45 non-rapid cyclers and 44 rapid cyclers.
‡Based on data on 45 non-rapid cyclers and 45 rapid cyclers.
*One subject with unknown bipolar onset age.

was not significantly associated with technical factors (sample
plate and array), sex, age, and substance abuse/dependence
history (p > 0.05). No significant clustering was observed by
substance abuse/dependence history (Supplementary Figure 1)
or psychotropic medication class (Supplementary Figure 2).

The clustering of samples according to PC2 was significantly
associated with rapid cycling (Kruskal-Wallis test p = 0.039).
Genes mapped to CpG sites with PC2 factor loading ≥ | 0.02|
(n = 554 probes which mapped to 341 genes; Supplementary
Table 1) include TTC12 [loading = −0.098 (top of the list);
together with NCAM, ANNK1 and DRD2, forming a gene cluster
which is associated with substance dependence (Mota et al.,
2015)], GABBR1 (loading =−0.087; a GABAB receptor subunit),
CSNK1D [loading = −0.068; related to circadian rhythm and
lithium response in BD (Geoffroy et al., 2018)], and KCNC4
(loading = 0.044; a voltage-gated potassium channel). These
results were not driven by CpG sites located in CpG island, shelf,
or shore, since after restricting to CpG sites only within these
regions, neither PC1 nor PC2 was associated with rapid cycling
(p > 0.05; Supplementary Figure 3).

Cell-Type Composition in cfDNA
Samples
Using the cell-type methylomic deconvolution algorithm and
reference atlas by Moss et al. (2018), we estimated the distribution

of cfDNA origins among 26 reference cell types/tissues
(Table 2). An average of 71% of qualified probes matched
the reference atlas probes of each tissue/cell type and the
cfDNA tissue/cell type compositions were significantly different
between our samples and Moss et al. (2018) in the left
atrium, prostate, vascular endothelial cells, colon epithelial
cells, lung cells, kidney, hepatocytes, bladder, and head and
neck larynx (p < 0.001; Supplementary Table 2). Most of
the blood cell types (monocytes, NK-cells, neutrophils, and
erythrocyte progenitors) had the lowest probe overlapping rates
(∼54%), while breast, pancreatic acinar cells, upper GI tract,
vascular endothelial cells, hepatocytes, and cortical neurons
had the highest overlapping rates (79–81%; Supplementary
Table 2). Table 2 shows the comparison of estimated cfDNA
tissue/cell type of origin distribution between rapid cycling
groups. Overall, the most prevalent estimated cfDNA tissue/cell
type of origins were blood cells (neutrophils, erythrocyte
progenitors, monocytes, and lymphocytes), which accounted
for 82.6% of total cfDNA origins. Estimated cfDNA origins
from the left atrium (3.3%), cortical neurons (2.9%), vascular
endothelial cells (2.4%), and colon epithelial cells (2.1%) were
also substantially present. Between rapid cyclers and non-
rapid cyclers, no significant differences in estimated cfDNA
cell/tissue types of origin were found (p > Bonferroni-adjusted
α = 0.05/26 = 0.001923; individual sample compositions are
shown in Supplementary Figure 4), hence no adjustment
in tissue/cell type origin distribution on the methylome
analysis was conducted.

cfDNA Methylomic Differences Between
Rapid Cyclers and Non-rapid Cyclers
The overall cfDNA methylomic differences between rapid cyclers
and non-rapid cyclers were subtle as demonstrated in the
heatmap (Figure 1B). A Manhattan plot of the genome-wide
cfDNA methylomics comparison is shown in Figure 1C. No
significant between-group DMPs (q > 0.15; top 2000 CpGs are
listed in Supplementary Table 3) or DMRs (Stouffer p > 0.05;
listed in Supplementary Table 4; top ten DMRs are shown in
Supplementary Figure 5) were found. The top CpG sites with
the most significant between-group differences at p < 1E-05
(cg15379887, cg21822905, cg16177693, and cg10927086) were
located in CGGBP1, PEX10, NR0B2, and TP53I11. Rapid cyclers
had relatively lower methylation levels in the promoter and/or
5′UTR of CGGPB1 (north CpG shore), NR0B2 (south CpG
shore), and TP53I11 (north CpG shelf), while they had relatively
higher methylation levels in the body of PEX10 (open sea;
Figure 2).

We performed GSEA on genes with CpG sites that were
different between groups at p < 0.05 (including 23,508 probes
that mapped to 10,798 genes). We found significant enrichment
in 26 GO gene sets, which are related to synapses, neurons,
neurotransmissions, and nervous system development, and in
three KEGG gene sets, which are involved in parathyroid
regulation and calcium signaling (FDR < 0.05; Table 3). The list
of genes and CpG sites mapped to these pathways is shown in
Supplementary Table 5.
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FIGURE 1 | (A) PCA plot based on the top 2,000 most variable probes (CpG sites located on chromosomes X and Y were excluded). (B) Heatmap of the
methylation levels of the top 2,000 most significant differentially methylated probes. (C) Manhattan plot of genome-wide plasma cfDNA methylomic comparison
between rapid cyclers and non-rapid cyclers among bipolar disorder patients. The CpG probes where the top differentially methylated sites (p < 1E-05) are located
are indicated. Red line: p = 1E-05.

Leave-One-Out Cross-Validation of Top
Between-Group cfDNA Methylomic
Differences
We performed leave-one-out cross-validation analysis to verify
that our top between-group DMPs were not driven by individuals
with exceptionally high or low methylation levels. For the
four DMPs with the top methylation level differences between
rapid cyclers and non-rapid cyclers, we iteratively removed one
individual and repeated the unpaired contrasts with adjustment
of age and sex until all subjects had been excluded once.
From each iteration, the log2 fold changes and p-values of the
target DMPs were recorded. The log2 fold changes and p-values
reported on the top four DMPs in our initial analysis were
extremely close to the mean values obtained from the leave-
one-out contrasts (Supplementary Table 6), thus confirming our
top findings were not driven by extreme methylation values in
certain samples.

DISCUSSION

In this study, we used a microarray method to detect plasma
cfDNA methylation levels to examine the cfDNA methylomic

differences that were associated with rapid cycling in BD.
We found global differences in methylation profiles between
BD rapid cyclers and non-rapid cyclers, four CpG sites with
differential methylation levels between BD rapid cyclers and
non-rapid cyclers at p < 1E-05 (not genome-wide significant),
and significant enrichment in pathways related to neurons and
synaptic functions among the top CpG sites that differed between
the groups. To our knowledge, this is the first investigation
of cfDNA methylomics as potential biomarkers for BD rapid
cycling, thereby marking an example of cfDNA application in
psychiatric diagnosis and providing insights into amelioration of
rapid mood cycling in BD.

Most cfDNA methylomic studies used sequencing-based
methods such as whole-genome bisulfite sequencing, reduced
representation bisulfite sequencing, and methylated CpG tandem
amplification and sequencing (Zeng et al., 2018), while a
few studies used microarray analysis (Gallardo-Gómez et al.,
2018; Gordevicius et al., 2018). Compared to sequencing-based
methods, microarrays have much lower coverage but provide an
economic genome-wide platform that screens CpG sites located
at gene bodies and regulatory elements (Huang and Wang, 2019)
and the required amount and quality of input DNA are generally
less demanding. In our study, the low locus detection rates
(<99%) and high exclusion rate of CpG probes from analysis
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TABLE 2 | Comparison of estimated cfDNA tissue/cell type origin distribution between BD rapid cyclers and non-rapid cyclers.

Cell types/Tissues Total Percentage (SD) P

Non-rapid cyclers (n = 47) Rapid cyclers (n = 46)

Neutrophils 35.4% 37.0% (18.4%) 33.9% (16.9%) 0.431

Erythrocyte progenitors 25.0% 24.0% (14.0%) 26.0% (13.4%) 0.557

Monocytes 12.6% 12.9% (5.3%) 12.4% (5.0%) 0.833

Lymphocytes 9.6% 9.3% (6.2%) 9.9% (5.9%) 0.645

NK cells 5.3% 5.0% (2.7%) 5.7% (3.2%) 0.375

Left atrium 3.3% 2.9% (2.3%) 3.7% (2.4%) 0.153

Cortical neurons 2.9% 2.8% (1.4%) 2.9% (1.6%) 0.926

Prostate 2.6% 2.6% (1.4%) 2.6% (1.5%) 0.812

Vascular endothelial cells 2.4% 2.4% (2.4%) 2.4% (2.2%) 0.981

Colon epithelial cells 2.1% 2.1% (0.9%) 2.1% (0.9%) 0.741

B cells 1.7% 1.5% (2.3%) 1.9% (2.7%) 0.386

CD8+ T cells 1.4% 1.4% (1.9%) 1.4% (2.1%) 0.990

Lung cells 1.3% 1.4% (1.2%) 1.2% (1.1%) 0.410

CD4+ T cells 1.2% 1.5% (3.6%) 0.9% (2.0%) 0.920

Kidney 0.9% 1.0% (1.0%) 0.9% (1.1%) 0.472

Hepatocytes 0.5% 0.4% (0.7%) 0.6% (0.9%) 0.041

Pancreatic acinar cells 0.3% 0.2% (0.3%) 0.5% (0.6%) 0.010

Adipocytes 0.2% 0.0% (0.3%) 0.4% (2.6%) 0.547

Pancreatic beta cells 0.2% 0.3% (0.5%) 0.2% (0.4%) 0.157

Thyroid 0.2% 0.2% (0.5%) 0.2% (0.5%) 0.686

Pancreatic duct cells 0.1% 0.1% (0.3%) 0.1% (0.3%) 0.831

Bladder 0.1% 0.2% (0.6%) 0.1% (0.3%) 0.681

Breast 0.1% 0.1% (0.5%) 0.1% (0.3%) 0.942

Uterus cervix 0.0% 0.0% (0.1%) 0.0% (0.0%) 1.000

Head and neck larynx 0.0% 0.0% (0.0%) 0.0% (0.0%) –

Upper GI 0.0% 0.0% (0.0%) 0.0% (0.0%) –

Cell types and tissues are listed in descending order of their proportions in the cfDNA samples.

(∼45%) might be caused by insufficient input DNA, exacerbated
by the biased DNA fragmentation pattern in cfDNA which can
reduce coverage in transcription start sites and exon boundaries
(Ma et al., 2017). In future mood disorder studies where other
origins of organ damage and the presence of tumors can be
excluded, strategies for increasing input cfDNA amount would
be needed to increase cfDNA to boost experimental performance,
such as pooling of cfDNA samples from multiple well-matched
samples (Gallardo-Gómez et al., 2018).

The estimated proportions of tissues and cell types that
contributed to the cfDNA in our samples were slightly different
from those reported by Moss et al. (2018), which may be
due to differences in participants’ demographic and clinical
characteristics, the cfDNA preparation procedures employed,
and the quantity of input cfDNA applied onto the EPIC arrays.
Participants in Moss et al. (2018) were healthy individuals aged
19–30 years and ≥ 75 years, while our BD participants were
mainly middle-aged (20–79 years; mean 45 years). Moreover,
they used pooled cfDNA samples generated by mixing cfDNA
samples of several subjects (7–19 samples/pool) classified by
age and sex until the sample reaching 250 ng cfDNA which
was the recommended input DNA amount of the Illumina
methylomic arrays (Moss et al., 2018). Moss et al. (2018)
evaluated the performance of the deconvolution algorithm

using 100 and 50 ng of cfDNA, i.e., amounts much less
than manufacturer-recommended 250 ng, and found their
predicted tissue/cell type distributions correlated with the
distributions obtained with the recommended amount at r > 0.99
and > 0.90, respectively. Therefore, we projected that the
reproducibility of applying the Moss et al. (2018) method
to our microarray data would be lower but still satisfactory.
Relative to the cfDNA tissue/cell type of origin proportions in
healthy individuals reported by Moss et al. (2018), our data
obtained in BD patients were largely similar for most tissues/cell
types but dissimilar in some notably, for example, we found
a significantly higher proportion of vascular endothelial cells
(Supplementary Table 2). These differences may be attributed
to BD medications, medical comorbidities of BD such as the
increased risk of cardiovascular diseases (Goldstein et al., 2020),
and/or the aforementioned technical differences between studies
that affected the performance of the tissue/cell type estimation.

The top differentially methylated sites between rapid cyclers
and non-rapid cyclers were CGGBP1, which encodes for
CGG triplet repeat-binding protein 1, a nuclear protein that
selectively binds to unmethylated CGG trinucleotide repeats.
The hypomethylation in a CpG site which is located in the
CGGBP1 5′UTR and at the north shore of a CpG island implies
an upregulation of gene expression (Martino and Saffery, 2015).
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FIGURE 2 | (A) Regional plots of the top differentially methylated probes (DMPs; p < 1E-05). Blue dotted vertical lines mark the genomic locations of the most
significantly differentially methylated CpGs in that region. (B) Box plots of the methylation levels of the four DMPs differed between rapid cyclers and non-rapid
cyclers at p < 1E-05.

CGGBP1 is expressed ubiquitously across human tissues. It
was found to regulate gene transcription and participate in
cell growth and proliferation with cytoprotective properties

(Singh and Westermark, 2015). Its specific roles in transcription
regulation include, but are not limited to, shielding unmethylated
CGG repeats from methylation (Deissler et al., 1996), histone
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TABLE 3 | Pathway enriched by genes with CpG sites that differed between rapid
cycling groups at p < 0.05.

Pathway names Gene hits #CpG sites p FDR

GO pathways

Neuron part 1,701 1,037 5.28E-08 < 0.001

Postsynapse 610 408 5.53E-08 < 0.001

Synapse 1,163 736 6.29E-08 < 0.001

Synapse part 931 596 1.44E-07 0.001

Nervous system
development

2,333 1,391 1.54E-07 0.001

Neuron projection 1,291 794 3.13E-07 0.001

Cell projection part 1,443 874 2.21E-06 0.006

Plasma membrane
bounded cell projection
part

1,443 874 2.21E-06 0.006

Plasma membrane
bounded cell projection

2,071 1,226 3.89E-06 0.010

Protein dimerization activity 1,298 740 1.10E-05 0.024

Neuron differentiation 1,353 830 1.32E-05 0.024

Protein homodimerization
activity

848 501 1.44E-05 0.024

Enzyme binding 2,172 1,261 1.49E-05 0.024

Cytoskeletal protein binding 964 601 1.70E-05 0.024

Negative regulation of
cellular process

4,719 2,564 1.88E-05 0.024

Somatodendritic
compartment

828 515 1.91E-05 0.024

Cell junction 1,289 788 1.99E-05 0.024

Axon 605 390 2.04E-05 0.024

Cell projection 2,146 1,261 2.06E-05 0.024

Neuron to neuron synapse 347 238 2.14E-05 0.024

Neurogenesis 1,607 970 2.18E-05 0.024

Plasma membrane region 1,183 719 2.38E-05 0.025

Generation of neurons 1,508 914 3.04E-05 0.030

Cell leading edge 400 269 3.26E-05 0.031

Glutamate receptor binding 46 40 3.43E-05 0.031

Cell morphogenesis
involved in differentiation

739 478 4.33E-05 0.038

Neuron development 1,100 683 4.61E-05 0.039

Axon guidance 275 194 5.13E-05 0.042

Cell-cell signaling 1,615 947 5.54E-05 0.044

Cytoskeleton organization 1,308 780 5.90E-05 0.045

Receptor complex 388 253 6.29E-05 0.046

Actin binding 425 280 6.42E-05 0.046

Dendrite 609 387 7.08E-05 0.047

Rab GTPase binding 166 116 7.13E-05 0.047

Synaptic membrane 429 282 7.28E-05 0.047

Neuron projection guidance 276 194 7.47E-05 0.047

KEGG

Amoebiasis 97 73 8.00E-06 0.001

Parathyroid hormone
synthesis, secretion and
action

105 82 8.23E-06 0.001

Calcium signaling pathway 237 160 1.84E-04 0.021

modification (Stelzl et al., 2005; Patel et al., 2019), and acting
as a trans-regulator of RNA polymerase II-transcribed genes
(Agarwal et al., 2016). CGGBP1 deficiency results in cell cycle

arrest at the S phase and G2/M phase in normal cells (Singh and
Westermark, 2011). Notably, CGGBP1 as a D-box-containing
protein (D-box is a cis-regulatory element known to associate
with zenith expression of genes during the “active phase”) has
been found to demonstrate circadian variations in its expression
level in intestinal epithelial cells in response to an unusual
restricted feeding schedule in mice, thus demonstrating that
CGGBP1 as a component of the peripheral circadian clock
(Mukherji et al., 2015). Reduced CGGBP1 gene expression
had been reported in the peripheral blood of patients with
post-traumatic stress disorder (Uddin et al., 2011). Therefore,
altered CGGBP1 may be a critical indicator of the misalignment
between the central and peripheral circadian clocks which could
progressively induce metabolic syndrome (Mukherji et al., 2015)
and increase the risk of mood disorders (Baron and Reid, 2014).
However, due to the scarcity of studies on the association between
CGGBP1 and psychiatric disorders, the involvement of CGGBP1
in mood disorders is yet to be identified.

PEX10 encodes peroxisomal biogenesis factor 10, a
ubiquitously expressed peroxisomal matrix protein. Peroxisomes
are organelles that are critical for fatty acid and phospholipid
metabolisms, such as very-long-chain fatty acid catabolism
and the biosynthesis of docosahexaenoic acid (DHA) and
plasmalogens which are essential for normal brain development
and functioning. Peroxisome dysfunction has been associated
with neurodegenerative disorders (Jo and Cho, 2019) and mood
disorders (McNamara et al., 2010). Lower erythrocyte DHA
level was observed in BD1 patients and found to be associated
with the onset of the first mania episode (McNamara et al.,
2015) and increased risk of BD1 development (McNamara
et al., 2016a), but contrasting results have also been reported
(McNamara et al., 2016b). Therefore, the association between
peroxisomal dysfunction and BD remains uncertain. PEX10
mutations can cause Zellweger syndrome (Okumoto et al.,
1998). Although PEX10 has not been extensively studied in the
brain, Pex10 deficiency in mice resulted in reduced Schwann
cell count and poor integrity of axon and synapse in the spinal
cord (Hanson et al., 2014). Here, we found a CpG site in PEX10
gene body was hypermethylated in the rapid cycling group,
implying a potentially altered PEX10 gene expression level may
be associated with BD rapid cycling. For example, the altered
PEX10 levels may affect fatty and phospholipid acid metabolisms,
which are important to brain health, thereby precipitating mood
instability. However, it is unclear which tissue was responsible
for this difference and whether the observed changes were
functionally significant.

NR0B2 encodes nuclear receptor subfamily 0 group B member
2 (a.k.a. short heterodimer partner), an orphan nuclear receptor
that interacts with receptors of estrogen, retinol, bile acid, and
thyroid hormone to suppress the transcriptional activity of these
nuclear receptors (Seol et al., 1997; Ma and Patti, 2014) as well
as with peroxisome proliferator-activated receptor (PPAR) α and
γ (Kassam et al., 2001; Nishizawa et al., 2002). NR0B2 is mostly
expressed in the gastrointestinal tract (stomach, duodenum, small
intestine, and colon) and liver, and to a lesser extent in the
gall bladder, spleen, pancreas, and heart. NR0B2 is involved in
the regulation of bile acid synthesis (Yang et al., 2014), bile salt
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secretion (Neimark et al., 2004), inflammation (Maguire et al.,
2017; Zhou et al., 2018), insulin secretion and pancreatic β cell
survival (Suh et al., 2004; Noh et al., 2013), as well as lipid
metabolism in liver and brown adipocytes (Wang et al., 2005;
Khristi et al., 2019). Our finding of a lower methylation level
in the promoter region of NR0B2 suggests that an increase in
NR0B2 expression in some tissues may be related to BD rapid
cycling. Since NR0B2 is involved in lipid and glucose metabolisms
and inflammation, dysfunctionality in these processes may be
associated with the risk of rapid mood cycling, this coincides with
the higher rates of rapid cycling observed in BD patients with
diabetes mellitus or insulin resistance (Ruzickova et al., 2003;
Calkin et al., 2015).

TP53I11 encodes tumor protein P53 inducible protein 11 and
are expressed ubiquitously in human tissues. It has been studied
almost exclusively in oncology and information on its association
with mood disorders is absent. TP53I11 was found to promote
apoptosis by binding to DNA (Liang et al., 2004; Xiong et al.,
2007) as well as inhibit tumor metastasis (Xiao et al., 2019). Its
association with BD rapid cycling remains to be uncovered.

In the list of genes with top differentially methylated CpG
sites (p < 0.05), nearly all significantly enriched GO gene sets
were related to the structure, generation, and development of
neurons as well as the structure and functioning of synapses,
suggesting that plasma cfDNA may contain brain-derived DNA
and those methylation levels could reflect the presence of
rapid cycling feature in BD. However, this postulation needs
empirical support from tissue-specific methylome analyses and
also proof that neuronal and synaptic dysfunctions contribute to
rapid cycling in BD. Among various neurotransmitter systems,
the “glutamate receptor binding” pathway was significantly
enriched, thereby reiterating the importance of the glutamatergic
system in regulating rapid mood cycling in BD found in
previous studies (Michael et al., 2009; Veldic et al., 2019).
Another interesting enriched gene set was “Rab GTPase
binding” as Rab GTPases are critical players in vesicular
trafficking between the cell body and axonal presynaptic
and dendritic postsynaptic terminals and in synaptic vesicle
docking and exocytosis at the presynapse, regulating neuronal
development and polarization, presynaptic neurotransmitter
release, and postsynaptic membrane composition (Mignogna
and D’Adamo, 2018). Two significantly enriched KEGG gene
sets, “parathyroid hormone, synthesis, secretion and action”
and “calcium signaling pathway,” pointed toward calcium
homeostasis and the effects of calcium on various cell
types, such as muscle contraction and long-term potentiation
and depression related to learning and memory. Although
the relationship between parathyroid hormone and mood
is unclear, parathyroid hormone can cross the blood-brain
barrier and parathyroid receptors are found throughout the
human brain (Lourida et al., 2015). A recent study reported
that serum parathyroid levels of BD patients were correlated
positively with the total number of mood episodes and
suicide attempts but negatively with the age of onset (Steardo
et al., 2020). Notably and paradoxically, the use of lithium
is known to induce hyperparathyroidism and hypercalcemia
(Albert et al., 2013).

A few limitations need to be noted. Firstly, the blood samples
from which the plasma cfDNA was derived were not collected
in specific mood states (mostly during euthymia and depressed
states for ethical reasons) or the change between mood states.
However, obtaining biospecimens during or around the time
of mood state is limited by practical and ethical reasons.
Secondly, the organs and cell types responsible for the cfDNA
detected in the samples could not be ascertained. We have
adopted the method by Moss et al. (2018) for predicting the
distribution of tissues/cell types of origin in cfDNA samples and
found a substantial percentage of cfDNA with cortical neuronal
origin in our samples and no significant differences in cfDNA
tissues/cell types of origin distribution between groups. However,
to determine that a tissue/cell type contributes to a certain
cfDNA methylomic difference, methods that can detect the
methylation pattern in each cfDNA fragment (e.g., sequencing)
coupled with an advanced deconvolution algorithm would be
required. Validation in specific tissues and cell types, such as
peripheral blood mononuclear cells, are needed to confirm the
origins of our findings. Thirdly, since the sample size was
small, the statistical power was limited and led to the lack of
significant differentially methylated sites after multiple testing
correction. Lastly, in the absence of a replication experiment, in
order to verify that our top findings were not due to extreme
methylation values in our samples, we conducted leave-one-out
cross-validation and found that our initial reported statistics were
not driven by a single outlier sample. Nevertheless, replication
using an independent cohort of subjects would be needed to
confirm our findings.

To conclude, this study is the first investigation of circulating
cfDNA methylomic differences of BD patients with rapid cycling
to provide support for the diagnostic application of circulating
cfDNA methylomics. We demonstrated the use of a microarray
method for plasma cfDNA methylome analysis and identified
potential differences associated with BD rapid cycling. The
differentially methylated CpGs were mostly within or near
genes involved in pathways related to the nervous system and
parathyroid. Our findings need to be replicated with a larger,
independent cohort and followed up with a more definitive
assignment of the cfDNA methylomic signals to tissues-of-
origin.
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