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In this work, we shed light on the issue of estimating Intravoxel Incoherent Motion (IVIM)

for diffusion and perfusion estimation by characterizing the objective function using

simplicial homology tools. We provide a robust solution via topological optimization of

this model so that the estimates are more reliable and accurate. Estimating the tissue

microstructure from diffusion MRI is in itself an ill-posed and a non-linear inverse problem.

Using variable projection functional (VarPro) to fit the standard bi-exponential IVIM model

we perform the optimization using simplicial homology based global optimization to

better understand the topology of objective function surface. We theoretically show

how the proposed methodology can recover the model parameters more accurately

and consistently by casting it in a reduced subspace given by VarPro. Additionally

we demonstrate that the IVIM model parameters cannot be accurately reconstructed

using conventional numerical optimization methods due to the presence of infinite

solutions in subspaces. The proposed method helps uncover multiple global minima by

analyzing the local geometry of the model enabling the generation of reliable estimates

of model parameters.

Keywords: simplicial homology, diffusion MRI, global optimization, separable non-linear least squares, variable

projection, diffusion microstructure, intravoxel incoherent motion

1. INTRODUCTION

Quantifying tissue microstructure with model-based analysis of diffusion MRI relies on an ill-
posed inverse problem of fitting non-linear biophysical models (Tarantola, 1998; Jelescu et al.,
2016; Novikov et al., 2018b). From this realm of microstructure models, we focus on estimating
the parameters of Intravoxel Incoherent Motion (IVIM) that aims at disentangling diffusion signal
contributions from two different stochastic processes (diffusion and perfusion) (Novikov et al.,
2014, 2018a; Nedjati-Gilani and Alexander, 2015). The IVIM model uses data collected with
the Pulsed Gradient Spin Echo Sequence (PGSE), regularly used to measure diffusion-weighted
MRI contrasts, to derive information about blood micro-circulation. In IVIM, information about
perfusion of blood is estimated as a pseudo-diffusion process from a PGSE experiment, in which
images using low b-values are acquired to sensitize the measurement both to diffusion, as well as
to perfusion (Le Bihan et al., 1988, 2019; Le Bihan, 1990, 2019). While the contribution to the
measured diffusivity from the vascular compartment is an order of magnitude higher than that
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of diffusion, assuming that they follow the same laws of
Brownian motion/ diffusion, they can be estimated from the
same microstructure model. Most of the models that have been
proposed to quantify such biophysical parameters from diffusion
MRI follow a common mixture model formulation as follows:

g(s, f ) =

n
∑

i=1

fiϕ (si) (1)

Here, the function g aims to give an approximate description
of the underlying signal, aiming to find representations for the
processes of diffusion and perfusion. This g is a convoluted
function that models f as a linear combination of non-linear
functions ϕ. For the IVIM model, f represents the volume
fractions associated with perfusion and diffusion and ϕ holds
parameters pertaining to diffusion and perfusion (represented
by si) in Equation (1). Since IVIM works on representing
two different processes, we set n = 2 for the model which
we intend to estimate the parameters of in each voxel of the
data. The key underlying idea for using such a model lies
in decomposing the signal to a basis (Novikov et al., 2018b)
where each of the components of the IVIM model represents
a non-exchanging Gaussian compartment. Thus, this gives us
a low-rank approximation of the acquired signal with each
parameter in the model (f , s1, and s2) working as biomarkers for
revealing underlying tissue properties and molecular diffusion
information. Such a model is difficult to fit, for the following
reasons: (a) The exponential components in the signal model are
non-orthogonal, which makes it hard to project it along the real-
axis by taking an integral and (b) The inherent resolution limit
in modeling the exponential decay of multi-exponential models
(Istratov and Vyvenko, 1999). The estimation of these model
parameters also relies heavily on the range and number of b-
values used to acquire diffusion MRI data (Lemke et al., 2011;
Jalnefjord et al., 2019). It has been shown that if the data are
not fit correctly, it can lead to confounding effects such as the
pseudo-IVIM effect (Le Bihan, 2019).

While different methods have been proposed to fit this model,
the most commonly used method is the segmented fitting
approach (Jalnefjord et al., 2018). In this method, initial estimates
of the model parameters are fitted by two linear least squares for
both the diffusion and perfusion components separately by fixing
an empirical threshold at a specific b-value (Le Bihan et al., 2019).
Then using these initial estimates, a form of non-linear regression
via Non-linear Least Squares (NLS) solver (typically based on
Gauss-Newton and Trust Region based methods) is used. This
type of fitting approach is susceptible to different types of issues:

(1) Using estimates from a linear fitting process as done
in segmented least-squares fitting, can end up in non-optimal
solutions due to factors such as noise and the number of b-values
pertaining to the diffusion fraction. This issue is also magnified
since this type of fitting is sometimes under-determined
(depending on the b-value distribution from the acquisition).
(2) The distributions of b-values for IVIM acquisition vary
for different organs, which makes it challenging to obtain a
heuristic choice for the threshold b-value to segregate perfusion
from diffusion.

Although prone to the above difficulties in fitting, so far,
the segmented fitting has shown to give better results in
comparison to Bayesian approaches if handled with care (While,
2017; Jalnefjord et al., 2018). These approaches, in case of
estimation degeneracies, discard voxels that violate bounds
to and interpolate signal values from the neighboring voxels
(Jalnefjord et al., 2018). While different methods have been
proposed for fitting IVIM, there has never been a consensus
on a standard method which can be used in a generic setting
(Le Bihan, 2019). Thus, in this work, we aim to alleviate
these issues involved in setting up NLS solvers by setting up
a separable inverse problem using variable projection (VarPro).
We provide a new topological algorithm for solving this VarPro
formulation using simplicial homology Endres et al. (2018) to
capture all local minima of the objective function. We do so
in the proposed method by constructing a simplicial complex
that is homeomorphic to the hypersurface of the objective
function, both, in the projected subspace of the VarPro (reduced
functional) (Golub and Pereyra, 2003) and the full functional.
We discuss the theoretical underpinnings of this algorithm in
the section 3. We propose a new method, Topological Projection
(TopoPro), to not only make the problem better-conditioned,
but also establish a connection between functional analysis and
homology groups which makes it well-suited to solve a large class
of such problems.

The key issues solved by TopoPro in IVIM estimation are:

1. Spurious solutions obtained due to the presence of multiple
global minima in the flat topology of the objective function.

2. Explicit declaration of b-value threshold that segregates
perfusion from diffusion.

3. Sensitivity toward bounds set for parameters f , D, and D∗ for
the optimization procedure.

2. APPROACH AND RELATED WORK

2.1. The Inverse Problem of IVIM
The field of quantifying tissue microstructure is advancing
rapidly in terms of developing biophysical models with
capabilities to probe a sub-voxel resolution from the measured
voxel-averaged signal. These models aim to characterize an
ensemble of random walkers at different scales leading to a very
challenging inverse problem in terms of parameter estimation.
The IVIMmodel, in this context, aims at doing so by segregating
spatial variations caused due to perfusion in the capillary
vasculature from the microscopic diffusion of water molecules.
Thus, from the measured macroscopic diffusion MR signal, our
goal is to estimate successively averaged out dynamics at different
spatio-temporal scales and diffusion lengths represented as sums
of exponentials for individual signal contributions.

IVIM acquisitions are typically fast scans with b-values in
the range of 0–1,000 s/mm2, leading to noisy measurements
and fewer measurements to estimate the model (Le Bihan et al.,
2019). To understand some intrinsic issues with this type of
modeling and estimation, we present the overview in Figure 3.
For each voxel in the brain, we measure noisy signal that
may vary according to the b-values at which the signal is
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sampled. Furthermore, it is important to note that the barrier
(or threshold) that distinguishes perfusion from diffusion is
unknown as it varies according to the organ scanned. Most
likely there is no single barrier but a range of values where both
diffusion and perfusion are active. Thus, the signal corrupted
by noise may push the measurement out of the range of the
forward operator ϕ(x), leading to a potential discontinuity in
the inverse mapping (ϕ−1(x)) from the data space to the model
space. Therefore, this violates Hadamard’s third condition of
well-posed problems (Ivanov, 1988) as the optimizer can lead
to drastically different solutions based on the starting point for
the optimization process. Like any other inverse problem, the
goal of model fitting is to find the inverse mapping ϕ−1(x) as it
reveals crucial information about the data. In the case of IVIM,
the estimated parameters per-voxel, are used as biomarkers for
multiple neurological disorders.

2.2. Combinatorial Homology Theory
The SHGO algorithm is especially well-suited to overcoming
challenges involved in IVIM estimation due to two key theorems
that allow for a complete understanding of the parameter
hyperspace of the fitting problem. The first theorem deals
with extracting locally convex sub-domains from the functions.
This allows for the determination of well-defined domains
wherein optimal parameters are mathematically guaranteed to
be found. The second key theorem deals with invariance,
which provides certain guarantees with respect to the total
number of optimal parameter sets available in each sub-problem.
In order to adequately explain the theoretical foundations of
these two theorems a bare minimum nomenclature of several
concepts from algebraic and combinatorial topology (Henle,
1994; Hatcher, 2002) is required.

2.2.1. Modulo 2 Homology
A k-simplex is a set of n + 1 vertices in a convex polyhedron of
dimension n. A visual demonstration of the first 3-dimensional
is provided in Figure 1A. A simplicial complex H is a set H0 of
vertices together with sets Hn of n-simplices, which are (n + 1)-
element subsets ofH0. The only requirement is that each (k+ 1)-
elements subset of the vertices of an n-simplex in H

n is a k-
simplex, in H

k. The subsets of Hk are referred to as k-chains,
the algebra of k-chains has historical importance in computing
the homology group of a surface. A k-chain is a union of
simplices. For example a 0-chain is a set of vertices, a 1-chain
is a set of edges and a 2-chain is a set of triangles (Figure 1B
provides a visual demonstration) and C(Hk) denotes a k−chain
of k−simplices. Let a vertex in H

0 be denoted by vi, then, if vi
and vj are two endpoints of a directed 1-simplex inH

1 from vi to
vj then the symbol vivj represents the 1-simplex. This 1-simplex is
bounded by the 0−chain ∂

(

vivj
)

= vj−vi. A 2-simplex consisting
of three vertices vi, vj and vk directed as vivjvk has the boundary
of directed edges ∂

(

vivjvj
)

= vivj + vjvk + vjvi. The homology
theory developed up to this point describes what is known as a
mod 2 homology. A directed simplicial complex, wherein every
volume is signed, as demonstrated in Figure 1B allows us to build
an integral homology. For example consider boundary operator
acting on a directed simplex shown in Figure 1B the edges of

the directed 2-simplex: ∂ (v1v2v3) = v1v3 − v3v2 − v2v1. Note
that in the mod 2 homology the 1-chain v1v3 + v3v2 + v2v1
forms a cycle and that ∂ (v1v3 + v3v2 + v2v1) = (v3 − v1) +

(v2 − v3) + (v1 − v2) = ∅. In the directed integral homology we
have ∂ (v1v3 − v3v2 − v2v1) = (v3 − v1)− (v2 − v3)− (v1 − v2)
which contains additional information about the path. This is just
one example of the trade off between computational complexity
and the information retained when using a mod 2 homology vs.
a directed integral homology. For example mod 2 homologies fail
to distinguish non-orientable surfaces from orientable (ex. klein
bottle is non-orientable while a torus is orientable, but they have
the same algebraic groups in a mod 2 homology). The star of a
vertex vi, written st (vi), is the set of points Q such that every
simplex containing Q contains vi (Henle, 1994; Hatcher, 2002).
This concept has a very simple visual demonstration shown in
Figure 1C.

2.2.2. Key Theorems for Simplicial Homology

Optimization
There are two key theorems developed in Endres et al. (2018),
repeated in this section for completion, that are essential
for finding all minima in the IVIM problem described in
subsection 3.2:

Theorem 1. Stationary point in a minimizer star domain

Given a minimizer vi ∈ M ⊆ H
0 on the surface of a continuous

objective function f with a compact bounded domain in R
n and

range R, there exists at least one stationary point of f within the
domain defined by st (vi).

It is important to note that the domain st (vi) is explicitly
computational. The k−chain C(Hk), k = n + 1 of simplices in
st (vi) forms a boundary cycle ∂(C(Hn+1)) with ∂(∂(C(Hn+1)))
= ∅. The faces of ∂(Hn+1) are the bounds of the domain defined
by st (vi) which can be used as explicit in a local optimization
algorithm. This explicit computation allows for the fast detection
and calculation of the different sets of parameters that are
biophysically plausible through sampling of Equation (8). The
second key theorem deals with the invariance of problems like
Equation (8) (see section 3.2):

Theorem 2. Invariance of an adequately sampled simplicial

complex H For a given Lipschitz continuous objective function
f that is adequately sampled by a sampling set of size N. If the
cardinality of the minimizer pool extracted from the directed
simplex H is |M|. Then any further increase of the sampling set
N will not increase |M|.

In essence, this provides some guarantee that all the plausible
solutions of Equation (8) (see section 3.2) are eventually found
by SHGO. In addition, it provides the ability to track the number
of plausible solutions in higher-dimensional problems where the
objective function surface is challenging to visualize.
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FIGURE 1 | (A) 0-simplex (point), 1-simplex (edge), 2-simplex (triangle), and a 3-simplex (tetrahedron). (B) 0-chain of vertices, a 1-chain of edges and a 2-chain of

simplices. (C) Directed 2-simplex in the directed simplicial complex (left), star domain defined by st (vi) (center), and it’s boundary defined as

∂ (st (vi)) = v2v3 + v3v5 − v5v4 − v4v2 (right).

3. METHODS

3.1. IVIM as a Separable Non-linear Inverse
Problem
IVIM, as a biophysical model, aims to capture voxel-averaged
bi-modal information through the same PGSE diffusion MRI
acquisition. From the signal measurement, we are trying
to decompose two processes by approximating them as
sums of exponential functions. The IVIM model and its
variants (Le Bihan, 2019; Le Bihan et al., 2019), since its

introduction, has been represented as a linear combination of
two exponential functions. Thus, implicitly we perform a low-
rank approximation where each of the diffusion and perfusion
compartments of the IVIM model is estimated with separate
exponential representation.

This model also relies on the assumption that the perfusion
as a process mimics molecular diffusion due to the randomness
of the blood vessel network geometry. However, since both work
at different scales, we can gain important information from
the exponential decay rates of both processes and use them as
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biomarkers. The standard IVIM model can be expressed in the
following bi-exponential form:

S/S0 = fe−bD∗

+ (1− f )e−bD (2)

Here, e−bD∗
is a mono-exponential decay used to represent

the perfusion (often mentioned as pseudo-diffusion) process
and e−bD to represent the diffusion component of the signal.
Thus, the IVIM can be formulated as a basis set with good
approximation properties on compact domains of the measured
signal. While different improvements to the model have been
suggested (Le Bihan, 2019), we adhere to the standard bi-
exponential representation of the model as our goal is to better
condition the fitting process and improve estimation accuracy.
Therefore, for the IVIM model, we aim to fit three unknowns:
f , D and D∗. Even if the system of such a model is degenerate,
it has often shown to give high bias and poor precision with
different methods in the past (Jelescu et al., 2016). We delineate
how the proposed method tackles the problem from a topological
standpoint and gives a way of resolving these issues with a
method that works on smaller separated subspaces. This strategy
enables a way of obtaining and evaluating different local minima
to improve estimation performance. We can reformulate the
non-linear least squares problem mentioned in Equation (1) in
the following manner:

min
x

‖y−g(s, f )‖2, x =

(

s
f

)

}p
}q

, p+ q = n (3)

Where g represents the non-linear function and s, f represent the
parameters of the non-linear function that we want to estimate.
Here, f corresponds to the volume fraction associated with the
perfusion component and s = e−bD, e−bD∗

can be seen as a set
of non-linear parameters. Therefore, for the problem at hand, the
solution vector that we intend to find has n = 3 (p = 2 and q =
1). Since we know that

∑

f = 1, i.e., linear combination of the
parameter f and want to minimize the l2 norm, we can rewrite
the non-linear function g(s, f ) as

r(s, f ) = ‖y− ϕ(s)f ‖22 (4)

The columns of the ϕ(s) matrix represent a set of non-linear
functions e−bD and e−bD∗

, where ϕ(s) ∈ R
m×p andm is the length

of the observed variable y representing the measured signal.
Assuming that we knew s in the Equation (4), we could find the
linear parameters by simply taking the Moore-Penrose inverse
and solve a simple least squares problem as follows:

f = ϕ†y (5)

By doing so, we take the orthogonal projections of the observed
measurement matrix y onto the range of the variable f . Finally,
using Equations (1), (4), (5), we can formulate the objective
function as:

min
s

||y−g(s, f )|| = min
s

‖y− (ϕ(s)ϕ(s)†y)‖2 (6)

Thus, we reduce the subspace of the original non-linear least-
squares problem by variable elimination.

The proposed algorithm, TopoPro, thus can be seen as a
two-level optimization problem shown in Figure 2. We solve for
Equation (6) the Variable Projection (VarPro) functional first and
then use it to find the values of f in Equation (5). Since the VarPro
functional is in a reduced subspace, fewer iterations of the non-
linear solver (simplicial homology optimizer) used to minimize
this are required. Apart from faster convergence, it also yields
in better performance due to better conditioning of this joint
optimization problem in the projected range of f (Golub and
Saunders, 1969; Golub and Pereyra, 2003; Pereyra and Scherer,
2019). This causes the minima of the reduced VarPro functional
to become better defined than those of the full functional in
Equation (1). One key advantage of such a formulation is that
it will always converge faster than the full formulation and
converges even when the full problem diverges. After estimates
of s and f are obtained in Level-1, they are used to initialize level-
2 of TopoPro where we refine the solution to get the final output
estimates from the simplicial homology optimizer.

Using VarPro for the bi-exponential model of IVIM improves
the conditioning of the problem for the estimating the parameters
f and D∗. In the absence of the reduced functional, since
the estimation of the linear parameters is dependent on the
estimation of non-linear parameters, with iterative gradient-
based methods such as NLS, the problem becomes increasingly
ill-conditioned (assuming that the parameters converge to the
optima). This causes estimation degeneracies as reported in
Jelescu et al. (2016).

3.2. Simplicial Homology for IVIM
Optimization
The simplicial homology global optimization (SHGO) builds on
principles from algebraic topology in order to provide insights
into both the topology and rigid geometry of objective function
hypersurfaces (Endres et al., 2018). In the context of IVIM, these
objectives are the non-linear functions ϕ in Equation (1):

ϕ :R
n → R (7)

where n = 3 for the IVIM model. For global optimization the
problem of finding the optimal or “best” parameter fitting can
be stated as:

minimize ϕ , by varying si ∈ R
n (8)

where si is the parameter vector components as defined in
Equation (1). Due to the non-linear nature of ϕ, the solution of
Equation (8) may contain one or more global minima as well as
many local minima.Many difficulties in solving Equation (8) may
also arise due to the presence of many minima, saddle points
and other complicated features such as infinite valley solutions.
The proposed algorithm was developed in order to identify and
track all these geometric and topological features while solving a
derivative-free optimization problem.

An important distinction between derivative-free
optimization algorithms and many gradient-based optimization
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FIGURE 2 | The above figure demonstrates the levels of optimization involved in TopoPro. (A: Level-1) Depicts the steps involved in solving the reduced functional

and estimating the parameters. The reduced functional of only the non-linear parameters has been visualized with the simplicial homology corresponding to its

objective function. (B: Level-2) Shows the valley function formed in the process of optimizing the full-functional in the second level. It delineates a problem of

bi-modality where the points corresponding to different minima have been indicated in red color.

FIGURE 3 | Shows a sketch of the forward mapping ϕ(x) from the true model coordinates in the model space (A) to the signal measurements in the data space (B)

and its inverse denoted by ϕ−1(x). (B) Notice that some signal measurements in the data space correspond more to perfusion and some correspond more to

diffusion. This is a mixing phenomenon. It is important to note that the deviation from the ideal signal is due to different levels of noise (ε). F (x) represents the true

model coordinates in the model-space and G(x) is the approximation of F (x) due to noisy measurements. (C) Depicts the randomly oriented capillary geometry for the

perfusion process which is modeled as a “pseudo-diffusion” process (D∗). fe−bD
∗

is the compartment used to represent this random process. (D) Denotes the

diffusion process of the water molecules represented by an isotropic compartment fe−bD.
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algorithms is that the former makes different assumptions about
the smoothness of the objective function surface such as that
defined in Equation (8). On the other hand, derivative-free
algorithms assume that no information about the objective
function is available, particularly useful in problems where the
gradient is unavailable, non-smooth or difficult to compute
analytically. Derivative free algorithms rely on deriving
information from a sampling of the domain rather using the
explicit equations present in the objective function. Finally, while
gradient-based optimization algorithms usually only consider
the local gradient (and possibly Hessian) information, derivative-
free algorithms tend to work with a trade-off between local and
global exploration of the surface. During parameter fitting in
the IVIM model degeneracy can occur due to bi-modality of the
problem (Jelescu et al., 2016; Novikov et al., 2018b). In this case,
Equation (8) can no longer be solved using algorithms that rely
on local gradient descent. As pointed out in Jelescu et al. (2016)
the poor performance of gradient descent methods is due to the
presence of multiple local minima that lie within biophysically
plausible ranges.

We compare against the other approaches of IVIM fitting on
the phantom and the simulated Shepp-Logan Phantom to show
better performance of the method. To evaluate the performance,
we make use of three different strategies: (a) Normalized Root
Mean Squared Error (RMSE) evaluated against the ground truth
for different b-value distributions in the simulated phantom. (b)
Test-retest analysis on data for checking stability and correlation
analysis of fitting on the same data. (c) We also compare
against other IVIM solvers with quantitative evaluations against
the proposed method. The higher performance of the new
fitting method allows for a more accurate deduction of the true
tissue microstructure using the same diffusion MRI data which,
additionally, does not rely on methods such as interpolation
(Jalnefjord et al., 2018) which could lead to loss of information
in the underlying microstructure.

4. RESULTS

We start by discussing the key contribution of the proposed
problem in solving the IVIM problem from a parameter
estimation standpoint. The main motivation of this work was
to stabilize the estimation of the Perfusion Coefficient (D∗) in
the IVIM model as it holds key information about the thermal
motion of the blood and perfusion process in the microvascular
compartment. This parameter across different literature has been
reported to be unstable due to different b-value distributions
and noise perturbations (Lemke et al., 2011; Fadnavis et al.,
2020), leading to reservations against using it. With the help of
algebraic topology, we quantitatively uncover the degeneracies
involved in the problem with comparisons against available
implementations of the most prominent methods: Gauss-
Newton type or Levenberg-Marquadt type non-linear least
squares solvers, Bayesian estimators via Markov Chain Monte
Carlo (MCMC) (Jalnefjord et al., 2018), SHGO (Endres et al.,
2018), and MIX (Farooq et al., 2016; Fadnavis et al., 2019). We
compare the proposed algorithm on real and simulated data to

show drastic improvements in estimation accuracy and stability
in model fitting.

4.1. Topology of Sums of Exponential
Signals With Simplicial Homology
It has been shown in the past (Jelescu et al., 2016; Novikov et al.,
2018b) that the multi-compartment models such as the IVIM
model often lead to degeneracies in estimation. This is primarily
due to the function being symmetric in nature (having the same
exponential representation for each compartment), often leading
to two biologically plausible solutions. The objective function
surface is very flat leading to a valley of possibly infinite solutions
to choose from making the IVIM model an ill-posed (Osullivan,
1986) inverse problem leading to instability and sub-optimal
solutions. To alleviate these issues, we propose a framework using
simplicial homology-based topological analysis of the solution
space (Hatcher, 2002; Endres et al., 2018). Here, we highlight the
problem of bi-modality that occurs in fitting the model of IVIM.
This has been reported in different literature (Jelescu et al., 2016;
Novikov et al., 2018b) in the past, but there has never been a
solution to alleviate this problem except when we increase the
model complexity with more parameters. In such scenarios, it
becomes simpler to extract orientation information from signal
transformations and has shown promising results (Novikov et al.,
2018c). But in the case of IVIM, such an approach cannot be
taken as each compartment of the model is represented with
an isotropic basis without encoding any directional information
for diffusion or perfusion processes. This causes a problem of
identifiability in the solution space when the values of D and
D∗ are closer to one another, basically, the voxels where the
perfusion is low and the diffusion is high enough to make the
parameter scales equivalent. This can be seen by constructing a
simplicial complex homologous to the objective function surface
of the IVIM model fit to one voxel. As shown in Figure 4, in
the process of optimization, when the perfusion fraction f has
the value of 0.349, two plausible solutions emerge at two very
different values. As highlighted in Figure 4 with ellipses around
each “valley” sub-domain of local infima (in the surface plot and
its corresponding contour plot), one “valley” domain of local
infima correspond to low D value (∼ 0.005 mm2/s) and one to
a higher D∗ (∼ 0.04mm2/s). Hence, this makes it challenging for
many optimization algorithms such as segmented, Bayesian, and
MIX (Farooq et al., 2016) to settle on a non-spurious minimum.
These approaches rely on gradient information to compute the
search direction and struggle when the Jacobian has zero entries
in a parameter direction. This causes convergence issues such
as the algorithm terminating prematurely at an arbitrary D∗

value in addition to typically being computationally expensive.
This choice of D∗ is what causes fluctuations in the perfusion
coefficient maps leading to unstable and high variability in
the solutions. The proposed algorithm successively improves
the conditioning of the problem using the variable projection
functional to estimate the parameters in a reduced subspace using
a simplicial homology global optimization step.
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FIGURE 4 | Showing the use of simplicial homology groups to visualize the two biophysically feasible global minima via a surface plot and contour plot. The

chain-complex associated with both the minima is highlighted in each case with arrows showing correspondences. Both sub-domains contain a valley of infinite

physically plausible solutions for the IVIM problem, one high perfusion and one low perfusion sub-domain. The minima of the depicted objective function surface and

its corresponding contour plot is homologous to 5 connected 2-tori.

4.2. Better Conditioning of the Ill-Posed
Inverse Problem
Variable Projection (Golub and Pereyra, 2003) has been shown
to have successively better conditioning across domains (Fusco
et al., 2015, 2016; Farooq et al., 2016; Kurugol et al., 2016).
The main advantage is that the reduced functional projects
noisy measurements onto the range of the data, making the
model estimation process better-posed (Pereyra and Scherer,
2019). Most optimization methods are vulnerable to the
starting points of the optimizer, making the inverse mapping
harder to estimate. This problem is further exacerbated in
the setting of local gradient-based (Gauss-Newton/ Levenberg-
Marquardt, Levenberg, 1944) or MCMC style optimization
(Gurney-Champion et al., 2018; Jalnefjord et al., 2018).

TopoPro also improves the stability of the algorithm as is
evident in Figure 5 even at SNRs as low as 2 and 5. The
fluctuations in the f andD∗ parameters is lesser than the standard
segmented, Bayesian, SHGO and MIX methods. Thus, not only
improves the usability of the parameter maps but also makes the
estimation more reliable.

4.3. Data Simulation
An IVIM phantom was simulated using the Shepp-Logan digital
phantom for six tissues types, here representative D, D∗, and
f values were assigned to the phantom, including normal

tissue, tissue with infiltrating tumor, low-perfused tumor, high-
perfused tumor, cavity and cerebrospinal fluid (Fadnavis, 2020b).
Diffusion-weighted images (DWI) were simulated using the
IVIM model at 54 b-values ranging from 0 to 1,000, for five
slices, each at a different noise level. To simulate the real-world
noise distribution with multi-channel acquisition (i.e., chi-square
distribution), a realistic 8-channel coil sensitivity map was used
and Gaussian noise was added to the real and imaginary part
of each channel of the DWIs respectively. Final DWIs were
combined with a sum of square coil combination, and signal-
to-noise ratio (SNR) was calculated in the normal tissue on the
b0 image. The ground truth was simulated with a 1 × 1 × 1
isotropic resolution (i.e., data of size 256 × 256 × 5 × 54).
The same phantom was fitted with segmented Fitting, Bayesian
Fitting, SHGO, MIX and the proposed TopoPro algorithms. The
phantom was simulated such that each slice has a different SNR:
2, 5, 10, 20, and 50 particularly. The goal here was to examine the
stability of the optimization routines in the different algorithms
from a qualitative and quantitative standpoint.

4.4. Comparisons With Simulated Data
While we can see that the parameter maps obtained from
TopoPro are a stable and visually more informative as compared
to the other methods, they are also much closer to the ground
truth as shown in Figure 5. We evaluated the estimates of each
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FIGURE 5 | Shows results with the simulated Shepp-Logan phantom for different tumors. In (A,B), we show a qualitative comparison of the simulated data at different

SNRs by comparing TopoPro against segmented, Bayesian, SHGO and MIX fitting. The ground truth for each of the model parameters f and D∗ are depicted at the

top of their respective estimates with different methods. (C) Compares the Root Mean Squared Error of the fits for both D∗ (C1) and f (C2) and its average for all model

parameters (C3) for each SNR. Notice that TopoPro outperforms the other fitting methods by 10X in the estimation of D∗.

of the parameters using the normalized Root Mean Squared
Error (RMSE) (Pedregosa et al., 2011). From the bar chart of
RMSE scores in Figure 5, we can infer that the performance
in the estimation of diffusion is similar to one another, thus
causing the lines to overlap onto one another. For the perfusion
coefficient parameter (D∗), we see a trend of a slight increase with
an increase in the Signal-to-Noise Ratio (SNR). The Bayesian
and segmented fitting approaches show similar performance and

do well in the estimation of the parameter f , but fluctuate and
give unstable estimates for the parameter D∗. SHGO and MIX,
on the other hand, perform consistently better as compared to
segmented and Bayesian fitting for D∗. However, it can be seen
that TopoPro has a 10× lower RMSE as compared to the other
methods when estimating the D∗ and f parameters, with a steady
decrease with an increase in the SNR. It is also important to note
that the estimates of the parameters are a lot more stable at SNRs
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5 and 10, with no fluctuations in the areas where there is no tissue
micro-environment. For instance, if we look at the D∗ map, it
can be seen that even where there is no data, most optimization
strategies would find values higher than 0.02 and f > 0.2. This
effect could further be amplified in real data where the ground
truth is unknown.

4.5. Comparisons With Real Data
In Figure 6, we show the results on two real subjects
with different b-value distributions. Typically, IVIM is a fast
acquisition and has b-values ranging from 0 to 1,000. In Figure 6,
we compare the fitting of TopoPro against Bayesian, segmented,
SHGO and MIX Fitting. The data has 21 b-values with a voxel
resolution 0.938 × 0.938 × 2.5 in Figure 6A (Peterson, 2016)
and has 49 b-values with voxel resolution 1.714 × 1.714 ×

1.7 in Figure 6B (Fadnavis, 2020a). As it can be seen from
both Figures 6A,B, TopoPro performs better than the other
four methods from a qualitative standpoint with lesser visual
fluctuations in the estimated values of D∗ and f . The D∗ values
for Bayesian and the segmented fitting are wrongly estimated
for a large number of the voxels. It is important to note that
the TopoPro algorithm always finds a better approximation of
the parameter values as compared to the other approaches. It is
also important to note that by construction, the segmented and
Bayesian fitting seems to work in the estimation f and D but
fail to fit for D∗. The reason for this is that MCMC and local
gradient-based Gauss-Newton/Levenberg-Marquardt algorithms
cannot find a global minimum in the infinite solution space of
the flat valley like surface of the objective function. This causes
the algorithms to often find a spurious minima as the estimate
leading to noisier maps. It is also important to note that both
Bayesian and segmented fitting depend heavily on the starting
points of the optimizer and the bounds on the parameters.
To initialize the segmented fitting, the standard linear least
squares approximation was used as the starting points and for
the Bayesian fitting, the initial values used were obtained from
the segmented Fitting. For the Bayesian estimation, we set the
burn-in to 1,000 and used the flat prior. Another key aspect of
the both Bayesian and segmented algorithms is that the voxels
which do not obey the bounds need to be discarded and values
for these voxels are typically interpolated with a nearest neighbor
algorithm. For both the Bayesian and segmented fitting, the
bounds used were: f ∈ [0, 0.9], D∗ ∈ [0, 0.1] and D ∈ [0, 0.004].
The b-value threshold used for segregating the perfusion and
diffusion component was 200.

4.6. Topological Analysis for Stability:
Test-Retest
Topological analysis allows us to gain insight into the objective
function surface and enables us to provide the algorithm with
this information to find more physically meaningful solutions
and speed up the optimization process. For example, consider
the objective function surface at a low perfusion voxel when
the perfusion fraction is held at a constant zero then there
is an infinite number of optimal solutions for D∗ as shown

in Figure 7B1,2. This justifies adding additional constraints in
the physically feasible sub-domain, for example by adding the
non-linear penalty function g(x) = (D∗)2 ⇐⇒ f ≤

0.2 which not only speeds up gradient descent sub-routines in
the valley sub-domains but also allows the algorithm to search
for the most meaningful global minimum to use in the final
result. From the information automatically extracted by the
simplicial homology optimization routine, we can add yet more
sophisticated modifications to the objective function that apply
in different sub-domains of the objective function depending on
both the learned mathematical and the physical interpretation
of the problem at a particular voxel. In the first step of VarPro,
we obtain two sub-domains which contain an infinite number
of physically feasible solutions. By analyzing both the domains
simultaneously using simplicial homology optimization, we can
choose the best sub-domain for a given voxel and adapt penalty
functions to find optimal parameter vectors in the respective
star domains.

In order to show the stability of the proposed method, we
perform test-retest reliability on the data as shown in Figure 7A.
To do so, we split the data into two halves along the b-values
of the DWI image. This is done by down-sampling the b-values
such that we choose alternating b-values to split the data. Then
we fit the IVIM model to each half and calculate the Pearson’s
correlation coefficient for each parameter. We show that the
performance of the TopoPro optimizer can be improved by using
a penalty function by using the constraints derived from the
topological analysis. It is important to note that the stability
of the D∗ parameter improves drastically as seen in Figure 7A

(correlation coefficient increased by 0.65) on restarting the
simplicial homology optimizer and using the inverse penalty
function. The increased reliability is due to selecting the
appropriate penalty functions in each detected physically feasible
sub-domain using simplicial homology optimization. Once the
most appropriate sub-domain for a particular voxel sub-problem
has been found, the appropriate penalty constraints can be
applied in the objective function to avoid difficulties with ill-
defined infinum sub-domains.

5. DISCUSSION

In this paper, for the first time, we propose a topological solver
for optimizing separable non-linear inverse problems, such as
fitting sums of exponential functions to the data. We showed
how it is useful for solving the ill-posed problem of estimating
IVIM parameters commonly represented as a bi-exponential
model. We delineate how simplicial homology can be used as
a computational tool to study the topology of the objective
function surface and the difficulties involved in this process.
The proposed method can be used as a black-box solver and
alleviates issues of declaring explicit bounds for different data
sets and b-value distributions. We compare against other open-
source implementations of other standard approaches to fit
the data and show how TopoPro outperforms them by 10×
improvement in estimation accuracy. The proposed framework
mitigates the crucial problems of noise tolerance and bi-modality
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FIGURE 6 | Comparisons of TopoPro on two different real human brain datasets vs. 4 different methods: (A) DWI dataset with dimensions: 256× 256× 54× 21 -

slice 33 and (B) DWI dataset with dimensions: 140× 140× 84× 49 - slice 42. Notice how TopoPro provides improved estimates of the different parameters of the

IVIM model in both data. The results are compared against methods: Segmented, Bayesian, SHGO, and MIX.

via a combination of variable projection and simplicial homology
global optimization, leading to improved conditioning of the
problem and better initialization. Lastly, we compare the model
fitting methods on both simulated and real data showing
significant improvements in terms of accuracy (RMSE) and
stability (test-retest) with the TopoPro method. The method

performs well even though each compartment of the IVIM is
isotropic and no orientation information is available to improve
identifiability as in the case of more complex microstructure
models. Our method provides a unique capability of dealing
with multiple global minima in the solution space and avoiding
fluctuations in the parameter maps.
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FIGURE 7 | (A) Here, we demonstrate the test-retest reliability of the TopoPro algorithm. On the same data, we split the data in half by choosing alternating b-values.

We show using an inverse penalty function that we can improve the stability across all parameters. We plot the first half of the data-split along Y-axis and the other

along X-axis. Notice how the reliability (Pearson Correlation Coefficient) improves across all parameters calculated for each parameter, i.e., Perfusion Fraction (f ),

Diffusion Coefficient (D), and Perfusion Coefficient (D∗). (B) We use the simplicial homology optimizer to show the infinite solution space of D∗ at a particular value of D

when f = 0. This has been depicted with the surface plot of simplicial complex (B1) and its corresponding contour plot (B2). Notice that all values in the solution

subspace for D∗ are equally good in this case, making it hard for the optimizer to find a solution.
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