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The classification of electroencephalogram (EEG) signals is of significant importance in
brain-computer interface (BCI) systems. Aiming to achieve intelligent classification of
motor imagery EEG types with high accuracy, a classification methodology using the
wavelet packet decomposition (WPD) and the proposed deep residual convolutional
networks (DRes-CNN) is proposed. Firstly, EEG waveforms are segmented into sub-
signals. Then the EEG signal features are obtained through the WPD algorithm, and
some selected wavelet coefficients are retained and reconstructed into EEG signals in
their respective frequency bands. Subsequently, the reconstructed EEG signals were
utilized as input of the proposed deep residual convolutional networks to classify EEG
signals. Finally, EEG types of motor imagination are classified by the DRes-CNN classifier
intelligently. The datasets from BCI Competition were used to test the performance of
the proposed deep learning classifier. Classification experiments show that the average
recognition accuracy of this method reaches 98.76%. The proposed method can be
further applied to the BCI system of motor imagination control.

Keywords: electroencephalogram (EEG), motor imagery (MI), wavelet packet decomposition (WPD), residual,
convolutional neural networks

INTRODUCTION

Electroencephalogram (EEG) is a common biological signal in the medical field. People obtain
EEG signals by collecting and recording the potential changes of the superficial skin of the head,
and characterize the activity characteristics of the brain. The research of EEG signals is widely
used in various aspects. In the field of biomedicine, EEG signal researches help doctors diagnose
neurological diseases, such as frostbite, epilepsy, Alzheimer’s disease, childhood developmental
disorders, schizophrenia, Parkinson’s disease and other functional diseases. EEG can detect sleep
quality, fatigue driving, and drunk driving. It can also study human brain functions such as
emotion, cognition, memory, and sports. At present, a mainstream research direction is to use
brain waves to control objects. Through certain processing of EEG signals, certain parts of the body
can be controlled to make certain actions. At present, certain research results have been achieved.
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For example, people invented instruments and tools to facilitate
the lives of the disabled. Motor imaging signal is a kind of
brain electrical signal, which is often used in brain-computer
interface (BCI).

Brain-computer interface technology is a system that does not
pass through the normal physiological pathways of the human
body, but allows the brain to directly transmit information
or control commands to computers or related instruments
(Gong, 2014). When the brain performs motor imagination,
the corresponding brain regional potential will also change
accordingly due to the different imagination of the imagination
activity. The corresponding changes in the brain are detected,
and the computer is used to convert these detected change
signals into instructions to control the lower computer (Cilliers
and Van Der Kouwe, 1993). The EEG signal is an important
part of the BCI system. The acquisition of motor imagery EEG
signals is the first step to realize the operation of the BCI
system. Then the EEG signal is processed and decoded. Finally,
the EEG signal is translated into “machine language” through
the control instruction conversion module to drive the external
equipment, so that the purpose of human-computer interaction
can be realized.

Pattern recognition of various states of the human body based
on brainwave detection is a very popular research topic, and it
has produced quite constructive results in many fields. K. Polat
proposed a classification method of epileptiform EEG using a
hybrid system based on decision tree classifier and fast Fourier
transform (Kemal and Salih, 2007). M. V. M. Yeo and X. P.
Li used support vector machines for pattern recognition and
developed a method to automatically detect the driver’s fatigue
driving state (Mervyn et al., 2009). The method recognition
accuracy reached 99.3%, and it can reliably predict the transition
from alertness to drowsiness. T. Nguyen proposed a threshold
method to identify blinking state, and achieved good results in
the detection results (Nguyen et al., 2013). Wang proposed an
EEG eye state identification method using incremental attribute
learning with time-series classification, and the method finally
achieved an accuracy rate higher than average (Wang et al., 2014).
S. K. Satapathy used neural network and support vector machine
to perform brain wave-based pattern recognition for epilepsy and
has achieved good recognition results (Satapathy et al., 2017). G.
Anumanchipalli uses the RNN deep learning model to directly
read the thoughts in the brains of paralyzed patients using a BCI.
The spoken sentences can reach 150 words per minute, which is
close to the normal level of people (Anumanchipalli et al., 2019).

Since the end of the 1960s, humans have studied BCI
technology for more than 50 years. Since the 21st century,
the research of BCI has become more and more prosperous.
Four international BCI competitions were successfully held.
Researchers have systematically analyzed the processing methods
of EEG signals and produced some mature applications. The BCI
laboratory team at the Cognitive Institute of Graz University
of Technology in Austria first implemented a BCI based on
online EEG classification. The team developed a variety of BCI
systems using motor imaging brain electrical signals, including
imagining different limb movements to control the movement
of the wheelchair (Pfurtscheller et al., 1993, 2006), and using

brain waves to control the movement of the mouse to find
coins (Pfurtscheller et al., 2000). The BCI Research Institute
in Berlin has developed a typing system (Benjamin et al.,
2003). The subjects selected different characters for typing by
imagining the movements of the left hand, right hand, and
foot. The Washington Research Center in the United States uses
different EEG rhythm signals generated by motor imagination
to realize the free movement of the virtual cursor in three-
dimensional space (McFarland et al., 2010). The BSI-TOYOTA
Collaboration Center in Japan has successfully developed a real-
time control wheelchair using brain waves. By imagining the
front, left, and right to control the direction of the wheelchair, a
125 ms response control system for the electric wheelchair can be
realized (Bai, 2010). Gao Shangkai of Tsinghua University used
the characteristics of motor imaginary EEG signals to develop
a system that uses EEG signals to control robot dogs playing
football (Wang et al., 2007). Xu Baoguo of Southeast University
controlled the robot arm to make corresponding actions based
on imagining the movement of the hand (Xu et al., 2011). The
average accuracy of motor imaging EEG for manipulator control
is 88%. Li Yuanqing of South China University of Technology
designed a hybrid BCI system that combines motor-imaging
EEG signals and P300 signals, which control the horizontal and
vertical movement of the cursor, respectively (Li et al., 2010).

Although many laboratory results have been achieved in the
research of BCI technology, there are still few products that
can be applied in real life. The BCI technology is still in the
stage of theoretical research and laboratory development, and
the application system needs to be further improved. There
are still many key technologies that need to be improved.
Firstly, the existing BCI systems have poor adaptability. Different
individuals have different physiological functions, so people’s
EEG physiological responses to the same task will also be
different. When the same individual performs the same motor
imagination activity in different mental states, the EEG response
may also be different. The adaptability of the future BCI
system should not only meet the differences between different
individuals, but also meet the changes of different states of the
same individual. Secondly, the recognition speed and accuracy
of the BCI system need to be improved. Classification accuracy
and recognition speed are the most commonly performance
evaluation indicators used in BCI system. The existing feature
extraction methods used for classification of motion imaging
tasks are relatively complicated. The large amount of data leads
to long calculation time and slow system processing speed.
However, reducing the amount of data or simplifying the signal
feature extraction method will cause the classification accuracy
to decrease. The key challenge of current research is to speed
up the processing speed of the system while ensuring the
accuracy of classification. In addition, it is relatively difficult
to integrate technologies in different fields with BCI system.
Promoting the technical integration of BCI application systems
and being accepted by users is also an important practical
problem faced by BCI systems.

In this article, we propose an accurate EEG signal classification
method using Deep Residual Convolutional Neural Network
(DRes-CNN). The EEG signals in BCI Competition 2005 data
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set IVa and BCI Competition 2003 data set III are selected as
the original data. The wavelet packet decomposition (WPD)
was used for preprocessing to obtain the characteristics of EEG
signals. Subsequently, the reconstructed EEG signals of different
frequency bands were used as the input of DRes-CNN to finally
identify and classify the EEG types. The classification results
show that the average accuracy of the proposed DRes-CNN
model can reach 98.76%. The rest of this article is organized as
follows. In section “Method,” we explained the methods used
for EEG classification, including database and segmentation,
data preprocessing based on WPD, and the proposed deep
residual neural network. In section “Results,” the numerical
evaluation and experimental results of the EEG classification are
shown. Finally, we give the discussion and conclusion in section
“Discussion.”

METHOD

Methodology Overview
The proposed EEG classification method is based on the WPD
and the proposed deep residual convolutional networks. The
original EEG signals were shared by the BCI Competition
database (Blankertz et al., 2006). Firstly, EEG waveforms are
segmented into sub-signals. Then the EEG signal features are
obtained through the WPD algorithm, and some selected wavelet
coefficients are retained and reconstructed into EEG signals in
their respective frequency bands. Subsequently, the reconstructed
EEG signals were utilized as input of the proposed deep residual
convolutional networks to classify EEG signals. Finally, EEG
types of motor imagination are classified by the DRes-CNN
classifier intelligently.

Database and Segmentation
The international organizations have held several BCI
competitions since 2001. The International BCI Competition
provides a reliable data source and a unified test standard for
researchers in the field of motor imaging EEG signal analysis.
The experimental data in this article comes from the databases
in BCI Competition 2005 (dataset IVa) and BCI Competition
2003 (dataset III).

These two databases contain data sets recorded by five subjects
(aa, al, av, aw, and ay). All five subjects performed the BCI
experiment, which included three exercises of motor imagination
for the left hand, right hand, and right foot. In this experiment,
only the right hand (R) and right foot (F) two types of motor
imagination are used for data analysis, and they are named Class-
1 and Class-2. Each EEG signal has 118 channels. These motor
imaging tasks are classified by using the EEG signals recorded on
the C3, Cz, and C4 channels. At the beginning of the experiment,
a prompt appeared in the center of the screen to inform the
subject of the motion imaging task to be performed. Each test
takes 7 s. During the first 2 s, the subject remained sitting still.
At t = 2 s, an auditory stimulus will appear, prompting the start
of the experiment. At t = 3 s, an arrow will appear on the screen
to indicate which imaginary exercise the subject is performing.
At the same time, the subject began to perform an imaginary

movement in the same direction as the arrow prompts. The
subject’s imagination time is 3.5 s. After the motion imaging,
the subjects had a short rest period, which ranged from 1.75 to
2.25 s. At t = 7 s, the arrow disappears and the subject ends the
imaginary action. The sampling frequency of EEG is 250 Hz. The
EEG waveform is divided into time samples of 3.5 s. There are
140 experimental samples for each type of EEG signal.

Data Preprocessing via Wavelet Packet
Decomposition
Electroencephalogram signals have time-varying and non-
stationary characteristics. Time domain analysis mainly considers
the geometric characteristics of signal variance and mean
value, and frequency domain analysis mainly considers the
characteristics of signal coherence and frequency band power.
EEG signals are constantly changing with time. Neither time
domain analysis nor frequency domain analysis alone can
accurately reflect its characteristics. Time-domain joint analysis
is more suitable for reflecting the transient characteristics of
non-stationary signals.

Wavelet packet decomposition (Walczak and Massart, 1997;
Manthalkar et al., 2003) is an improved method based on wavelet
decomposition. This method makes up for the low resolution
of the high-frequency part of WPD. It can analyze the signal
more accurately. For different signals, WPD can automatically
select the appropriate frequency band to match the frequency
spectrum of the signal, thereby improving the time-frequency
resolution. WPD has a good performance in signal local analysis.
It can effectively remove the redundant information and retain
the feature information that is beneficial to classification to best
express the EEG signal feature information.

In multi-resolution analysis, WPD is regarded as a process of
stepwise orthogonal decomposition of a function space. Multi-
resolution analysis decomposes the L2(R) of the Hilbert space
into the orthogonal sum of all wavelet subspaces W l according
to different scale factors l. A new subspace Um

l is defined to
represent the wavelet subspace W l and the scale space V l.{

U0
l = V l, l ∈ Z

U1
l =W l, l ∈ Z

(1)

The orthogonal decomposition of Hilbert space Vl⊕Wl can be
expressed as:

U l+10 = U0
l⊕U l , l ∈ Z . (2)

Define the subspace Um
l as a closure space of the function

um(t), so that um(t) satisfies:{
u2m (t) =

√
2

∑
k∈Z h (k) u2m (2t − k)

u2m+1 (t) =
√

2
∑

k∈Z g (k) u2m (2t − k)
, (3)

where g (k) = (–1)k h(1-k), g (k), and h (k) are the coefficients
of the high-pass filter and the low-pass filter, which are
orthogonal to each other.

When m = 0, from Equation 3, we can get:{
u0 (t) =

∑
k∈Z h (k) u0 (2t − k)

u1 (t) =
∑

k∈Z g (k) u0 (2t − k)
. (4)
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FIGURE 1 | Four-layer wavelet packet decomposition of EEG signal.

In the process of multi-resolution analysis, the wavelet basis
function ϕ(t) and scale function ψ(t) satisfy:{

ϕ(t) =
∑

k∈Z g (k) ψ (2t − k)
ψ(t) =

∑
k∈Z h (k) ψ (2t − k)

. (5)

From the Equations 4, and 5, we can know that ϕ(t) = u1 (t)
and ϕ(t) = u0 (t). Therefore {um(t)}m∈Z is an orthogonal wavelet
packet. The calculation formula of the WPD coefficient is shown
in the Equation 6:{

dl+1,2m
i =

∑
k∈Z h (k-2i) dl,mk

dl+1,2m+1
i =

∑
k∈Z g (k-2i) dl,mk

. (6)

The WPD has good time-frequency resolution in both high-
frequency and low-frequency parts. This method saves all the
energy of the signal, so it is very suitable for the analysis
and processing of EEG signals. Since the information of the

EEG signal reflected by the wavelet packet coefficients on
each decomposition scale is different, it can be considered to
extract features from part of the wavelet packet coefficients.
In the process of WPD, the decomposition scale and basis
function have a great influence on the decomposition effect.
The higher the scale of WPD, the better its local characteristics.
But the dimensionality of the feature is also larger, which
will prolong the training time of the model. Studies have
confirmed that the ERD/ERS phenomenon that characterizes
motor imagination actions is mainly reflected in the 8–30 Hz
of the EEG signal (Pfurtscheller et al., 1997). Therefore, the
decomposition scale should ensure that the frequency band
corresponding to the wavelet packet coefficient is within the
frequency range. Therefore, the decomposition level of WPD is
determined to be four. The four-layer WPD of the EEG signal is
shown in Figure 1. The signal is divided into 16 frequency bands,
and the frequency range corresponding to each node in each layer
is shown in Figure 1.
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FIGURE 2 | Examples of short EEG recordings and their reconstructed sub recordings.

According to the characteristics of the original EEG signal
and the wavelet basis functions, the selected wavelet basis is
Db4 (Guan et al., 2015). The original EEG is decomposed by
wavelet packet to obtain wavelet coefficients on various scales.
The wavelet coefficients of the 0th, 1st, 2nd, and 3rd nodes in
the fourth-level decomposition are retained and reconstructed
into EEG signals in their respective frequency bands. The
reconstructed EEG signals filter out high-frequency noise in the
original signal and signals in other frequency bands that are not
related to motor imagination. The reconstructed EEG signals of
S04, S14, S24, and S34 are used as the input of the EEG classifier. The
examples of short EEG recordings and their reconstructed sub
recordings are shown in Figure 2.

The Proposed Deep Residual
Convolutional Networks
Convolutional neural network (CNN) is a deep feedforward
neural network (Liu, 2018) inspired by the concept of “receptive
field.” With the increase of the number of layers and neurons
in the deep neural network, the non-linear fitting ability will
increase. CNN is widely used in engineering fault diagnosis (Cao
et al., 2019), medical signal recognition (Chandra et al., 2019;
Huang et al., 2019), image recognition (Qu et al., 2016) and
other fields. However, simply stacking the number of network
layers will cause the problem of vanishing gradients. The network
can be converged by normalizing initialization and introducing
a median normalization layer. But for a deeper network, the
accuracy of the model will decrease as the depth increases
when the network model accuracy reaches saturation. This is
the degradation problem of neural networks (He et al., 2016;
Yu et al., 2016). The neural network learns an implicit abstract

mapping relationship by adjusting its parameters. However,
this implicit mapping relationship is difficult to optimize in a
deeper network. The purpose of the deep residual convolutional
neural network (DRes-CNN) method is to solve the degradation
problem of traditional neural networks. The learning process
of the DRes-CNN is using multiple consecutively stacked non-
linear computing layers to fit the residual F(x) between the input
data and the mapped output data. The residual F(x) is calculated
as follows:

F (x) = H (x)− x, (7)

where H(x) is the optimal solution, and x is the input
congruent mapping.

The closer the residual F(x) is to 0, the closer the features
extracted by this network are to the original input. The DRes-
CNN composed of the residual block local units can solve
the difficulty in convergence and adjustment. It overcomes
the degradation problem of CNN as the number of network
layers increases.

In this section, we propose the deep residual convolutional
neural networks (DRes-CNN). As shown in Figure 3, the
DRes-CNN is mainly composed of four residual convolution
modules and a classification module. In the proposed deep
residual convolutional networks, a convolutional layer with a
stride of 3, a random dropout layer and a batch-normalization
layer are applied firstly to compress the input EEG data and
enhance the generalization of the DRes-CNN model. The down-
sampling module can effectively simplifies the calculation of
deep network models, reduces data redundancy, and promotes
model learning (Huang et al., 2020). In the four residual
convolution module, convolutional layers in series are followed
by residual short circuit. Then a random dropout layer and
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FIGURE 3 | The architecture of the proposed DRes-CNN.

the max-pooling layer are added after the convolutional layers.
Finally, in the classification module, a flatten layer follows the
convolution layer and a random dropout layer is applied after
the flatten layer to prevent overfitting. In the proposed DRes-
CNN model, the learning rate is set as 0.001 and the batch size
parameter is set as 250.

RESULTS

Evaluation Metrics
The performance of the classification model is mainly measured
by the accuracy. The accuracy was calculated through Equation 8.

Accuracy (%) =
TP+TN

TP+TN+FP+FN
× 100 , (8)

where TP stands for true positive, meaning the correct
classification as Class-1 of EEG; TN stands for true negative,
meaning correct classification as Class-2 of EEG; FP stands for
false positive, meaning incorrect classification as Class-1 of EEG;
FN represents false negative, meaning incorrect classification as
Class-2 of EEG (Yin et al., 2016).

The Experimental Classification Results
In order to verify the effectiveness of the proposed EEG
classification model, we classify the EEG signals of the right hand
(Class-1) and right foot (Class-2). One hundred forty groups of
eight feature inputs can be obtained for each type of EEG signal
after data preprocessing based on WPD. All EEG training sample
data is randomly scrambled, and the last 200 samples are selected
as the test set. The classification of EEG signals is based on the
classification algorithm described in section “Method.”

FIGURE 4 | Comparison of average test accuracy by different reconstructed
sub-signal.

The original EEG waveform is divided into sub-signals. Then,
the characteristics of the EEG signal are obtained through the
WPD algorithm. The specific wavelet coefficients are retained and
reconstructed into the EEG signals of respective frequency bands.
Subsequently, the reconstructed EEG signal is used as the input
of the proposed deep residual convolutional network to complete
the classification of EEG signals. The experiment was run on a PC
with 32 GB of memory and 16 GB of GPU memory.

Electroencephalogram signals of different frequency bands
contain different characteristics and information. The wavelet
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packet can decompose the information of each frequency band.
It makes the characteristics of the EEG signal easier to identify in
each frequency band. In this section, the performance of training
the DRes-CNN with reconstructed sub-signals as model input is
studied experimentally, and the experiment results are shown in
Figure 4.

From Figure 4, we can find that the accuracy of the
classification test using the original EEG signal as input reaches
91.56%. The reconstructed EEG data set of S0

4 (0, 7.8125 Hz)
reached an average test accuracy of 89.56%. The reconstructed
EEG data set of S1

4 (7.8125, 15.625 Hz) reached the best
average test accuracy of 98.76%. The reconstructed EEG data
of S2

4 (15.625, 23.4375 Hz) set reached an average test accuracy
of 93.54%. The reconstructed EEG data set of S3

4 (23.4375,
31.25 Hz) reached an average test accuracy of 95.95%. From the
experimental comparison demonstrated above, we can conclude
that the proposed DRes-CNN model shows the best classification
performance when the reconstructed EEG dataset of S1

4 (7.8125,
15.625 Hz) is used as model input.

DISCUSSION

In this article, we proposed an EEG classification method
using WPD and the proposed deep residual convolutional
network. The goal of this method is to achieve high-precision
intelligent classification of motor-imaging EEG signals. The
original EEG signal is shared by the BCI Competition database.
Firstly, the EEG waveform is divided into shorter sub-signals.
Then, the characteristics of the EEG signal are obtained
through the WPD algorithm. Some selected wavelet coefficients
are retained and reconstructed into EEG signals of their
respective frequency bands. Subsequently, the reconstructed EEG
signal is used as the input of the proposed deep residual
convolutional network. Finally, the motor imagery EEG signals
are intelligently classified by the DRes-CNN classifier. We
compared the classification performance of reconstructed signals
in different frequency bands as input to the model. Through

comparative experiments, we found that the proposed DRes-
CNN model shows the best classification accuracy of 98.76%
when the reconstructed EEG data set in the frequency band of
(7.8125, 15.625 Hz) is used as the model input. The proposed
method can be further applied to the BCI system of motor
imagination control.
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