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A motor imagery (MI) brain-computer interface (BCI) plays an important role in the
neurological rehabilitation training for stroke patients. Electroencephalogram (EEG)-
based MI BCI has high temporal resolution, which is convenient for real-time BCI
control. Therefore, we focus on EEG-based MI BCI in this paper. The identification of
MI EEG signals is always quite challenging. Due to high inter-session/subject variability,
each subject should spend long and tedious calibration time in collecting amounts
of labeled samples for a subject-specific model. To cope with this problem, we
present a supervised selective cross-subject transfer learning (sSCSTL) approach which
simultaneously makes use of the labeled samples from target and source subjects
based on Riemannian tangent space. Since the covariance matrices representing the
multi-channel EEG signals belong to the smooth Riemannian manifold, we perform the
Riemannian alignment to make the covariance matrices from different subjects close
to each other. Then, all aligned covariance matrices are converted into the Riemannian
tangent space features to train a classifier in the Euclidean space. To investigate the role
of unlabeled samples, we further propose semi-supervised and unsupervised versions
which utilize the total samples and unlabeled samples from target subject, respectively.
Sequential forward floating search (SFFS) method is executed for source selection.
All our proposed algorithms transfer the labeled samples from most suitable source
subjects into the feature space of target subject. Experimental results on two publicly
available MI datasets demonstrated that our algorithms outperformed several state-
of-the-art algorithms using small number of the labeled samples from target subject,
especially for good target subjects.

Keywords: transfer learning, cross-subject, source selection, Riemannian tangent space, motor imagery

INTRODUCTION

A motor imagery (MI) brain-computer interface (BCI) has drawn great attention for decades, since
it can help a subject directly manipulate an electronic equipment using his brain activity evoked by
imagined movements, without the participation of the traditional muscle-dependent pathway (He
et al., 2015). It can not only help the stroke patients recover their neurological disorders, but also
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give able-bodied people a novel way to control an external device
(Wolpaw et al., 2002). Therefore, it plays an important role in
rehabilitation engineering, military, and entertainment, etc.

Non-invasive electroencephalogram (EEG) is a popular
recording modality in MI BCI due to its high safety and
high temporal resolution, which is extremely crucial for the
application of real-time BCI. However, MI EEG data analysis is
quite challenging. The reason is that EEG signals are inherently
weak, non-stationary, and easily contaminated by interference
and noise (Sample et al., 2019). Moreover, compared with
other traditional EEGs, such as event-related potentials (ERP)
and steady-state visual evoked potentials (SSVEP), MI EEG
signals have less obvious features, because they are evoked by
spontaneous movement imagination without external stimulus,
whereas ERP and SSVEP are invoked by some external
stimulation (Blankertz et al., 2011; Yin et al., 2015). Consequently,
MI EEG signals have higher inter-session/subject variability and
fewer categories of BCI tasks than ERP and SSVEP. In MI BCI,
each subject needs a tedious and annoying calibration time for a
subject-specific classifier before performing real-time BCI tasks.
A retraining session always increases user frustration.

Deep learning is a promising machine learning technique,
which has been widely used in natural language processing and
computer vision and so on Huang et al. (2019, 2020). However, it
cannot be directly applied to the small training set scenario.

Transfer learning (TL) and semi-supervised learning (SSL)
have been tried to reduce the need of abundant labeled samples.
TL transfers the labeled samples from different source domains
into the target domain. A domain denotes a subject, a session,
a task, or a device. SSL simultaneously utilizes the labeled and
unlabeled samples from the same subject. Both TL and SSL can
shorten the calibration effort for the target subject by utilizing the
samples as much as possible.

Here, we pay more attention to TL since it can use more
samples than SSL. Generally, TL can be categorized into three
groups, including instance TL (ITL), feature-representation
transfer (FRT), and parameter TL (PTL) (Pan and Yang, 2010).
Instance TL aims to transfer parts of the data in the source
domains by reweighting. FRT tries to transfer a good feature
representation for the target domain. PTL successively transfers
and updates some parameters of the model under the assumption
that the source and target domains share these parameters.

Among these groups, ITL approaches are most popular since
they are easy to implement. Specifically, they can be divided
into two categories.

The first category is filter based ITL, which aims to reweight
the labeled sets from different domains based on the filters. In
MI BCI, the common spatial patterns (CSP) approach is only
effective when the labeled samples from a subject are abundant
(Ramoser et al., 2000). Recently, regularized CSP (RCSP)
approaches, belonging to filter based ITL, have been designed
for the small training set scenario. In the framework of RCSP,
the filtered EEG samples from the source and target subjects
are separately reweighted based on their similarities which are
always measured using different metrics, such as kullback-leibler
(KL) divergence, Frobenius norm, cosine distance and so on
(Kang et al., 2009; Cheng et al., 2017; Xu et al., 2019). A RCSP

based on dynamic time warping (DTW-RCSP) approach aligned
the labeled samples from all source subjects to the average of
a few target samples from the same class (Azab et al., 2020).
In the module of feature extraction, RCSP approaches can
generate more reliable CSP spatial filters for the target subject by
effectively utilizing the labeled samples from the source subjects.
However, calculating the optimal regularization terms might
impose computational burden.

The second category is data alignment based ITL. On past
decade, Riemannian alignment- (RA-) based ITL approaches
have drawn a growing attention in EEG-based BCI since affine
transformation can make the covariance matrices from different
domains similar. Zanini et al. (2018) proposed a RA-based
ITL approach to center the covariance matrices from each
domain with respect to their reference matrix. Such reference
matrix is the Riemannian mean of the covariance matrices
of some resting trials in the corresponding domain. All re-
centered covariance matrices from different source domains
are concatenated altogether to train a minimum distance
to mean (MDM) classifier based on Riemannian Gaussian
distributions. Rodrigues et al. (2019) proposed a Riemannian
procrustes analysis (RPA) approach using the steps of re-
centering, stretching, and rotation for the covariance matrices
from different domains to minimize the differences between
the source and target domains as much as possible. Zhang
and Wu (2020) presented a cross-subject manifold embedded
knowledge transfer (MEKT) approach to boost zero-training
for the target subject by combining the labeled samples from
the source subjects with the unlabeled samples from the target
subject. MEKT first performs RA to generate aligned covariance
matrices for all subjects and then converts all aligned matrices
into the tangent space feature vectors. Finally, MEKT finds
optimal projection matrices for the tangent space feature vectors
from the source and target subjects to reduce the joint probability
distribution shift between subjects. Since most classifiers are
designed for the Euclidean space instead of the Riemannian
manifold, Euclidean alignment- (EA-) based approaches extend
RA-based approaches in the Euclidean space using the Euclidean
mean as the reference matrix (He and Wu, 2020). Both RA and
EA can shorten the differences between the covariance matrices
from the source and target subjects.

Inspired by MEKT, we focus on cross-subject TL based on
Riemannian tangent space. In the calibration phase, labeled
samples from target subject are successively processed by
the modules of signal preprocessing, feature extraction, and
classification to build a subject-specific classifier. To reduce
the calibration time, the labeled samples from different source
subjects can be transferred into the same modules for a more
robust classifier.

Nevertheless, most cross-subject TL approaches utilize the
labeled samples from all source subjects. Lotte and Guan (2011)
designed a RCSP framework which evaluated the differences
between the whole CSP feature set from all source subjects and
the CSP feature set from the target subject, and then added two
different weights for these two sets. Zhang and Wu (2020) found
two optimal projection matrices for the whole tangent space
vector set from all source subjects and the unlabeled tangent
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FIGURE 1 | The framework of supervised selective cross-subject transfer learning (sSCSTL).

space vector set from the target subject to lower their dimensions
and differences.

To promote the positive transfer, the appropriate source
subjects should be selected. Zanini et al. (2018) transferred all
good source subjects (those with a precision higher than 0.75)
for the target subject. To select suitable source subjects, Liang
and Ma (2020) temporarily assigned the labeled samples from
the target subject as the testing set, and the labeled samples from
the candidate source subject as the training set. Then, the source
subjects with higher classification accuracy were selected. Zhang
and Wu (2020) presented a domain transferability estimation
(DTE) approach based on MEKT, which selected the source
subjects with the highest transferability.

In this paper, we first propose a supervised selective cross-
subject TL (supervised SCSTL, sSCSTL) approach based on
Riemannian tangent space for MI classification, which collects
only a few labeled samples from target subject and transfers the
labeled samples from most suitable source subjects. Moreover,
we present an unsupervised SCSTL (uSCSTL) approach and a
semi-supervised SCSTL (ssSCSTL) approach to investigate the
role of the unlabeled samples from target subject. A sequential
forward floating search (SFFS) method (Pudil et al., 1994)
is used to iteratively select suitable source subjects for all
SCSTL approaches.

The contribution of this paper lies in two aspects. Firstly,
we iteratively select appropriate source subjects, instead of
simply selecting them based on their classification performance,
transferability and so on. Secondly, we consider SCSTL using
different versions to exploit the labeled and unlabeled samples
from target subject.

The remainder of this paper is structured as follows. In
Section “Methods,” our SCSTL approaches are described in
detail. In Section “Experimental Results,” the effectiveness of
our approaches is validated by some experimental results.
A discussion of results is presented in Section “Discussion.”
Finally, our conclusions are drawn in Section “Conclusion.”

METHODS

We propose a supervised selective cross-subject transfer learning
(sSCSTL) approach which utilizes the labeled samples from
the selected good source subjects and the target subject
simultaneously. In our opinion, the source subjects with good
classification performance are more eligible to be selected than
those with bad performance, since the labeled samples from
the bad source subjects might mess up the feature distribution
of the target subject. The framework of sSCSTL is shown in
Figure 1.

In Figure 1, the labeled samples from each subject are band-
pass filtered in the signal preprocessing module. During the
feature extraction phase, the filtered labeled samples from each
subject are first converted into the labeled covariance matrices.
To preliminarily shorten the differences between subjects, the
labeled covariance matrices from each subject are transformed
into the aligned labeled covariance matrices by performing RA.
To train a classifier in the Euclidean space, the aligned labeled
matrices from each subject are converted into corresponding
labeled tangent space vectors by executing tangent space mapping
(TSM). To obtain best source selection, based on the SFFS
method, the labeled tangent space vectors from different good
source subjects are selected into the selected tangent space
vector set by comparing with the labeled tangent space vector
set from the target subject. Finally, the labeled tangent space
vectors from the most suitable good source subjects and the
target subject are fed into the classification module to obtain a
subject-specific classifier.

Next, we introduce the sSCSTL approach in detail.

Riemannian Alignment
In MI BCI, supervised CSP is the most popular feature extraction
algorithm for single user. Covariance matrices from different
classes are used to learn optimal spatial filters which can
maximize the variance differences between two classes. Such
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spatial filters are used to extract low-dimensional features for the
labeled and unlabeled samples. If the labeled samples are noisy,
and/or few, covariance matrices might generate unreliable spatial
filters. In this fashion, covariance matrices are processed in the
Euclidean space. However, they belong to a smooth Riemannian
manifold of symmetric positive definite (SPD) matrices, instead
of Euclidean space. Thus, in this paper, we first handle covariance
matrices in the differentiable Riemannian manifold.

All SPD matrices can form a Riemannian manifold. Here are
the basic concepts of SPD matrix and its manifold. Let Pi and
Pj be the ith SPD matrix and the jth SPD matrix, respectively,
where Pi, Pj ∈ RNc × Nc and Nc is the number of channels. Their
manifold is Nc × (Nc + 1)/2 dimensional. Pi and Pj can be
regarded as the points of the manifold. The Riemannian distance
δ(Pi, Pj) between Pi and Pj is the length of the minimum curve
connecting them. It can be calculated by Moakher (2005).

δ
(
Pi, Pj

)
= ||log(Pi−1Pj)||F =

[∑Nc

k=1
log2λk

]1/2
(1)

where || · ||F denotes the Frobenius norm, {λk}
Nc
k=1 are the

eigenvalues of Pi−1Pj. There exist important properties for the
Riemannian distance as follows:

δ
(
Pi, Pj

)
= δ

(
Pj, Pi

)
δ
(
Pi, Pj

)
= δ

(
Pi−1, Pj−1)

δ
(
Pi, Pj

)
= δ

(
WTPiW,WTPjW

)
,∀W ε Gl(Nc)

The third property is crucial for the context of signal
processing. It is named congruence invariance which means that
the distance between the two SPD matrices is invariant after affine
transformation using an invertible matrix. Suppose that Gl(Nc) is
the set of all Nc × Nc invertible matrices belonging to the space of
square real matrices. The center of all SPD matrices is generally
used for affine transformation, which can be calculated using
Riemannian distance.

The Riemannian mean MR, namely geometric mean, is the
center point of the manifold which can be calculated using
Riemannian distance as follows:

MR = argmin
M

∑N

k=1
δ2(Pk,M), (2)

where N denotes the number of all SPD matrices on the manifold.
There is no closed-form way to calculate the Riemannian mean.
An iterative method can be used to effectively obtain the
Riemannian mean (Fletcher and Joshi, 2004).

We can perform affine transformation using the center of all
SPD matrices as the reference matrix. RA executes the following
transformation using the Riemannian mean MR as the reference
matrix:

Ṕi = MR
−1/2PiMR

−1/2. (3)

Likewise, EA extends RA using the Euclidean mean ME as the
reference matrix (He and Wu, 2020). The Euclidean mean ME,

namely arithmetic mean, is defined as the center point which can
minimize the sum of squared Euclidean distances between other
matrices and the center point as below:

ME = argmin
M

∑N

k=1
d2 (Pk,M) =

1
N

∑N

k=1
Pk. (4)

where d(·, ·) computes the Euclidean distance between the two
SPD matrices. Since the Euclidean mean can be easily computed,
it is widely used so far.

In this paper, we perform RA for all covariance matrices
from each subject since RA is more suitable for the
Riemannian manifold.

For RA-based ITL approaches, all aligned covariance matrices
from each domain are centered at the identity matrix after affine
transformation using each domain’s Riemannian mean as the
reference matrix. This property makes the aligned covariance
matrices from different domains comparable, which can be
testified by the following (Zhang and Wu, 2020).

M
(
MR
−1/2P1MR

−1/2,MR
−1/2P2MR

−1/2

, · · · ,MR
−1/2PNMR

−1/2)
= MR

−1/2M(P1, P2, · · · , PN)MR
−1/2

= MR
−1/2MRMR

−1/2
= I (5)

where M(P1, P2, · · · , PN) is the Riemannian mean operation,
and I is an identity matrix.

Moreover, each aligned covariance matrix is nearly whitened
since it is approximately an identity matrix. More details can
be seen in Zhang and Wu (2020). Consequently, RA can
preliminarily reduce the inter-domain differences.

Tangent Space Mapping
After RA, the aligned covariance matrices are usually input to
an MDM classifier (Zanini et al., 2018; Rodrigues et al., 2019).
However, most classifiers, such as linear discriminant analysis
(LDA) and support vector machine (SVM), are designed for the
Euclidean space. Thus, we perform tangent space mapping (TSM)
for all aligned matrices from each subject.

As mentioned above, all SPD matrices lie in a differentiable
Riemannian manifold. Then their derivatives at a matrix on the
manifold form a tangent space. The tangent space has the same
dimensions as the manifold. A Riemannian manifold and its
tangent space at a point can be illustrated in Figure 2.

As depicted in Figure 2, Pi and Pj belong to the Riemannian
manifold. On the tangent space at point M, Ai and Aj are the
derivatives of Pi and Pj, respectively. Ai can be regarded as the
logarithmic mapping of Pi at M as below:

Ai = logM(Pi) = M1/2log(M−1/2PiM−1/2)M1/2. (6)

Conversely, the exponential mapping ofAi atM is the SPD matrix
Pi defined as:

Pi = expM(Ai) = M1/2exp(M−1/2AiM−1/2)M1/2. (7)
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FIGURE 2 | A Riemannian manifold and its tangent space at a point.

Riemannian distance can be also defined as:

δ (M, Pi) = ||logM(Pi)||M = ||Ai||M

= ||vec(M−1/2AiM−1/2)||2 = ||vec(log(M−1/2PiM−1/2))||2

= ||vec(Ái)||2 = ||ai||2, (8)

where ||Ai||M is the norm of Ai on the tangent space at point
M, and vec(Ái) vectorizes a symmetry matrix Ái. Let Ái and ai
be log(M−1/2PiM−1/2) and vec(Ái), respectively. Without loss of
generality, we apply a

√
2 coefficient for out-of-diagonal elements

of Ái and transform the upper triangular part of modified Ái into
a Nc × (Nc + 1)/2 column vector ai as below:

ai = vec(Ái) = [Ái1,1;
√

2Ái1,2; Ái2,2;
√

2Ái1,3;
√

2Ái2,3; Ái3,3

; · · · ; ÁiNc,Nc ] (9)

where Áij,k ∈ Ái. Then, ai is the tangent space vector of the SPD
matrix Pi at point M.

Furthermore, there is an approximation in terms of distance
between the manifold and its tangent space as below (Tuzel et al.,
2008):

δ
(
Pi, Pj

)
≈ ||ai − aj||2 (10)

where Pi and Pj are locally distributed into the manifold. Their
tangent space vectors at point M are ai and aj, respectively. Such
approximation stands only when M is the Riemannian mean
of the manifold.

Therefore, Riemannian tangent space is Euclidean and
locally homomorphic to the Riemannian manifold (Barachant
et al., 2013). In the TSM phase of our proposed sSCSTL,
all aligned covariance matrices {MR

−1/2PiMR
−1/2
}
N
i=1 from

each domain are converted into corresponding tangent space
vectors {ai = vec(log(MR

−1/2PiMR
−1/2))}Ni=1 using MR as the

reference matrix.

Source Selection Based on Sequential
Forward Floating Search
As mentioned above, due to high inter-subject variability and
expensive computational burden, it is unsuitable to utilize the
features from all source subjects. In this paper, we only transfer

the labeled tangent space vectors from most suitable good
source subjects.

We define the transferability for the selected tangent space
vector set Sel to predict its usefulness for the tangent space vector
set DT from the target subject as in Zhang and Wu (2020):

transferability(Sel,DT) =
||SbSel||1
||SbSel, DT ||1

, (11)

where SbSel is the between-class scatter matrix of Sel. Similarly,
SbSel, DT is the scatter matrix between Sel and DT . Then, ||SbSel||1
is used for the discriminability of between-class of Sel, and
||SbSel, DT ||1 is used to evaluate the differences between the
selected source subjects and the target subject.

Instead of simply integrating the labeled tangent space vector
sets from all source subjects, the labeled tangent space vector set
from the good source subject is iteratively selected to add into or
remove from the selected tangent space vector set to maximize
its transferability. Our proposed source selection procedure for
sSCSTL uses the framework of SFFS to obtain convergence of
selection. More details are shown in Algorithm 1.

Algorithm 1: The source selection procedure for sSCSTL
Input: NTL labeled tangent space vectors from the
target subject DTL = {a

(TL)
i , y(TL)i }

NTL

i=1, NSk labeled
tangent space vectors from the kth good source subject

DSk = {a
(Sk)
i , y(Sk)i }

NSk
i=1, k = {1, 2, · · · ,NGS}, where NGS is

the number of good source subjects. Let y(TL)i and y(Sk)i be
the labels of tangent space vectors from target and source
subjects, respectively.
Output: The finally selected tangent space vector set Sel;
Initialize: The initially selected tangent space vector set Sel0 =
∅ and its transferability Trans0 = 0, the initially remaining
tangent space vector set Rem0 = {DSk}

NGS
k=1, n = 1;

Repeat
Step 1: The labeled tangent space vector set from the most
suitable good source subject is selected and added into Seln−1

DSgood = argmax
DSk∈Remn−1

(transferability(Seln−1 +DSk ,DTL));

Seln = Seln−1 +DSgood ;Remn = Remn−1 −DSgood ;

Transn = transferability(Seln,DTL);

n = n+ 1;

Step 2: The labeled tangent space vector set from the most
unsuitable good source subject is selected and removed from
Seln

if n > 2 then

DSbad = argmax
DSk∈Seln

(transferability(Seln −DSk ,DTL));

if transferability(Seln −DSbad ,DTL) > Transn−1 then

Seln−1 = Seln −DSbad ;Remn−1 = Remn +DSbad ;
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Transn−1 = transferability(Seln−1,DTL);

n = n− 1;

go to Step 2;

else go to Step 1;
end

end
Until n = NGS

Sel = Selarg maxk(Transk).

For sSCSTL, labeled covariance matrices from each subject
are converted into labeled tangent space vectors using their
Riemannian mean as the reference matrix.

In Algorithm 1, during each iteration, Seln and Transn
separately denote the currently selected tangent space vector set
from n good source subjects and its transferability, whereas Remn
denotes the currently remaining tangent space vector set from
(NGS − n) good source subjects. After all iterations, the selected
tangent space vector set with the highest transferability is chosen
as the finally selected tangent space vector set Sel.

Since ||SbSel, DT ||1 in Equation (11) is evaluated without using
the labels of Sel andDT , we modify the source selection procedure
in Algorithm 1 for an unsupervised SCSTL (uSCSTL) approach
and a semi-supervised SCSTL (ssSCSTL) approach to investigate
the role of unlabeled samples from the target subject.

For uSCSTL, unlabeled covariance matrices from target
subject are converted into corresponding tangent space vectors
DTU using their Riemannian mean as the reference matrix.
Then, in each iteration, the currently selected tangent space
vector set Seln is compared with DTU to obtain its transferability
(transferability(Seln, DTU)).

For ssSCSTL, all covariance matrices from target subject
are projected into corresponding tangent space vectors
(DT = DTL +DTU) using their Riemannian mean as the
reference point. Then, more tangent space vectors from target
subject can be used to yield more convincing transferability
(transferability(Seln, DT)).

Classification
The supervised LDA classifier has been widely used because
of simplicity and rapid computational speed, which is crucial
for real time MI BCI. Nevertheless, it is of poor quality for
high dimensional features, such as the tangent space vectors.
Therefore, we use a supervised shrinkage LDA (sLDA) classifier
(Peck and Van Ness, 1982) which not only inherits the advantages
of LDA but also behaves well in high dimensions.

Our goal of sSCSTL, uSCSTL, and ssSCSTL is to extract
discriminative features for the classifier. In our classification
module, no unlabeled tangent space vectors from the target
subject are utilized for the classifier. Therefore, for sSCSTL and
ssSCSTL, the labeled tangent space vectors from the selected
good source subjects and target subject are fed into the sLDA
classifier after the best source selection based on SFFS, whereas
for uSCSTL, only the labeled tangent space vectors from the
selected good source subjects are used for sLDA.

EXPERIMENTAL RESULTS

Datasets
In this paper, the MI dataset from 52 healthy subjects (Cho et al.,
2017) and the BCI competition IV dataset 1 (Tangermann et al.,
2012) were used to evaluate the effectiveness of our proposed
methods in MI classification.

(1) MI dataset from 52 healthy subjects (MI1): 64-channel MI
EEG signals from 52 healthy subjects were recorded at a
sampling rate of 512 Hz. Each subject executed the assigned
MI task when a random instruction (“left hand” or “right
hand”) appeared on the screen for 3 s. Only a single session
was performed for each subject, which consisted of five or
six runs. In each run, the MI experiments per class were
repeated 20 times. Consequently, there were a total of 200
or 240 trials per subject. This dataset was much suitable for
cross-subject TL due to the existence of many subjects.

(2) BCI competition IV dataset 1 (MI2): this dataset was
comprised of the calibration data and the evaluation
data. However, we only chose the calibration data for
our experiments since the evaluation data contained the
periods in which the subject had no control intention. For
the calibration data, 59-channel EEG signals from seven
healthy subjects (a, b, c, d, e, f, and g) were collected at a
sampling rate of 100 Hz. Each subject was shown a visual
cue for 4 s and performed the cued MI task (“left hand” or
“foot”). In total, for each subject, 100 trials per class were
gathered. All EEG signals were band-pass filtered between
0.05 Hz and 200 Hz.

Electroencephalogram Data
Preprocessing
For dataset MI1, the BBCI toolbox (Blankertz et al., 2016) was
used for preprocessing. All EEG signals from each subject were
preprocessed by common average reference, spectrally filtered
by a third order Butterworth filter with cutoff frequencies of 8
and 30 Hz, and temporally segmented from 0.5 to 2.5 s after the
instruction onsets.

For dataset MI2, all EEG recordings from each subject were
band-pass filtered between 8 and 30 Hz using a fiftieth order finite
impulse response filter. Then, the filtered EEG recordings were
extracted from the time interval between 0.5 and 3.5 s after the
visual cue onsets.

As mentioned above, the dimensionality of tangent space
vectors closely relates to the number of channels. High-
dimensional tangent space vectors may lead to curse of
dimensionality. Therefore, for datasets MI1 and MI2, 27 and 29
channels were separately selected from the sensorimotor areas. In
Figure 3, the selected channels used for datasets MI1 and MI2 are
marked in green.

Experimental Design
First, we selected the good subjects as the source subjects based
on their high classification accuracies. In our experiments, the
labels of their samples were assumed to be known already. All
their samples were used for cross-subject TL. If one of the good
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FIGURE 3 | The selected channels for MI1 and MI2.

subjects was the target subject, the remaining good subjects were
his source subjects. All samples from each target subject were
randomly partitioned into the labeled set for training and the
unlabeled set for testing. To avoid randomness involved, this
process was repeated ten times and the average accuracies of
the unlabeled set were reported. The ratio of number of labeled
samples to all samples (Rl) ranged from 10 to 40% with step 10%.
Correspondingly, the ratio of number of unlabeled samples to all
samples (Ru) varied from 90 to 60%.

Baseline Algorithms
We compared our proposed algorithms (sSCSTL, ssSCSTL, and
uSCSTL) with the following baseline algorithms. They can be
grouped into three categories according to their feature spaces:

(1) Euclidean space algorithms:

(a) CSP (Ramoser et al., 2000): it was a traditional
feature extraction algorithm for MI. We used LDA
as its classifier.

(b) CSP with generic learning regularization (GLRCSP)
(Lu et al., 2009): it learned generic learning
regularized CSP filters to realize cross-subject TL.
LDA was its classifier.

(c) Composite CSP (CCSP) (Kang et al., 2009): it
weighed covariance matrices from different subjects
using the KL divergence measure based on the
framework of RCSP. LDA was also its classifier.

(2) Riemannian space algorithm: all covariance matrices
belong to the Riemannian manifold. We designed a
covariance matrix -based feature extraction algorithm,
named COV, which directly input all labeled covariance
matrices into the MDM classifier without RA.

(3) Riemannian Tangent space algorithms:

(a) Tangent space (TS) feature extraction algorithm
(Barachant et al., 2012): it successively performed
RA and TSM for all covariance matrices.

Then, the tangent space vectors were fed into
the LDA classifier.

(b) Manifold embedded knowledge transfer (MEKT)
(Zhang and Wu, 2020): it combined the labeled
tangent space vectors from the source subjects with
the unlabeled tangent space vectors from the target
subject. sLDA was used as its classifier.

(c) Domain transferability estimation (DTE) (Zhang
and Wu, 2020): it identified one most suitable source
subject for the target subject based on MEKT. sLDA
was also used for MI classification.

We set the hyper-parameters of all baseline algorithms
instructed by their publications. Our proposed algorithms
and seven baselines can also be further divided into two
groups. The first group consists of CSP, GLRCSP, CCSP, COV,
TS, sSCSTL, and ssSCSTL. They are all supervised or semi-
supervised feature extraction algorithms. The second group
includes MEKT, DTE, and uSCSTL. They are unsupervised
feature extraction algorithms.

Classification Accuracies
Classification Performance on Dataset MI1
For a small percentage of subjects, their classification accuracies
hardly reach the benchmark of 70%. This phenomenon has been
named BCI illiteracy. It was suggested that at least 40 labeled
samples per class can reduce BCI illiteracy (Blankertz et al., 2007).
Therefore, for dataset MI1, we chose the good subjects whose
accuracies were over 80% on average when 40 or 48 labeled
samples per class (Rl = 40%) were randomly selected for 10 times
and trained by CSP and LDA.

In our experiments, we focused on the good and bad
subjects to discuss how they influenced the BCI performance.
Furthermore, we cared about the supervised, semi-supervised,
and unsupervised algorithms to investigate the role of the labeled
and unlabeled samples.

The classification performances of supervised and semi-
supervised algorithms for good subjects on dataset MI1 are
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given in Table 1 using their 40 or 48 labeled samples per class
(Rl = 40%). Then, the performances of unsupervised algorithms
for the same good subjects are shown in Table 2 using their
remaining unlabeled samples (Ru = 60%). Meanwhile, the means
and standard deviations (Std) of good subjects for two groups of
algorithms are listed in Tables 1, 2, respectively.

As shown in Table 1, there were only seven good subjects
selected from 52 subjects on dataset MI1 according to the
performance of CSP. For all Euclidean space-based algorithms,
there were no obvious differences among them. CSP slightly
outperformed GLRCSP and lagged behind CCSP a little. Without
RA, the Riemannian space-based algorithm COV performed the
worst. For Riemannian tangent space-based algorithms, the mean
of TS was lower than that of CSP. sSCSTL showed its superiority
among all supervised algorithms. A paired t-test showed that
the result of sSCSTL was statistically higher than that of CSP
(p = 0.0067), GLRCSP (p = 0.0055), CCSP (p = 0.0064), COV
(p = 0.0052), and TS (p = 0.0077). ssSCSTL stood out itself
with the help of unlabeled samples. In Table 2, all unsupervised
algorithms utilized the labeled samples from the selected source
subjects and added the remaining unlabeled samples from
the good target subject. MEKT surpassed most of supervised
algorithms in Table 1, except for sSCSTL. Although DTE had
the same framework of MEKT, it performed worse than MEKT.
The possible reason was that there was only one suitable source
subject selected. For uSCSTL, the average classification accuracies
of six good subjects were up to 90%.

To further evaluate the effect of the labeled and unlabeled
samples from the target subject, we plotted the means of
accuracies of all good subjects on dataset MI1 for different
algorithms with varying Rl or Ru in Figure 4.

As depicted in Figure 4, all supervised and semi-supervised
algorithms provided good classification performances with
varying Rl from 10 to 40%. Except for COV, most algorithms
outperformed CSP when few labeled samples from target subject

TABLE 1 | Average classification accuracies of supervised and semi-supervised
algorithms for good subjects on dataset MI1 (Rl = 40%).

3 4 14 23 41 43 48 Mean (Std)

CSP 89.50 82.50 96.92 81.33 83.67 96.92 82.33 87.60 (6.90)

GLRCSP 89.58 82.92 96.17 80.17 85.83 95.92 80.58 87.31 (6.78)

CCSP 90.08 84.33 96.92 80.75 85.50 96.08 82.08 87.96 (6.54)

COV 86.42 77.33 96.92 73.08 73.92 93.17 75.58 82.35 (9.78)

TS 90.17 77.92 96.25 80.83 80.50 96.08 82.83 86.37 (7.70)

sSCSTL 92.00 95.75 100.00 94.25 97.67 99.83 97.75 96.75 (2.94)

ssSCSTL 91.33 99.42 100.00 99.42 99.42 100.00 100.00 98.51 (3.18)

TABLE 2 | Average classification accuracies of unsupervised algorithms for good
subjects on dataset MI1 (Ru = 60%).

3 4 14 23 41 43 48 Mean (Std)

MEKT 90.42 84.17 95.25 82.17 86.92 94.83 82.75 88.07 (5.51)

DTE 89.42 80.75 95.00 78.58 82.42 92.33 81.92 85.77 (6.38)

uSCSTL 88.83 97.17 99.50 93.83 97.50 100.00 99.17 96.57 (3.99)

were available. Moreover, the classification performances of most
algorithms improved obviously along with the increasement of
Rl. However, sSCSTL and ssSCSTL steadily showed compelling
validity. In addition, the curves of unsupervised algorithms
improved slowly with the increasement of Ru, suggesting that
the labeled samples were more useful for the performance than
the unlabeled samples. Nevertheless, even using 60% unlabeled
samples from the target subject, the average classification
accuracy was over 95% for uSCSTL.

Then, since there were 45 bad subjects on dataset MI1, we
did not provide their average classification accuracies one by one.
Instead, in Tables 3, 4, we separately investigated how many bad
subjects were trapped in BCI illiteracy with varying Rl and Ru.
Here, those whose average classification accuracies were less than
70% were regarded as unqualified subjects.

As shown in Table 3, Euclidean space-based algorithms
sharply reduced the number of unqualified subjects when
their labeled samples increased. It implied that they performed
well when abundant labeled samples from target subject were
available. In contrast, other algorithms reduced BCI illiteracy
slowly with the increasement of Rl, suggesting that their
performances did not excessively rely on the number of labeled
samples. sSCSTL reduced more unqualified subjects than CCSP
when Rl was 10%. In Table 4, the number of unqualified subjects
barely changed with the increasement of Ru for all unsupervised
algorithms. uSCSTL also reduced more unqualified subjects than
MEKT when Ru was 60%.

Like Figure 4, the means of accuracies of all bad subjects on
dataset MI1 for different algorithms with varying Rl or Ru are
plotted in Figure 5.

As illustrated in Figures 4, 5, the advantages of sSCSTL
and ssSCSTL for all bad subjects were less apparent than
those for good ones. In Figure 5, there were few differences
between sSCSTL and ssSCSTL. Possible explanation was that
low class-discriminability of unlabeled samples from bad target
subjects influenced the performance improvements of ssSCSTL.
In addition, CCSP and GLRCSP still outperformed CSP, TS, and
COV. Additionally, the average classification accuracies provided
by uSCSTL were slightly lower than those of MEKT with varying
Ru. The performance of DTE showed the importance of using
source subjects as much as possible.

Classification Performance on Dataset MI2
On dataset MI2, five good subjects (a, d, e, f, and g) were
chosen out of the seven subjects depending on the same rule as
mentioned above. Then subjects b and c were regarded as bad
subjects. The classification performances of supervised and semi-
supervised algorithms for all subjects on dataset MI2 are shown
in Table 5 using their 40 labeled samples per class (Rl = 40%).
And the performances of unsupervised algorithms for the same
subjects are given in Table 6 using their remaining unlabeled
samples (Ru = 60%).

As shown in Table 5, among all Euclidean space-based
algorithms, GLRCSP and CCSP outperformed CSP on average.
COV still performed the worst due to without RA. For
Riemannian tangent space-based algorithms, the average
accuracy of TS was slightly lower than that of CSP. sSCSTL
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FIGURE 4 | The means of accuracies of all good subjects on dataset MI1 for different algorithms with varying Rl or Ru.

and ssSCSTL stood out themselves on average. However, for
bad subjects, GLRCSP and CCSP were comparably superior to
other algorithms. For most good subjects (d, e, f, and g), sSCSTL
and ssSCSTL exhibited their superiorities. Paired t-test results
between sSCSTL and other supervised algorithms showed that
the performance improvements of sSCSTL over others were
statistically significant, such as sSCSTL vs. CSP (p = 0.1795),
sSCSTL vs. GLRCSP (p = 0.2901), sSCSTL vs. CCSP (p = 0.3753),
sSCSTL vs. COV (p = 0.0260), and sSCSTL vs. TS (p = 0.1631).
As reported in Table 6, although uSCSTL showed its compelling
validity on average, MEKT performed better than uSCSTL
for bad subjects.

To further evaluate the role of labeled and unlabeled samples,
for different algorithms, we plotted the average classification

TABLE 3 | The number of unqualified subjects whose accuracies were less than
70% on dataset MI1 for supervised and semi-supervised algorithms
with varying Rl .

10% 20% 30% 40% Mean

CSP 45 42 37 32 39

GLRCSP 44 39 36 31 37.5

CCSP 42 37 33 31 35.75

COV 43 43 43 41 42.5

TS 43 42 40 38 40.75

sSCSTL 35 34 33 34 34

ssSCSTL 34 34 34 31 33.25

TABLE 4 | The number of unqualified subjects whose accuracies were less than
70% on dataset MI1 for unsupervised algorithms with varying Ru.

60% 70% 80% 90% Mean

MEKT 45 45 45 45 45

DTE 45 45 45 45 45

uSCSTL 38 37 38 37 37.5

accuracies of all subjects on dataset MI2, and their means, with
varying Rl and Ru in Figures 6, 7, respectively.

In the last subfigure of Figure 6, ssSCSTL outperformed
other algorithms on average with the help of unlabeled samples
from target subject. The gap between sSCSTL and ssSCSTL
became small with the increasement of labeled samples from
target subject. For Euclidean space-based algorithms, CCSP and
GLRCSP still performed better than CSP on average. Riemannian
tangent space-based algorithm TS showed higher performance
than Riemannian space-based algorithm COV.

Moreover, as depicted in other subfigures of Figure 6, sSCSTL
and ssSCSTL showed amazing accuracies for most good subjects
(d, e, f, and g), suggesting that the available samples from a good
subject can provide positive cross-subject TL. Exceptionally, a
good subject (a) benefited little from TL algorithms. Additionally,
sSCSTL and ssSCSTL performed more unstably than CCSP and
GLRCSP for bad subjects (b and c) in total.

As shown in Figure 7, the average classification accuracies
of uSCSTL were inferior to those of MEKT and DTE for the
good subject (a) and bad subjects (b and c). However, uSCSTL
stood out itself for other subjects. Therefore, in the last subfigure
of Figure 7, uSCSTL performed better than other unsupervised
algorithms overall.

Data Visualization
To appreciate the effect of cross-subject TL, in Figure 8, the
t-SNE method was applied to visualize the feature distributions of
the following Riemannian space-based and Riemannian tangent
space-based algorithms, including COV, TS, sSCSTL, ssSCSTL,
and uSCSTL (Van Der Maaten and Hinton, 2008). In our case,
each feature was regarded as a point in a two-dimensional space.
For the dataset MI1, the first 40 samples per class from good
target subject 23 were labeled for training, the rest of samples
were unlabeled for testing. Additionally, all samples from other
good subjects were the labeled source samples.

In Figure 8, for COV and TS, the discrimination of two
labeled target classes marked in red were obscure, resulting in
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FIGURE 5 | The means of accuracies of all bad subjects on dataset MI1 for different algorithms with varying Rl or Ru.

the difficulty of classification for the unlabeled target samples
marked in blue. However, after RA and TSM, the labeled target
samples with same class for TS were closer than those for COV.
sSCSTL and uSCSTL discriminated the two-class labeled samples
from target and source subjects well, after source selection using
the labeled and unlabeled target samples, respectively. Moreover,
the classification performances of our proposed algorithms might
increase since many unlabeled target samples overlapped with
labeled source samples which had the same class. Although,
ssSCSTL could not separate the two labeled classes well, it
performed well in most cases.

Computation Time Comparison
Figure 9 shows average computation time of different algorithms
on datasets MI1 and MI2. For supervised and semi-supervised
algorithms, 40% of total samples from target subjects are used

TABLE 5 | Average classification accuracies of supervised and semi-supervised
algorithms for all subjects on dataset MI2 (Rl = 40%).

a b c d e f g Mean (Std)

CSP 87.67 69.33 68.75 87.17 92.50 89.50 91.17 83.73 (10.20)

GLRCSP 86.17 73.33 72.08 84.08 93.75 89.92 89.92 84.18 (8.42)

CCSP 87.67 74.50 71.17 86.75 93.00 90.75 90.92 84.96 (8.60)

COV 81.42 65.50 67.75 76.00 74.50 80.00 76.58 74.54 (5.93)

TS 88.33 65.50 70.83 82.42 89.83 89.33 92.33 82.65 (10.46)

sSCSTL 79.33 69.92 68.08 99.92 100.00 98.17 100.00 87.92 (14.90)

ssSCSTL 83.25 67.50 71.50 100.00 100.00 100.00 100.00 88.89 (14.64)

TABLE 6 | Average classification accuracies of unsupervised algorithms for all
subjects on dataset MI2 (Ru = 60%).

a b c d e f g Mean (Std)

MEKT 78.33 73.50 73.00 70.00 90.33 80.83 91.92 79.70 (8.59)

DTE 71.00 72.25 71.25 81.08 86.33 68.42 79.33 75.67 (6.61)

uSCSTL 63.00 65.58 62.67 100.00 100.00 99.75 99.92 84.42 (19.35)

for training. For unsupervised algorithms, 60% of total samples
from target subjects are unlabeled and used for cross-subject TL.
Our experimental results were conducted in Matlab 2015a on
a laptop with intel i5 CPU@1.60 GHz, 8 GB memory, running
64-bit Windows 10 Home Edition.

As shown in Figure 9, GLRCSP and CCSP spend much
longer computation time than other algorithms when many good
source subjects are available (seven for MI1 and five for MI2).
Although CSP, COV, and TS save the running time, SCSTL and
ssSCSTL spend acceptable running time. In addition, among
all unsupervised algorithms, it takes the lowest time for DTE
since DTE only selects one most appropriate source subject. The
computation time of uSCSTL is also acceptable, although uSCSTL
approximately spends twice running time of MEKT.

DISCUSSION

In this section, we discuss the experimental results from the
following aspects.

(1) In terms of cross-subject TL

There are three non-TL algorithms (CSP, COV, and TS) in
our paper. As shown in Figures 4-6, the average classification
accuracies of TL algorithms are superior to those of non-TL
algorithms in total. It proves the validity of cross-subject TL
methods when few labeled samples from target subject are
available, thus effectively shortening the calibration time for
target subject. As depicted in Figure 9, compared with non-
TL algorithms, most cross-subject TL algorithms spend more
but acceptable running time except for GLRCSP and CCSP.
However, the cross-subject TL algorithms in our paper are all
offline algorithms, in which all samples from target and source
subjects are ready in advance. Therefore, they are not suitable for
real-time BCI applications.

(2) In terms of different feature spaces
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FIGURE 6 | Average classification accuracies of all subjects on dataset MI2, and their means, with varying Rl , for supervised and semi-supervised algorithms.

FIGURE 7 | Average classification accuracies of all subjects on dataset MI2, and their means, with varying Ru, for unsupervised algorithms.
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FIGURE 8 | The feature distributions of different algorithms displayed in the two-dimensional space.

FIGURE 9 | Computation time comparison of different algorithms.

The baseline algorithms and our proposed algorithms
are divided into three categories according to their feature
spaces, including Euclidean space-based, Riemannian space-
based, and Riemannian tangent space-based algorithms. For
Euclidean space-based cross-subject TL algorithms, GLRCSP and

CCSP spend much time in computing optimal regularization
parameters by means of cross-validation to weight the labeled
samples from different subjects. For Riemannian tangent space-
based algorithms, the hyper-parameters of MEKT and DTE
are set by experience. Our proposed algorithms are parameter
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free. As shown in Figure 8, compared with Riemannian space-
based algorithm COV, our proposed algorithms can make the
samples from same class close to each other. In a word, our
proposed algorithms can balance the classification performance
and computation time well.

(3) In terms of different subjects

All subjects on MI1 or MI2 are separated into good and
bad subjects according to their classification performances.
To avoid negative transfer, most suitable source subjects are
selected from good subjects for our proposed algorithms. As
shown in Figures 4-7, our proposed algorithms exhibit obvious
improvements over other algorithms for good target subjects.
However, our proposed algorithms perform unsteadily for bad
target subjects. The reason is that the classification performances
of our proposed algorithms depend on the discriminability of
the two-class target samples. For good target subjects, high
discriminability of labeled or unlabeled target samples can
help our proposed algorithms shorten the distances of samples
with same class and select most appropriate source subjects.
Nevertheless, for bad target subjects, low discriminability of
labeled or unlabeled target samples influences the aggregation of
the samples with same class and the source selection.

(4) In terms of labeled and unlabeled samples

To investigate the role of labeled and unlabeled samples, we
propose sSCSTL, ssSCSTL, and uSCSTL. The labeled, total, or
unlabeled samples from target subject are used to compute the
Riemannian mean and source selection. As given in Tables 1, 5,
with the help of unlabeled samples from target subject, ssSCSTL
performs slightly better than sSCSTL. Possible explanation is that
adding unlabeled samples from target subject can not only make
all samples from target subject closer, but also be good for better
source selection. As shown in Tables 2, 6, our proposed uSCSTL
displays better classification performance than MEKT and DTE
for good subjects. It suggests that unlabeled samples from good
target subject which have inherent high discriminability can
boost the performance improvement even if labeled samples from
target subject are scarce.

(5) In terms of different classifiers

The baseline algorithms and our proposed algorithms use
different supervised classifiers. Even for unsupervised TL
algorithms, MEKT, DTE, and uSCSTL only use the unlabeled
samples from target subject in the feature extraction phase.
Except for TS, all Riemannian tangent space-based algorithms
use sLDA as classifier. From the experimental results mentioned
above, sLDA is much suitable for high-dimensional features. All
Euclidean space-based algorithms and TS use LDA as classifier.
As shown in Tables 1, 5, CSP outperforms TS in most cases.
Possible explanation is that LDA may not cope with high-
dimensional features of TS well. Although the MDM classifier
is much suitable for the classification of covariance matrices, the
COV algorithm does not perform ideally due to without RA.

CONCLUSION

In this paper, we propose selective cross-subject transfer learning
in supervised, semi-supervised, and unsupervised versions based
on Riemannian tangent space. They perform RA using the
available samples from target subject and the labeled samples
from source subjects to preliminarily reduce the inter-subject
differences. Then, all aligned covariance matrices from different
subjects are converted into corresponding tangent space vectors
for classification in Euclidean space. To realize positive transfer
and relieve computational cost, the available tangent space
vectors from target subjects are used to choose most suitable
good source subjects based on SFFS. Experimental results show
that our proposed algorithms are superior to several state-of-
the-art algorithms, especially for good target subjects, when
they have few or no labeled samples. Therefore, our proposed
algorithms provide a new idea of solution for shortening
calibration time in MI BCI.

However, our proposed ssSCSTL and uSCSTL algorithms are
designed offline since the unlabeled samples from target subject
are obtained a prior, instead of on-the-fly. Thus, we will further
investigate how to adapt ssSCSTL and uSCSTl to the real-time
BCI applications. Besides, ssSCSTL and uSCSTL only utilize the
unlabeled samples from target subject in the feature extraction
phase. Future work will be dedicated to extending ssSCSTL
and uSCSTL in the classification phase to make full use of the
unlabeled samples from target subject.
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