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Processing myoelectrical activity in the forearm has for long been considered a
promising framework to allow transradial amputees to control motorized prostheses.
In spite of expectations, contemporary muscle–computer interfaces built for this
purpose typically fail to satisfy one or more important desiderata, such as accuracy,
robustness, and/or naturalness of control, in part due to difficulties in acquiring high-
quality signals continuously outside laboratory conditions. In light of such problems,
surgically implanted electrodes have been made a viable option that allows for long-
term acquisition of intramuscular electromyography (iEMG) measurements of spatially
precise origin. As it stands, the question of how information embedded in such signals
is best extracted and combined across multiple channels remains open. This study
presents and evaluates an approach to this end that uses deep neural networks
based on the Long Short-Term Memory (LSTMs) architecture to regress forces exerted
by multiple degrees of freedom (DoFs) from multichannel iEMG. Three deep learning
models, representing three distinct regression strategies, were evaluated: (I) One-to-
One, wherein each DoF is separately estimated by an LSTM model processing a
single iEMG channel, (II) All-to-One, wherein each DoF is separately estimated by an
LSTM model processing all iEMG channels, and (III) All-to-All, wherein a single LSTM
model with access to all iEMG channels estimates all DoFs simultaneously. All models
operate on raw iEMG, with no preliminary feature extraction required. When evaluated
on a dataset comprising six iEMG channels with concurrent force measurements
acquired from 14 subjects, all LSTM strategies were found to significantly outperform
a baseline feature-based linear control regression method. This finding indicates that
recurrent neural networks can learn to transform raw forearm iEMG signals directly into
representations that correlate with forces exerted at the level of the hand to a greater
degree than simple features do. Furthermore, the All-to-All and All-to-One strategies
were found to exhibit better performance than the One-to-One strategy. This finding
suggests that, in spite of the spatially local nature of signals, iEMG from muscles
not directly actuating the relevant DoF can provide contextual information that aid in
decoding motor intent.

Keywords: iEMG, force, deep learning, LSTM, recurrent neural networks, regression, proportional control,
simultaneous control
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INTRODUCTION

Voluntary movements of fingers are controlled by intrinsic
muscles located in the hand and extrinsic muscles, that also
control wrist movement, located in the forearm (Blana et al.,
2017). After a wrist disarticulation or transradial amputation,
whereas the hand itself is lost, the extrinsic muscles, although
shortened, will largely remain in place and innervated. Typically,
such remnant muscles can still be contracted voluntarily by the
amputee and thereby produce detectable myoelectric activity
that can be measured with electromyography (EMG). For many
decades now (Wirta et al., 1978), processing EMG signals
originating from remnant muscles has been considered a leading
candidate in the ongoing pursuit of tools that allow amputees to
better control prosthetic hands.

The standard form of myoelectric control interface in
commercially available upper limb prostheses is known as direct
control (Paciga et al., 1980). In this framework, pairs of surface
electrodes measure the amplitudes of EMG from antagonistic
muscle pairs located superficially in the residual limb; the
difference between each pair of channels can subsequently be
used to control a single degree of freedom (DoF) of an active
prosthesis. Although simple and robust, direct control exhibits
some crucial disadvantages compared to the functionality
afforded effortlessly by the healthy human hand: First, control
is not intuitive, as the activation pattern required to perform
a movement do not correspond to the physiologically natural
pattern. Second, the limited number of electrode pairs that
can be accommodated by the approach means that only a
handful of DoFs can be controlled simultaneously, hampering
dexterity. This is in sharp contrast to the impressive mechanical
abilities of contemporary high-end active hand prostheses—
such devices could, if provided with sufficiently precise control
commands, articulate a large number of DoFs simultaneously
and independently (Saikia et al., 2016). This shortcoming of
control has been conjectured to be one of the main drivers of
the high abandonment rate of myoelectric upper limb prostheses
(Biddiss and Chau, 2007).

A somewhat more recent development is myoelectric control
based on pattern recognition (Hudgins et al., 1993; Scheme and
Englehart, 2011; Zecca et al., 2017). In this control framework,
the movement intent of the user is inferred by a machine learning
model that operates on continuously segmented multichannel
surface EMG (sEMG) signals. To learn an appropriate mapping
via supervised learning, training data must be provided to
the model in the form of example sEMG time windows and
corresponding measures of movement intent (e.g., kinematic
regressands or categorical target motion classes). Aside from
this requirement of initial calibration data, pattern recognition
control exhibits many promising advantages compared to the
direct control paradigm: the subjective sensation of control can
be made completely intuitive, and a relatively large set of DoFs
(dependent on the size of the electrode array) can in theory
be controlled simultaneously (Scheme and Englehart, 2011).
However, due to problems of robustness and stability over time
of algorithms, clinical adoption remains uncommon (Jiang et al.,
2012). Furthermore, being predicated on sEMG puts practical

limits on the kind of information that can be made available to
machine learning models of this kind. Signals originating from
deeply situated muscles are attenuated to a significant degree,
and even superficial muscles can generate levels of crosstalk
that hamper the task of separately decoding multiple DoFs
(Lowery et al., 2002). Thus, in addition to improving algorithms,
a promising avenue for improving control interfaces is to provide
algorithms with more informative raw input signals.

By invasively inserting needle- or fine-wire electrodes directly
into muscles, EMG signals that have very precise spatial origin
can be acquired. Intramuscular EMG (iEMG) signals of this
kind exhibit negligible crosstalk and a high degree of correlation
with concurrent kinematics (Lowery et al., 2006; Kamavuako
et al., 2009), but would most likely be too delicate to use as
the basis of control for a wearable system. Surgically implanted
electrodes (Brånemark et al., 2001; Hobby et al., 2001; Kuiken
et al., 2009) have been proposed as a way to circumvent this
problem and are quickly becoming a realistic alternative fit for
widespread adoption. With these approaches, individual muscles
can be recorded for extensive periods of time, even chronically,
thereby potentially providing a long-lived control interface
between the user and the prostheses. This kind of setup entails a
further benefit of better resisting electrode shift—a phenomenon
known to severely impair the performance of pattern recognition
control based on sEMG over time due to distributional shifts
(Kyranou et al., 2018).

Only a handful of previous studies (Hargrove et al., 2007;
Cipriani et al., 2014; Smith et al., 2014, 2016) have experimentally
investigated the use of iEMG as the input to prostheses
control interfaces, likely in part due to the inherent difficulties
in acquiring iEMG signals invasively. Due to the already
highly informative content of iEMG signals w.r.t. concurrent
kinematics, such studies have justifiably either opted for the use
of dual-site, amplitude-proportional linear control (e.g., Smith
et al., 2014), or relatively simple pattern recognition algorithms
operating on extracted signal features (e.g., Hargrove et al.,
2007). Even so, we hypothesize that more sophisticated signal
processing could increase the correlation between intramuscular
signals and kinematics further, and, in accordance, a more
elaborate approach is examined in the current study. Inspired
by the success of deep learning for decoding motor intent from
sEMG (for reviews of the field, see (Phinyomark and Scheme,
2018; Rim et al., 2020; Buongiorno et al., 2021; Xiong et al.,
2021), we use models based on the Long Short-Term Memory
(LSTM) architecture (Hochreiter and Schmidhuber, 1997) to
regress forces exerted by multiple DoFs at the level of the hand
and wrist from multichannel iEMG acquired from extrinsic
muscles. Notably, the proposed algorithms evaluated here differ
from existing attempts of iEMG force regression in that no
feature extraction step is undertaken; rather, the concurrently
measured force values are inferred directly, in an end-to-end
fashion, from time windows of minimally preprocessed iEMG
voltages. Furthermore, to quantify the impact that combining
information originating from different muscles has on force
regression performance, we let some models operate on a single
iEMG channel and some models operate on all channels in
order to automatically learn ways to aggregate spatially encoded
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information. Whereas the algorithms of the current study were
trained and tested offline on a publicly available database, steps
were taken to ensure that all parts of the processing pipeline
can be executed in a functionally equivalent manner in a real-
time scenario.

MATERIALS AND METHODS

Data Acquisition
The database of fine-wire iEMG recordings and concurrent force
measurements used in this study was collected for a previous
study and has been made publicly available (Malesevic et al.,
2020). For the sake of completeness, all properties of the database
relevant for the current study are restated in brief here. Data
were collected from 14 male, neurologically intact subjects aged
between 25 and 57 years (mean age 39 years). All subjects gave
informed and written consent prior to participation, and the
study was approved by the Regional Ethics Review Board in
Lund, Sweden (Dnr 2017-297). Each recording session lasted
approximately 30 min and used one out of two possible electrode
placement protocols: (I) The Short Residual Limb protocol,
targeting the following six muscles of the forearm: flexor carpi
radialis (FCR), extensor carpi radialis (ECR), pronator teres
(PT), flexor digitorum profundus (FDP), extensor digitorum
communis (EDC), and abductor pollicis longus (APL) and (II)
The Long Residual Limb protocol, targeting the following six
muscles of the forearm: flexor digitorum profundus (FDP),
extensor digitorum communis (EDC), abductor pollicis longus
(APL), flexor pollicis longus (FPL), extensor pollicis longus
(EPL), and extensor indicis proprius (EIP).

Intramuscular EMG (iEMG) signals were sampled at a rate of
Fs = 10240 Hz. A custom-built measurement device (Malešević
et al., 2019) was used to hold the hand stationary for the duration
of acquisition (thus ensuring isometric contractions, as would
be the case with forearm amputees) and record forces exerted
at the level of the hand and wrist. In total, nine force gauges,
corresponding to the major degrees of freedom (DoFs) of the
hand and wrist, were used: one per finger (D2–D5), two for
the thumb, and three for the wrist. Consequently, each session
always comprised six channels of iEMG and nine channels of
force (synchronized sample-wise). Two of the subjects carried out
both protocols, resulting in a dataset comprising 16 recording
sessions, out of which eight were recorded with the Short
Residual Limb protocol and eight were recorded with the Long
Residual Limb protocol. Subjects were assigned to placement
protocols randomly.

In total, each recording session comprised 22 unique
tasks, each corresponding to a movement incorporating either
activation of a single or activation of a combination of some or all
of the six muscles being assessed in the study. The current study
makes use of only the first eight tasks of the database (shown
in Table 1), representing movements that incorporate a single
DoF at a time. Furthermore, to not bias training and test data
toward higher force levels and to consequently better simulate the
intended use case of prosthesis control, only signals originating
from the sine tracking substage were used. During this substage,

TABLE 1 | The subset of movement tasks utilized in the current study.

Code in database Description

1.X Index finger: flexion-extension

2.X Middle finger: flexion-extension

3.X Ring finger: flexion-extension

4.X Little finger: flexion-extension

5.X Thumb: flexion-extension

6.X Thumb: adduction-abduction

7.X Wrist: flexion-extension

8.X Wrist: supination-pronation

the subject was instructed to contract relevant muscles to track
a low-frequency (0.1 Hz) sinusoid with amplitude equal to 20%
of the force measured during maximum voluntary contraction
plotted in real time on a screen. Each of the eight relevant sine
tracking substages comprises 10 periods of such a sinusoid.

Preprocessing
As all algorithms proposed in the current study are intended
for online execution, signal preprocessing steps were conducted
in a manner compatible with this requirement. To initially
reduce the impact of voltage spikes and other outlier samples,
all iEMG channels were individually clipped at the 99 and 1
percentile levels and subsequently filtered using a second-order
digital Butterworth low-pass filter with a cutoff frequency of
500 Hz. Similarly, all force channels were individually low-pass
filtered using a second-order Butterworth filter with a cutoff
frequency of 10 Hz. Following these introductory preprocessing
steps, all signals were downsampled by a factor of 10 (i.e., to
Fs = 1024 Hz) in order to reduce computational complexity and
facilitate faster convergence of learning algorithms.

Based on iEMG-movement-force matchings provided
together with the database, filtered iEMG- and force signals were
restructured in the following way: first, each of the nine force
channels was separated, on the basis of the sign of the Tracking
Cue variable provided in the database, into two new channels—
one new channel representing positive phase (flexion, adduction,
and pronation) and one new channel representing negative phase
(extension, abduction, and supination). All 18 resulting phase-
specific force channels were subsequently rectified, ensuring that
both phases had a positive and similar envelope. Second, each
iEMG channel was paired with a single such force channel on
the basis of the matchings provided with the database. All force
channels that had not been paired with an iEMG channel, i.e.,
force channels originating from DoFs not actuated by any of the
electrode-penetrated muscles, were at this stage discarded. Third,
a list of elicited movements (i.e., tasks) that were matched with
any of the remaining iEMG-force matchings was created; signal
parts originating from elicited movements not contained in the
list were discarded and not used further in the current study. As
a result, the T time samples remaining following this selection
could be represented as two synchronous signal matrices with
matched rows: E ∈ RT × 6, containing the six iEMG channels,
and F ∈ RT × 6, containing the six matched force channels.
Subject-specific elicited movements remaining after this stage are
presented in Table 2.
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In order to represent the resulting data in a way amenable to
machine learning methodology, the iEMG signals contained in
E were segmented into individual regression instances by using a
sliding window of width 512 samples (500 ms) with increments of
64 samples (62.5 ms). Each time window was assigned a ground-
truth force vector by simply selecting the last row (i.e., time
sample) of the sliding window in F. In an online application,
this would correspond to inferring the current force from the
preceding 500 ms of iEMG, with delays between consecutive
inferences of 62.5 ms—well in line with acceptable values of
myocontrol delay (Farrell and Weir, 2007).

Intramuscular EMG (iEMG) time windows with appertaining
force vectors were lastly partitioned into a training set and a test
set on the basis of sinusoid period: signal windows originating
from the first 7 periods (out of the available 10) of each sine
tracking task were designated as training data, signal windows
originating from the 8th period were designated validation data,
and signal windows originating from the 9th and 10th period
were designated as test data. All iEMG windows were linearly
rescaled using the channel-wise mean and standard deviation
computed from the training set; training iEMG data thus had
zero mean and unit variance. All target force values were
similarly normalized to have unit variance across training set time
windows, but were, due to their rectified nature, not transformed
to have non-zero mean.

Deep Learning Models
All deep learning models of the current study were implemented
using the TensorFlow 1.12 library (Abadi et al., 2016) and
executed in Python 3.6 using a desktop computer equipped
with a Nvidia Titan V GPU. All architecture choices and
hyperparameters were empirically selected on the basis of
performance achieved on the training and validation sets;

TABLE 2 | Overview of subject-wise elicited movements selected for regression
model training and testing.

1.X 2.X 3.X 4.X 5.X 6.X 7.X 8.X

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Subject 7

Subject 8

Subject 9

Subject 10

Subject 11

Subject 12

Subject 13

Subject 14

Subject 15

Subject 16

Cells shaded green represent elicited movements that remained
following preprocessing.

performance on test set data was never allowed to impact the
design of deep learning models.

Three separate strategies for regressing forces, each with a
corresponding neural network architecture (all illustrated in
Figure 1), were implemented in the current study:

1. One-to-One. Each individual force channel is estimated
by a deep learning model processing a single matching
iEMG channel. This approach requires six models in
order to infer all output forces—one model per iEMG-
force channel pair.

2. All-to-One. Each individual force channel is estimated
by a deep learning model processing all available
iEMG channels. This approach requires six models in
order to infer all output forces—one model per force
channel to be inferred.

3. All-to-All. A single LSTM model operates on all six iEMG
channels and estimates all force channels simultaneously.
This approach only requires that a single model is trained
to infer all output forces.

As can be seen in Figure 1, the neural model architectures
associated with the three above mentioned strategies are almost
identical in structure: The input iEMG window is initially filtered
by a 1D convolutional layer consisting of 64 filter kernels of size
21 with unit stride. Zero padding was used to keep the time
dimension size of the output identical to the time dimension
size of the input. Output feature maps of size 512 = 64 are
subsequently fed into the central LSTM layer, whose output (of
size 64) at the final time step is fed into two consecutive fully
connected layers. All convolutional-, LSTM-, and fully connected
layers (except the last) are followed by leaky ReLU activation
(Maas et al., 2013), layer normalization (Zhou and Yang, 2019),
and dropout with probability 0.2. Notably, only the initial
convolutional layer and the final fully connected layer differ in
size between regression strategies; thus, the number of trainable
parameters (and thus memory footprint and computational
complexity) of the different model types (given in Table 3)
is highly similar.

Irrespective of regression strategy, all deep learning models
were fitted to the training data in an identical manner using the
AdamW algorithm (Loshchilov and Hutter, 2019) with learning
rate η = 10−4, β1 = 0.9, and β2 = 0.999 to iteratively
minimize the mean squared error loss function. During training,
a weight decay of λ = 10−9 was applied. Training proceeded
in minibatches of size 32 until the loss on the validation set had
not decreased for 25 consecutive epochs or a total of 250 epochs
had passed, whichever came first (i.e., a form of early stopping).
For all model types, training was performed independently for
each of the 16 recordings in the database. By design, for the One-
to-One and All-to-One strategies, one model was trained per
output force channel.

Baseline Method
In addition to the deep learning processing pipeline described
above, the current study included a conventional, amplitude-
proportional linear control method in order to verify that
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FIGURE 1 | Schematic illustrations of deep learning algorithms used for myoelectric force regression: (A) model architecture used for the One-to-One regression
strategy, (B) model architecture used for the All-to-One regression strategy, and (C) model architecture used for the All-to-All regression strategy.

the introduction of more computationally resource-intensive
methods was warranted. A simple linear force regression
algorithm was selected to represent the status quo for this
purpose. The mean absolute values (MAV) feature (Hudgins
et al., 1993) was computed channel-wise for each iEMG
window in the training set and in the test set. Using the
training set data, one univariate ordinary least squares (OLS)
linear regression model was fitted to each iEMG channel
to predict the concurrent force of its paired force channel.
Consequently, this method is here referred to as One-to-One
linear regression.

Evaluation
The performance of the trained models was evaluated on the
test set of iEMG time windows and corresponding ground
truth force vectors by computing two standard offline regression

metrics: the Root-Mean-Squared Error (RMSE) and the Variance
Accounted For (VAF). Each computed scalar value represents the
performance of a single regression method on a single recording
session from the database.

The RMSE metric quantifies the normalized euclidean
distance between the ground truth force values vector and the
vector of force values produced by the regression model under

TABLE 3 | Numbers of learnable parameters and inference times of models.

Model Number of parameters Wall time of
single inference

One-to-One Linear 6 × 2 6 × 1 ms

One-to-One LSTM 6 × 36801 6 × 54 ms

All-to-One LSTM 6 × 43521 6 × 58 ms

All-to-All LSTM 43653 62 ms
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consideration. The recording-wise RMSE is here symbolically
defined in Equation 1:

RMSE =
1
N

N∑
n


√

1
C
∑C

c = 1

((
ŷn,c − yn,c

)2
)

ymax

 (1)

where N is the total number of iEMG windows in the test set
(variable across recording sessions) and C = 6 is the total
number of force channels. yn,c and ŷn,c are the ground truth and
estimated value, respectively, of the cth force channel associated
with the n:th iEMG window and ymax is the maximum value
of the regressand across the test set. Due to the fact that the
RMSE metric increases as the discrepancy between the true
and predicted value increases, a lower value represents better
regression performance.

The VAF metric quantifies the proportion of variance of
the ground truth that the trained model output accounts for.
The recording-wise VAF metric is here symbolically defined in
Equation 2:

VAF =
1
C

C∑
c

(
1−

Var
(̂
yc − yc

)
Var

(
yc
) )

(2)

yc and ŷc are aligned vectors of ground truth and estimated
values, respectively, of the cth force channel. A higher VAF metric
represents better regression performance.

Statistics
Statistical computations were performed using functions
provided with the SciPy library in Python. For all statistical
analyses, differences at the α = 0.05 level were considered
significant. Initially, the non-gaussianity of all metrics and
methods was tested with Shapiro–Wilk tests—as the gaussianity
of RMSE metrics could not be rejected for any of the regression
methods, a one-way repeated measures ANOVA was employed
to detect any difference between methods. As a significant
difference in RMSE between methods was detected in this way,
post hoc analyses in the form of paired samples t-tests between
all pairings of regression methods [

(
4
2

)
= 6 comparisons

in total] were conducted. Furthermore, the arithmetic mean
was selected as the summary statistic to represent the RMSE
values achieved by each regression method over all recordings
in the database. In contrast, the VAF metric was found to
exhibit a significantly non-gaussian behavior for all regression
methods. Consequently, a Friedman test was used to establish
whether any difference between methods existed. Due to the
non-gaussianity of the VAF metric, the median was selected as
the summary statistic to represent the VAF values achieved by
each regression method over all recordings in the database. As
a significant difference in VAF between methods was detected
by the Friedman test, post hoc analyses in the form of Wilcoxon
signed-rank tests between all pairings of regression methods was
conducted. For post hoc analyses performed on both metrics,
acquired p-values were subject to Bonferroni correction for

multiple comparisons; p-values are presented in corrected form
throughout the Results section.

RESULTS

Examples of input and output signals produced by all
regression methods are shown in Figure 2. RMSE and VAF
values achieved by all models are summarized graphically in
Figures 3, 4, respectively.

For the RMSE metric, one-way repeated measures ANOVA
found a significant (p = 1.4 · 10−9) difference in performance
between regression methods. As per post hoc paired samples
t-tests, the decreases in mean between MAV-based linear
regression (mean RMSE 0.123, SD 0.020) and the One-to-One
strategy (mean RMSE 0.104, SD 0.018), the All-to-One strategy
(mean RMSE 0.081, SD 0.018), and the All-to-All strategy (mean
RMSE 0.077, SD 0.016) were 0.019 (p = 2.9 · 10−4), 0.042
(p = 1.1 · 10−5), and 0.046 (p = 1.0 · 10−6), respectively.
Thus, all LSTM-based methods exhibited significantly better
performance than the baseline method. Furthermore, both the
All-to-One strategy and the All-to-All strategy significantly
outperformed the One-to-One strategy, with differences in
mean of 0.023 (p = 1.6 · 10−6) and 0.027 (p = 2.6 · 10−8),
respectively. Lastly, a non-significant difference in mean of 0.004
(p = 2.2 · 10−1) was found between the All-to-One strategy and
the All-to-All strategy. Significant differences in RMSE between
methods as presented in this section are summarized in Table 4.

For the VAF metric, a Friedman test found a significant
(p = 1.9 · 10−6) difference in performance between regression
methods. As per post hoc paired samples Wilcoxon signed
rank tests, the increases in median between MAV-based linear
regression (median VAF 21.5%) and the One-to-One strategy
(median VAF 40.3%), the All-to-One strategy (median VAF
59.6%), and the All-to-All strategy (median VAF 60.9%) were
18.8% (p = 9.0 · 10−2), 38.0% (p = 3.8 · 10−3), and 39.4%
(p = 4.6 · 10−3), respectively. Thus, all LSTM-based methods
with the exception of the One-to-One strategy exhibited
significantly better performance than the baseline method.
Furthermore, both the All-to-One strategy and the All-to-All
strategy significantly outperformed the One-to-One strategy,
with differences in median of 19.2% (p = 5.6 · 10−3) and 20.6%
(p = 2.6 · 10−3), respectively. Lastly, a non-significant difference
in median of 1.3% (p = 1.0) was found between the All-to-One
strategy and the All-to-All strategy. Significant differences in VAF
between methods as presented in this section are summarized
in Table 5.

DISCUSSION

The main aim of this study was to investigate the use of deep
learning models based on the LSTM architecture to regress
forces pertaining to multiple kinematic DoFs from concurrently
acquired iEMG—specifically, the possibility of circumventing the
need for hand-crafted signal features by letting such models map
raw iEMG segments directly to regressand force values. From the
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FIGURE 2 | An example (from a random subject) of input iEMG presented to, and output force estimates produced by, all regression models, together with
synchronous ground truth force measurements. Segments of iEMG channels (columns) and paired force channels shown here were selected from the task of the
recording protocol in which they were maximally correlated; as such, the columns do not represent mutually concurrent time intervals in this illustration.

FIGURE 3 | Tukey box plot of Root-Mean-Squared Error (RMSE) metrics achieved by all evaluated force regression methods. Whiskers extend 1.5 interquartile
ranges below and above the first and third quartile, respectively. ***p < 0.001 and ****p < 0.0001.

obtained results, it was apparent that all proposed deep learning
regression strategies outperformed the baseline One-to-One
linear regression method in the sense of producing significantly
lower mean RMSE values across recordings. Furthermore, two
out of three deep learning methods were found to produce
significantly better VAF metrics than the baseline. Together
these findings lend credence to a view of end-to-end force
estimation via deep learning methodology in general and
via LSTMs in particular as a promising method to increase
the accuracy of real-time proportional motor intent decoding
through iEMG processing.

An additional aim was to evaluate differences in performance
between the three examined deep learning regression strategies:

estimating the force exerted by each DoF separately from a
single iEMG channel originating from the active muscle (One-
to-One), estimating each force channel separately but from all
available iEMG channels (All-to-One), or directly estimating
all force channels simultaneously from all available iEMG
channels (All-to-All). For both computed performance metrics,
it was found that the All-to-All and All-to-One strategies
significantly outperformed the One-to-One strategy, indicating
that information from muscles other than the prime mover
increased the accuracy of force estimates. Two explanations of
this finding are hypothesized here: First, aside from a single
prime mover muscle, multiple synergist muscles can be causally
implicated in the actuation of a single DoF. Relatedly, when one
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FIGURE 4 | Tukey box plot of Variance Accounted For (VAF) metrics achieved by all evaluated force regression methods. Whiskers extend 1.5 interquartile ranges
below and above the first and third quartile, respectively. **p < 0.01.

tries to selectively produce isometric force on a specific joint,
other joints are usually stabilized by co-contraction, or even
opposing contraction of the antagonist muscle. Measurements
from such ancillary muscles could thus help regression models
paint a more exhaustive picture of the biomechanical state of
the arm when estimating forces. Second, even signals from
muscles not mechanically involved in the current motion could
in theory provide contextual information (of factors such as pose,
fatigue, etc.) that correlate non-linearly with exerted force and, by
extension, gives rise to better model performance.

TABLE 4 | Paired absolute differences in mean value of the RMSE metric across
recording sessions (upper triangular part of table), and corresponding p-values
(lower triangular part of table), separating regression methods.

One-to-One
Linear

One-to-One
LSTM

All-to-One
LSTM

All-to-All
LSTM

One-to-One Linear 0.019 0.042 0.046

One-to-One LSTM p = 2.9 · 10−4 0.023 0.027

All-to-One LSTM p = 1.1 · 10−5 p = 1.6 · 10−6 0.004

All-to-All LSTM p = 1.0 · 10−6 p = 2.6 · 10−8 p = 2.2 · 10−1

Pairings exhibiting a significant difference at the α = 0.05 level are shaded red.

TABLE 5 | Paired absolute differences in median value of the VAF metric across
recording sessions (upper triangular part of table), and corresponding p-values
(lower triangular part of table), separating regression methods.

One-to-One
Linear

One-to-One
LSTM

All-to-One
LSTM

All-to-All
LSTM

One-to-One Linear 18.8% 38.0% 39.4%

One-to-One LSTM p = 9.1 · 10−2 19.2% 20.6%

All-to-One LSTM p = 3.8 · 10−3 p = 5.6 · 10−3 1.3%

All-to-All LSTM p = 4.7 · 10−3 p = 2.6 · 10−3 p = 1.0

Pairings exhibiting a significant difference at the α = 0.05 level are shaded red.

From the perspective of conserving computational resources,
it is promising that the All-to-All strategy performed at a level
either higher than or indistinguishable from both of the other
deep learning regression strategies; as only a single model is
required to regress the forces exerted by all DoFs, both the
computational complexity and memory footprint of this strategy
are lower compared to the other approaches. This is of particular
interest for prosthesis control—algorithms that would need
to be implemented in an embedded processing environment,
where computational resources are limited. Unfortunately, the
resources required by the All-to-All LSTM model are still
markedly higher than those of status quo feature-based linear
control methods, even when considering the fact that no feature
extraction step is necessary in the processing pipeline. The total
number of parameters required to instantiate an All-to-All LSTM
model was in this study 43,653 (see Table 3); assuming single-
precision floating-point numbers are used, these require 175 kB
to store in memory. Together with all intermittent activation
maps (i.e., output volumes of layers) of the model requiring
538 kB to store, this represents a total memory footprint of
approximately 713 kB—well within limits of existing embedded
processors. As such, it is unlikely that memory footprint would
be a limiting factor in realistic scenarios; the main bottleneck in
this regard is instead likely the inference delay of the model. In
principle, the highest acceptable inference delay is equal to the
time between consecutive iEMG windows—with this delay, force
values of windows are inferred at the same rate as that which
they are sampled at. Whereas the inference delay of the All-to-
All strategy (Table 3) narrowly falls below the window step size
of 62.5 ms, values were measured from a model running on a
GPU-equipped desktop computer. In an embedded application,
the window duration could be decreased, and/or the window
separation time could be increased, to reduce the real-time
computational burden. However, for control delay not to become
noticeable by the prosthesis user, the delay of the control system
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should fall below 300 ms (Englehart and Hudgins, 2003). With
mechanical delays inherent to the prosthesis itself, this leaves
approximately 125 ms available for algorithm-induced delays
(Farrell and Weir, 2007). To circumvent these issues, a possibility
is to let LSTM models operate continuously on iEMG samples
as they are acquired instead of on a window-wise basis, as has
been considered in previous studies using sEMG (Olsson et al.,
2019). Nevertheless, it is apparent that future work that focuses
on finding more computationally efficient LSTM regression
architectures would be of value. As all algorithms considered in
the current study were both trained and evaluated on a publicly
available dataset, comparisons with alternative methods can be
carried out transparently and straightforwardly.

Aside from the questions of computational complexity
discussed above, a salient limitation of the approach taken in
the current study is the necessity of regressand force values.
Naturally, for amputee prosthesis users, acquisition of target force
values prior to model training would not be possible. For the
supervised learning approach to model training taken in the
current study to be made applicable, some appropriate proxy
regressand would thus have to substitute for forces measured at
the level of the hand and wrist. A well-tried candidate solution
is the use of mirrored training (Nielsen et al., 2011), whereby
force measurements would be taken from the intact, contralateral
hand while the amputee performs motions bilaterally. Another
possibility is to ask the user to slowly increase and decrease
the intensity of muscle contraction in accordance with some
visual cue and subsequently use said cue as ground truth to
be inferred from EMG, as has been investigated previously
(Ameri et al., 2019).

The superior performance of deep learning methods in the
current study is in line with findings from the general machine
learning literature that indicate that signal representations
automatically learned from data are oftentimes more informative
than features designed manually toward the same end (Bengio
et al., 2013). An intriguing research direction of specific interest
for developing embedded, online motor decoding systems is that
of reverse engineering the content of learned EMG features.
If carried out successfully, this project could allow classical
methods to enjoy some of the higher performance exhibited
by deep learning methods without as high computational
costs. Furthermore, for the purpose of leveraging the finding

that information from multiple muscles improve performance,
comparisons with sensor fusion techniques that allow for non-
linear feature interactions (e.g., kernel regression; Bishop, 2006),
but are less computationally demanding than recurrent neural
networks, could be the focus of future work.
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