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Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy
characterized by the progressive and irreversible loss of vision. In some cases, this is
accompanied by additional, typically neurological, extra-ocular symptoms. Underlying
the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which
form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently
identified causative genes appear to be associated with mitochondrial organization and
function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial
aberration. Despite the relatively high prevalence of this disorder, there are currently
no approved treatments. Combined with the lack of knowledge concerning the
mechanisms through which aberrant mitochondrial function leads to RGC death,
there remains a clear need for further research to identify the underlying mechanisms
and develop treatments for this condition. This review summarizes the genes known
to be causative of autosomal OA and the mitochondrial dysfunction caused by
pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models
for autosomal OA with regards to both treatment development and furthering the
understanding of autosomal OA pathology.

Keywords: mitochondria, retinal ganglion cells (RGC), optic atrophy, in vivo models, retinal organoids

INTRODUCTION

Optic atrophy (OA) with autosomal inheritance is a heterogeneous neurodegenerative disorder
primarily characterized by the bilateral degradation of axons in the optic nerve, leading to a
progressive and irreversible loss of vision. OA is largely referred to in the literature as dominant
optic atrophy, however, as we will discuss further below, both dominant and recessive forms
of the disease are common. It is thought to be the most prevalent form of hereditary optic
neuropathy, with an estimated prevalence between 1 in 25,000 to 1 in 12,000 in some regions
(Toomes et al., 2001; Yu-Wai-Man et al., 2010a). Age of onset is most commonly during the first
or second decade of life with diagnosis usually occurring during childhood (Lenaers et al., 2012;
Ham et al., 2019). Autosomal OA has a complex symptomatology and the extent of vision loss
is highly variable. Some patients experience moderate visual loss and color vision defects, while
in others the visual loss is more severe resulting in blindness. Furthermore, approximately 25%
of patients exhibit extra-ocular symptoms including ataxia, peripheral neuropathy, deafness, and
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myopathy which is referred to as syndromic-OA (Yu-Wai-
Man et al., 2010b; Ham et al., 2019). As yet, there is not a
clear understanding why some individuals develop syndromic-
OA while others, in some instances with the same underlying
genetic variations, develop non-syndromic-OA (involving visual
symptoms only) (Ham et al., 2019). Although a small-scale,
off-label trial has been conducted using the coenzyme-Q10
analog idebenone (Romagnoli et al., 2020), there is currently no
treatment commercially available for autosomal OA, representing
a significant unmet need for affected patients. Therefore, there is
a clear need to further our understanding of the molecular events
that give rise to this disorder so that we might develop additional
treatment strategies to address autosomal OA which would
have relevance for other neurodegenerative diseases. This review
discusses the converging evidence for mitochondrial dysfunction
underpinning axonopathy in autosomal OA. Furthermore, we
examine current and potential model systems available for
the study of autosomal OA, many of which would be highly
amenable to adaptation for other forms of hereditary retinal and
neurological disease.

The loss of sight in autosomal OA is associated with the
degeneration of retinal ganglion cells (RGCs), which transmit
visual information from the photoreceptors to the brain
(Miyata et al., 2007). Collectively, the axons of the RGCs
form the optic nerve (Figure 1). As with most neurons, RGCs
have a high energy demand to ensure the continuous active
transport of ions against their concentration and electrical
gradients required in membrane repolarization, maintenance of
calcium stores and synaptic vesicle mobilization (Wong-Riley,
2010). This energy is provided primarily through electron
transport within the cristae folds of the inner mitochondrial
membrane (IMM) coupled to oxidative phosphorylation
(OXPHOS) to synthesize ATP. Morphologically, RGCs comprise
complex dendritic arbors and long axons. Moreover, and
somewhat uniquely to RGCs, the most proximal portion
of the axons, within the retina, are unmyelinated (Perry
and Lund, 1990). The unmyelinated region of RGC axons
have a higher mitochondrial load (Figure 1; Perge et al.,
2009; Wilkison et al., 2021). This is generally believed to
reflect an increased energy requirement to propagate axon
potentials compared to myelinated axons, however recent
findings show that mitochondrial accumulation precedes RGC
axon myelination bringing this supposition into question
(Wilkison et al., 2021). Furthermore, while RGCs seem to be
particularly vulnerable to mitochondrial defects, autosomal
OA-causing mutations can result in degeneration of neurons
other than RGCs as evidenced by patients with syndromic-OA.
Additionally, there are several reports of the co-occurrence
of autosomal OA and other neurodegenerative disorders
specifically hereditary spastic paraplegia (HSP) (Yu-Wai-Man
et al., 2010b; Charif et al., 2020) and Charcot-Marie-Tooth
type 2 (CMT2) (Rouzier et al., 2012; Guerriero et al., 2020).
Together, these provide compelling evidence that highly
elongated neurons, such as RGCs, motor neurons, sensory
neurons and cerebella purkinje cells, are particularly sensitive to
the mutations underpinning these neurodegenerative disorders.
This emphasizes the importance of comparable in vivo models

so that molecular events specifically within long axons may be
better understood.

Autosomal OA is a genetically heterogeneous, monogenic
disorder, primarily caused by mutations in nuclear genes
encoding mitochondrial proteins. Mutations in OPA1 are the
most common cause of autosomal OA (Almind et al., 2012;
Weisschuh et al., 2021). However, as discussed in detail below,
mutations in at least 10 other genes are also associated
with autosomal OA. Identified disease-causing mutations run
the spectrum from nonsense, missense frameshift and splice
mutations, but chromosomal rearrangements including copy
number variants and inversions were also identified (Fuhrmann
et al., 2009; Weisschuh et al., 2021). The majority of disease-
causing mutations are predicted to impair the function of the
encoded protein, pointing to haploinsuffiency as the primary
mechanism of pathogenicity in dominant forms of autosomal OA
(Neumann et al., 2020; Sun et al., 2021). However, several cases
report semi-dominant inheritance, where individuals carrying
more than one OA-causing mutation present with much more
severe disease than heterozygotic parents or siblings (Pesch
et al., 2001; Weisschuh et al., 2021). Several forms of recessively
inherited OA have also been identified (associated with mutations
in TMEM126A/OPA7, SCL25A46, MCAT and RTN4IP1/OPA10)
and mutations in WFS1, ACO2/OPA9 and OPA3 are associated
with both recessive and dominant forms of OA (Reynier et al.,
2004; Meyer et al., 2010; Kloth et al., 2019; Charif et al., 2021b).
Given this genetic heterogeneity, we use the term ‘autosomal OA’
throughout this review.

All of the genes implicated in autosomal OA encode proteins
associated with mitochondrial function, the majority being
nuclear genes encoding mitochondrial proteins (Charif et al.,
2021a). These genes have roles in mitochondrial fission or fusion,
mitochondrial respiration, mitochondrial DNA replication and
mitochondrial fatty acid synthesis (Figure 2). Furthermore,
disrupted mitochondrial network morphology and reduced
respiratory efficiency are consistently observed in autosomal
OA patient fibroblasts (Kane et al., 2017; Liao et al., 2017) as
well as in cell and animal models (Rahn et al., 2013; Maloney
et al., 2020). Autosomal OA is not unique amongst optic
neuropathies to be characterized by mitochondrial dysfunction.
Mitochondrial dysfunction is a common feature of many
retinal diseases including: Leber’s Hereditary Optic Neuropathy
(LHON) and glaucoma (Bahr et al., 2020; Duarte, 2021). Indeed,
mitochondrial dysfunction is now recognized as a common
feature of axonopathies generally (Krols et al., 2016). While
there is strong evidence to suggest mitochondrial dysfunction is
central to neurodegeneration in autosomal OA, the underlying
mechanism, and why RGCs are particularly vulnerable, remains
unknown. In this article we provide a comprehensive review
of studies investigating the functions of known autosomal OA-
causing genes and emphasize that, despite their heterogeneity,
there are just a few converging pathogenic themes emerging.
Furthermore, we investigate the range of in vivo models available
which offer potential to better understand the molecular and
cellular events underpinning autosomal OA, and assess their
suitability to uncover why RGCs may be particularly targeted in
OA and to identify novel therapeutic strategies.
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FIGURE 1 | Unmyelinated axons within the optic nerve are associated with a greater mitochondrial load. The axons of the RGCs are unmyelinated within the retina,
an adaptation which likely exists to prevent myelin from impeding light reaching the photoreceptors. Myelination initiates following the lamina cribrosa, a network of
collagen fibers in the optic nerve head approximately 400 µm thick the RGC axons traverse to pass through the sclera. The unmyelinated region is associated with a
higher density of mitochondria than the adjacent myelinated sections. This unique architecture of the RGCs is a possible explanation as to why the optic nerve
appears so vulnerable to degeneration associated with mitochondrial dysfunction.

GENE MUTATIONS CAUSING
AUTOSOMAL OPTIC ATROPHY

Most currently identified genes causative of autosomal OA
can be broadly classified into two functional categories;
mitochondrial fission/fusion and mitochondrial respiration;
albeit two autosomal OA genes, with roles in mtDNA replication
and mitochondrial fatty acid synthesis, do not clearly fit
into either of these categories. These categories are not
mutually exclusive; on the contrary, disruption of mitochondrial
morphology through altered fission/fusion dynamics is known
to alter mitochondrial respiration and mtDNA stability (Chen
et al., 2010; Quintana-Cabrera et al., 2018; Glancy et al., 2020).
Below we examine the function of proteins encoded by OA-
causing genes and the mitochondrial aberrations associated
with disease-causing mutations. For this review, we focus on
autosomal OA-causing genes linked to more than two families
where there is clear evidence that OA is the primary feature
of disease (Table 1). We therefore do not include discussion
on genes that cause optic atrophy as a feature of another
neurological disorder such as NDUFS2 (primarily associated
with Leigh syndrome) (Gerber et al., 2017a), SPG7 (primarily
associated with HSP) (Charif et al., 2020), CISD2 (primarily
associated with Wolfram syndrome) (Delprat et al., 2018),
C19orf12 (primarily associated with MPAN syndrome) (Mignani
et al., 2020) or MFN2 (primarily associated with CMT2)
(Bombelli et al., 2014). The role of many of these genes in
mitochondrial function has been recently reviewed elsewhere
(Maresca and Carelli, 2021).

Mitochondrial Fission/Fusion
Mitochondria are highly dynamic organelles which constantly
undergo fission, whereby mitochondria divide into smaller
‘daughter’ mitochondria, and fusion, whereby two or
more mitochondria fuse together. These processes permit
mitochondria to regulate their distribution according to
metabolic demand (Wai and Langer, 2016), to communicate
mtDNA and protein content (Silva Ramos et al., 2016) and
to regulate mitochondrial turnover via mitophagy (Xian and
Liou, 2021). To date, five genes encoding proteins which
function in mitochondrial fission/fusion have been associated
with autosomal OA: OPA1, AFG3L2/OPA12; SLC25A46; OPA3;
DNM1L/OPA5 (Figure 2).

OPA1
Optic atrophy 1 (OPA1) is a ubiquitously expressed, highly
conserved gene with OPA1 homologs present in all higher
metazoans (Wong et al., 2003; Li et al., 2019). It encodes
a dynamin-like GTPase localized to the inner mitochondrial
membrane (IMM) and is essential for IMM fusion following
the fusion of the outer mitochondrial membrane (OMM)
by the mitofusins (MFN1 and MFN2) (Song et al., 2009).
OPA1 is produced as a long-form (L-OPA1) which can be
cleaved by either of two proteolytic enzymes, YME1L or
OMA1 respectively, to produce short-form OPA1 (S-OPA1)
(Anand et al., 2014). Regulation of mitochondrial fusion depends
on OPA1 processing and while either L- or S-OPA1 are
sufficient to induce mitochondrial fusion, optimal fusion requires
the presence of equimolar concentrations of both isoforms
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FIGURE 2 | Mitochondrial localization and function of autosomal OA genes. Schematic demonstrating the localization and function of proteins encoded by
autosomal OA-associated genes. The localization of proteins encoded by autosomal OA-associated genes within and in association with the mitochondria
emphasizes the relevance of these organelles to autosomal OA. WFS1 is localized to the ER, but is enriched at MAMs. DNM1L is recruited from the cytoplasm to the
OMM to facilitate mitochondrial fission. There is conflicting evidence as to whether OPA3 is localized to the IMM or OMM.

TABLE 1 | Summary of autosomal OA-associated genes and their inheritance.

Gene Inheritance Disease presentation Reported Mitochondrial Dysfunction

OPA1 Mainly dominant Mainly non-syndromic Fragmented mitochondrial network, abnormal cristae, respiratory defects, mtDNA
depletion

AFG3L2/OPA12 Mainly dominant Mainly non-syndromic Increased proteolytic processing of OPA1, mitochondrial fragmentation

SLC25A46 Recessive Syndromic Abnormal mitochondrial morphology, abnormal cristae, depletion of the MICOS
complex, respiratory defects, mtDNA maintenance deficit

OPA3 Mainly dominant Mainly non-syndromic Elongated mitochondria, abnormal cristae, aberrant respiratory function

DNM1L/OPA5 Dominant Non-syndromic Elongated mitochondria, reduced mitochondria/peroxisome turnover, reduced
respiratory capacity

WFS1 Mainly recessive Both syndromic and
non-syndromic

Reduced mitochondria-ER contacts, mitochondrial calcium accumulation, loss of
mitochondrial membrane potential, reduced ATP production

ACO2/OPA9 Both Mainly non-syndromic Respiratory defects, impaired mtDNA maintenance

RTN4IP1/OPA10 Recessive Syndromic Fragmented mitochondria, respiratory defects

TMEM126A/OPA7 Recessive Mainly non-syndromic Respiratory defects

SSBP1/OPA13 Dominant Mainly non-syndromic mtDNA depletion, abnormal cristae, respiratory deficit

MCAT Recessive Non-syndromic Respiratory Defects, abnormal mitochondrial morphology

(Anand et al., 2014; Ge et al., 2020; Ohba et al., 2020). OPA1 is
the most common gene implicated in autosomal OA, accounting
for roughly 70% of cases (Ferré et al., 2009). Non-syndromic-
autosomal OA appears to be generally associated with mutations
resulting in haploinsufficiency, whilst missense mutations are
associated with syndromic-autosomal OA, and more severe
ocular symptoms (Carelli et al., 2015; Ham et al., 2019). This
is proposed to be due to a dominant negative effect (Amati-
Bonneau et al., 2009). Approximately 20% of OPA1 patients have
extra ocular symptoms, most commonly sensorineural deafness,
but additionally peripheral neuropathy, ataxia, myopathy and

parkinsonism (Lynch et al., 2017; Ham et al., 2019). Although the
vast majority of OPA1 mutations are inherited in an autosomal
dominant manner, there are examples of individuals carrying
2 apparently recessive pathogenic OPA1 mutations, usually
exhibiting compound heterozygosity. These patients present
with a more severe syndromic-autosomal OA, often associated
with unusual features such as developmental delays, pyramidal
tract abnormalities, and neuromuscular disorders (Zerem et al.,
2019; Zeng et al., 2020). Some OPA1 mutations also appear to
exhibit incomplete penetrance, with many examples of seemingly
unaffected carriers of pathogenic mutations, as well as variable
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pathology within families bearing the same mutation (Toomes
et al., 2001; Cohn et al., 2008). Whilst no modifying genes
have been identified to explain this, there is evidence to suggest
alcohol and tobacco consumption may be associated with more
severe symptoms (Mei et al., 2019). Both patient fibroblasts
and cell models bearing pathogenic mutations of OPA1 have
a characteristic fragmented mitochondrial network, consistent
with a mitochondrial fusion disorder, and highly disordered
cristae (Liao et al., 2017; Del Dotto et al., 2018). Through its key
role in cristae organization, changes in OPA1 expression affect the
stability of the respiratory supercomplexes (Cogliati et al., 2013),
quaternary structures adopted by components of the electron
transport chain to carry out cellular respiration (Letts et al.,
2016). Subsequently, defects in OXPHOS are often associated
with insufficient OPA1 activity (Lee et al., 2017; Sun et al., 2020).
Consistent with this, widespread respiratory defects, including
decreased ATP synthesis, increased oxygen consumption and
reduced respiration, have all been reported in OPA1 patient
fibroblasts and cell models (Zanna et al., 2008; Millet et al., 2016;
Zhang et al., 2017). The manner and extent to which respiration
is affected appears to vary between OPA1 mutations, with some
evidence to suggest that respiratory defects are associated with
more severe vision loss (van Bergen et al., 2011). It is perhaps
unsurprising that there is substantial variation between patients,
due to incomplete penetrance and heterogeneity of symptoms.

AFG3L2/OPA12
AFG3L2/OPA12 encodes a mitochondrial AAA quality-control
protease which is tethered to the IMM and exposes its enzymatic
domain to the mitochondrial matrix (Puchades et al., 2019).
Missense mutations, generally within the AAA domain of
AFG3L2/OPA12, give rise to isolated, dominantly inherited
autosomal OA, though rarer biallelic mutations have been
reported which result in more severe, syndromic-autosomal OA
(Colavito et al., 2017; Baderna et al., 2020; Caporali et al.,
2020). Of note, missense mutations in AFG3L2/OPA12 are also
known to cause the unrelated disorders spinocerebellar ataxia
type 28 (SCA28) and spastic ataxia syndrome 5 (SPAX5) but
these mutations are generally localized within the proteolytic
domain of the protein (Caporali et al., 2020). AFG3L2 is known
to have vital roles in mitochondrial maintenance including
mitochondrial ribosome assembly, electron transport chain
complex processing and calcium homeostasis (Puchades et al.,
2019; Pareek and Pallanck, 2020) however, the mechanism
by which missense mutations give rise to autosomal OA was
only recently discovered. Two independent studies revealed
that autosomal OA-causing mutations in AFG3L2/OPA12 cause
hyperactivation of OMA1, the protease that acts on L-OPA1,
resulting in increased processing of L-OPA1 to S-OPA1 (Baderna
et al., 2020; Caporali et al., 2020). This imbalance in L-OPA1/S-
OPA1 results in mitochondrial fragmentation which is evident in
both engineered MEFs and patient fibroblasts.

SLC25A46
SLC25A46 encodes a member of the solute carrier family
25 (SLC25), a group of proteins primarily localized to the
IMM containing six alpha-helical membrane spanning domains

(Pebay-Peyroula et al., 2003). Many members of the SLC25 family
are responsible for the transport of metabolic intermediates (such
as glutamate and ADP/ATP) into the cell (Fiermonte et al., 2002;
Kunji et al., 2016), with some functioning as uncoupling proteins
(Fedorenko et al., 2012). SLC25A46 is unusual in the SLC25
protein family in that it localizes to the OMM (Janer et al.,
2016) and has no known transporter function nor any identified
substrates. Recessive, loss-of-function mutations in SLC25A46
are associated with syndromic-autosomal OA (Nguyen et al.,
2017; Bitetto et al., 2020). There are a wide spectrum of
reported symptoms, including Parkinsonism, Leigh syndrome,
cerebellar ataxia, and congenital pontocerebellar hypoplasia,
usually accompanied by optic atrophy (Wan et al., 2016; Hammer
et al., 2017; Bitetto et al., 2020). Whilst the exact function of
SLC25A46 is unknown, it likely has a role in mitochondrial
fission/fusion dynamics. Loss of SLC25A46 function has been
associated with both elongated mitochondria, suggestive of
aberrant fission (Abrams et al., 2015; Wan et al., 2016) and small,
circular mitochondria, which would be indicative of a fusion
defect (Duchesne et al., 2017). Overexpression appears to induce
fragmentation in the mitochondrial network, which would also
be consistent with a role in fission (Abrams et al., 2015). Both
patient samples and SLC25A46 models usually display highly
abnormal mitochondrial cristae (Janer et al., 2016; Li et al., 2017;
Zou et al., 2021) in some cases being completely detached from
the IMM (Duchesne et al., 2017). Consistent with this, SLC25A46
is thought to operate upstream of the MICOS complex, which is
significantly depleted in SLC25A46 knockout cells. The MICOS
is a large protein complex localized to the IMM where it is crucial
for the structural organization of the cristae (Friedman et al.,
2015) and interacts with both OPA1 and MFN2 (Janer et al.,
2016). Depletion of its constituents have been shown to have
deleterious effects on processes reliant on the structural integrity
of the cristae, such as mtDNA maintenance and respiration (John
et al., 2005; Genin et al., 2016; Gödiker et al., 2018).

OPA3
OPA3 encodes a protein of unknown function localized to
mitochondria, with conflicting evidence as to whether it localizes
to the IMM or OMM (Da Cruz et al., 2003; Ryu et al., 2010).
Most autosomal OA-causing mutations in OPA3 are dominantly
inherited and result in non-syndromic disease, although hearing
loss and extra-ocular neurological symptoms consistent with
syndromic-autosomal OA have also been observed in some
patients (Reynier et al., 2004; Sergouniotis et al., 2015). Recessive
loss of function OPA3 mutations are most often associated
with Costeff syndrome, which resembles syndromic-autosomal
OA with some additional features such as cognitive deficit
and extrapyramidal dysfunction (Grau et al., 2013). While
there remains ambiguity surrounding the precise function of
OPA3, overexpression and knockout studies support a role in
mitochondrial fission/fusion dynamics. Overexpression of OPA3
in patient-derived or retinal pigment epithelium-cell models
creates a highly fragmented mitochondrial network, suggestive
of a role in mitochondrial fission (Ryu et al., 2010; Maresca
et al., 2012). Consistent with this, fibroblasts from some OPA3
patients were recently reported to have enlarged mitochondria
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with slightly fragmented cristae (Horga et al., 2019). It is not
currently clear whether the altered mitochondrial morphology
resulting from OPA3 mutations disrupts mitochondrial function
with conflicting reports on the effect of loss of OPA3 on
ATP production and oxygen consumption (Pei et al., 2010;
Meng et al., 2020).

DNM1L/OPA5
Dynamin 1-like (DNM1L)/OPA5 encodes a dynamin-like GTPase
which is an essential protein in the regulation of mitochondrial
fission. DNM1L is recruited to the OMM from the cytosol
by mitochondrial fission factors: MFF, MID49, and MID51,
where it oligomerizes forming a ring-like structure around the
mitochondria (Palmer et al., 2011; Fröhlich et al., 2013). It
then uses GTP hydrolysis to constrict the membrane, which
can subsequently undergo scission. Presently, there are very
few examples of autosomal OA patients with DNM1L/OPA5
variations (Gerber et al., 2017b). These patients, from three
families, harbor 2 separate mutations within the GTPase
domain, and appear to exhibit dominant inheritance. All
patients present with non-syndromic-autosomal OA, except
one individual who additionally had slight hearing loss.
DNM1L/OPA5 mutations have previously been associated with
forms of severe encephalopathy and epilepsy, often associated
with infant mortality (Fahrner et al., 2016; Zaha et al., 2016).
These disease-causing mutations have been reported in both the
middle and GTPase domains of DNM1L and, apart from rare
examples (Waterham et al., 2007; Chao et al., 2016), do not
appear to be associated with optic atrophy (Fahrner et al., 2016;
Ladds et al., 2018). Patient fibroblasts from individuals with non-
syndromic-autosomal OA, as well as a yeast model expressing the
patient mutation, display an elongated mitochondrial network,
consistent with a mitochondrial fission defect (Gerber et al.,
2017b). However, alterations in respiratory capacity, aberrant
peroxisomes or reduced mitochondrial/peroxisomal turnover,
which have been reported in samples from DNM1L-mediated
encephalopathy patients, are not observed models of OA (Sheffer
et al., 2016; Zaha et al., 2016; Longo et al., 2020).

Three further genes that function in the regulation of
mitochondrial fission/fusion have recently been associated with
autosomal OA. These include the genes encoding the IMM
protease YME1L1/OPA11 and the OMM proteins mitochondrial
elongation factor 1 (MIEF1) and mitochondrial fission factor
(MFF). Only a few individuals or single families have been
identified with these mutations thus far, hence did not fulfill
our criteria for more extensive discussion, however it appears
that heterozygous mutations in MIEF1 cause dominantly
inherited non-syndromic-autosomal OA (Charif et al., 2021c)
while homozygous mutations in YME1L1/OPA11 or MFF cause
recessively inherited syndromic-autosomal OA (Shamseldin
et al., 2012; Hartmann et al., 2016; Koch et al., 2016). All 3 of
the proteins encoded by these genes function in the regulation
of mitochondrial fission/fusion; YME1L1 via the proteolytic
processing of OPA1 (Song et al., 2007; Stiburek et al., 2012),
MIEF1 via the sequestration of DNM1L (Zhao et al., 2011;
Yu et al., 2017) and MFF via recruitment of DNM1L to
mitochondrial fission sites (Otera et al., 2010; Losón et al., 2013).

Mitochondria in cells expressing disease-causing mutations or
patient fibroblasts all display disrupted organization, consistent
with defective regulation of fission/fusion (Koch et al., 2016;
Cesnekova et al., 2018; MacVicar et al., 2019).

Mitochondrial Respiratory Function
Respiration refers to a series of reactions through which the cell
breaks down macronutrients to release their energy in the form
of adenosine triphosphate (ATP). Mitochondria are essential for
this process, housing both the citric acid cycle and electron
transport chain. The citric acid cycle is a process through which
the metabolic intermediate pyruvate undergoes a series of redox
reactions to reduce the electron carriers NADH and FADH2,
which then pass their electrons onto the respiratory complexes
of the electron transport chain, ultimately producing most of
the cell’s energy through OXPHOS (Papa et al., 2012). Neurons
are usually highly energetically demanding, partly due to the
process of neurotransmission itself (Harris et al., 2012), but
additionally due to the comparatively large distance over which
cargo, including organelles and synaptic components, must be
transported along axons and dendrites (Mandal and Drerup,
2019). RGCs are no exception to this, in fact they are particularly
vulnerable to bioenergetic perturbation. There is evidence
that RGCs may utilize glycolysis in addition to OXPHOS to
meet the considerable energetic demands imposed by their
unique architecture (Trevisiol et al., 2017; Casson et al., 2021).
Four autosomal OA-causing genes are associated with cellular
respiration: WSF1, ACO2, RTN4IP1 and TMEM126A (Figure 2).

WFS1
After OPA1, the second most common gene associated with
optic atrophy is wolframin (WFS1). Mutations in WFS1 were
primarily identified to cause Wolfram syndrome type 1 (WS1),
a recessive condition characterized by diabetes, optic atrophy
and deafness (Inoue et al., 1998; Wragg et al., 2018). However,
mutations in WFS1 are recognized as a frequent cause of optic
atrophy independent of other WS1 symptoms (Hogewind et al.,
2010; Grenier et al., 2016; Charif et al., 2021a). In fact, a
recent screen of over 1,000 autosomal OA patients identified
WFS1 mutations in 12% of dominant-autosomal OA and 39% of
receive-autosomal OA patients (Charif et al., 2021a). Autosomal
OA mutations are most commonly missense mutations, though
truncating mutations have been identified (Hogewind et al.,
2010; Grenier et al., 2016). A reduction in available protein is
proposed as the pathogenic mechanism, with missense mutations
appearing to decrease the half-life of the resulting wolframin
protein (Hofmann et al., 2003). This was supported by a recent
study which found that the extent of optic atrophy progression
in patients correlates with the degree of decrease in wolframin
protein (Hu et al., 2021). Wolframin is a transmembrane protein
enriched at mitochondria-associated ER membranes (MAM) (La
Morgia et al., 2020). It is ubiquitously expressed with particularly
high levels of expression in the optic-nerve (Yamamoto et al.,
2006; Schmidt-Kastner et al., 2009). Wolframin has roles in
many cellular pathways including ER stress (Fonseca et al., 2010;
Odisho et al., 2015), calcium homeostasis (Takei et al., 2006;
Nguyen et al., 2020) and mitochondrial activity (Kõks et al., 2013;
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Angebault et al., 2018). However, there exists good evidence
that disruption of mitochondrial function by loss of WFS1
is critical to pathogenicity in OA. Mitochondrial metabolism
and ATP production are tightly regulated by the proper
transfer of calcium ions from the ER at MAMs (Denton, 2009;
Llorente-Folch et al., 2015) and disruption of MAMs impacts
mitochondrial function in several models of neurodegenerative
disease (Lee et al., 2018). Wolframin localizes to MAMs and the
proportion of mitochondria in contact with the ER is significantly
reduced in fibroblasts from patients carrying WFS1 mutations
(Angebault et al., 2018; La Morgia et al., 2020). As predicted,
this MAM disruption results in reduced calcium accumulation
within mitochondria and decreased mitochondrial function in
patient fibroblasts (Angebault et al., 2018; La Morgia et al.,
2020). Moreover, primary cortical neurons in which WFS1 has
been knocked down by siRNA display decreased membrane
potential and cytosolic ATP (Cagalinec et al., 2016) further
supporting a role for mitochondrial dysfunction underpinning
neurodegeneration in autosomal OA caused by WFS1 mutations.

ACO2/OPA9
Mutations in the gene encoding citric acid cycle enzyme aconitase
2 (ACO2)/OPA9 were until recently believed to be quite a rare
cause of inherited optic atrophy. Individual families had been
identified with loss-of-function ACO2 mutations leading to both
dominantly inherited syndromic-autosomal OA or recessively
inherited non-syndromic-autosomal OA (Metodiev et al., 2014;
Kelman et al., 2018; Neumann et al., 2020). However, a recent
study using next-generation sequencing to identify causative
genes in a large, multicenter cohort of patients with autosomal
optic neuropathies, reported that 12% of autosomal OA cases
had pathogenic mutations in the gene ACO2 (Charif et al.,
2021b). In this study, recessive cases displayed significantly
worse vision loss than dominant cases while 12–27% displayed
extraocular symptoms (Charif et al., 2021b). This implies
that ACO2/OPA9 mutations are the third leading cause of
autosomal OA after OPA1 and WFS1. ACO2/OPA9 encodes
the mitochondrial aconitase 2 enzyme, a lyase that converts
citrate to isocitrate within the citric acid cycle (Martius, 1937).
The citric acid cycle consists of a series of redox reactions
in the mitochondrial matrix through which pyruvate, the final
product of glycolysis, is used to reduce the electron carriers
NAD and FADH for the OXPHOS pathway. Through this
mechanism, ACO2 is important for generating ATP through
aerobic respiration. To date, disease-causing mutations have not
been studied in neuronal cells, but patient-derived fibroblast
consistently show reduced ACO2 enzymatic activity, impaired
maintenance of mtDNA and decreased respiratory function
(Neumann et al., 2020; Charif et al., 2021b). This supports
the hypothesis that mitochondrial dysfunction underpins RGC
degeneration in these patients, though animal models to validate
and study this further are required.

RTN4IP1/OPA10
Reticulon 4 interacting protein 1 (RTN4IP1)/OPA10 encodes a
widely expressed protein localized to the OMM (Hu et al., 2002;
Angebault et al., 2015). It contains an oxidoreductase domain

and is believed to act on Complex I of the mitochondrial
respiratory chain (Hu et al., 2002). Homozygous or compound
heterozygous mutations in RTN4IP1/OPA10 are found across
many different populations to cause recessive forms of autosomal
OA (Okamoto et al., 2017; Zou et al., 2019; D’Gama et al.,
2021). Patients generally present with syndromic autosomal OA,
with epilepsy, chorea and encephalopathy commonly reported,
and it is suggested that more severe symptoms are associated
with more deleterious mutations in the RTN4IP1/OPA10 gene
(D’Gama et al., 2021). Recently, it has also been reported that
some patients experience degeneration of the rods in addition to
RGCs, expanding the spectrum of neurons that are disrupted by
loss of this protein (Meunier et al., 2021; Rajabian et al., 2021).
Autosomal OA-causing mutations result in a marked decrease
or loss of RTN4IP1 protein expression in patient fibroblasts and
muscle biopsies (Angebault et al., 2015; Charif et al., 2017).
Moreover, there is clear evidence that mitochondrial function
are disrupted by these mutations. Examination of patient
fibroblasts reveals a reduction in activity of the mitochondrial
respiratory chain, specifically Complex I (Angebault et al., 2015;
Charif et al., 2017). Whilst the precise function of RTN4IP1
is currently unknown, Angebault et al. (2015) generated both
mouse and zebrafish models with depleted RTN4IP1. Mouse
pups demonstrated an increase in dendrite numbers and dendrite
arborization, whilst the RGC layer was completely absent from
the retina of zebrafish RTN4IP1 morphants. Whilst human
samples were not available for histological analysis, patients did
appear to exhibit smaller optic disks. This implies that RTN4IP1
has an important developmental role linked to the RGCs which
may contribute to OA pathogenesis.

TMEM126A/OPA7
TMEM126A/OPA7 encodes a highly conserved IMM protein
which functions in the mitochondrial respiratory chain Complex
I assembly pathway. Homozygous mutations, both missense
and nonsense mutations, are reported to cause recessive forms
of autosomal OA (Hanein et al., 2009; Meyer et al., 2010;
Li J. K. et al., 2020). Patients primarily present with non-
syndromic autosomal OA, but auditory neuropathy has been
reported in some families (Meyer et al., 2010; Désir et al.,
2012; La Morgia et al., 2019). Recently, two independent
studies show that TMEM126A is necessary for the biogenesis
and function of mitochondrial respiratory chain Complex I
(D’Angelo et al., 2021; Formosa et al., 2021). TMEM126A/OPA7
knockout cells are deficient for Complex I and display decreased
respiratory capacity (D’Angelo et al., 2021; Formosa et al., 2021).
Significantly, autosomal OA patients with TMEM126A/OPA7
mutations show partial Complex I deficiency in addition to
increased lactic acid levels following exercise (Hanein et al.,
2009; La Morgia et al., 2019), suggesting that defective OXPHOS
contributes to disease pathogenesis in these patients.

Mitochondrial Fatty Acid Synthesis and
mtDNA Replication
Currently, two autosomal OA-causing genes do not clearly fit
into the functions contributing to mitochondrial fission/fusion
or respiratory function, specifically SSBP1 and MCAT which
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function in the regulation of mitochondrial DNA replication
and mitochondrial fatty acid synthesis, respectively. While
these genes may appear to be disparate to other OA-causing
genes in terms of their roles in mitochondria, there are clear
similarities in the mitochondrial dysfunction observed when
these genes are disrupted. Specifically mitochondrial morphology
and respiratory function are impaired in patient fibroblasts
or knockout cells, suggesting that the underlying pathogenic
mechanism of action may be analogous to that of other OA-
causing genes. Furthermore, with a growing list of novel
OA-causing mutations being identified, it may be that other
genes with similar functions are identified to cause OA over
the coming years.

SSBP1/OPA13
Single-stranded DNA binding protein 1 (SSBP1)/OPA13 is a
nuclear-encoded housekeeping gene involved in mitochondrial
biogenesis. SSBP1/OPA13 encodes a constituent of the mtDNA
replisome which, along with the mitochondrial DNA polymerase
Pol γ and the helicase Twinkle, is one of the essential
components for mtDNA replication (Korhonen et al., 2004).
During mtDNA synthesis, SSBP1 binds the heavy strand,
increasing the activity of Pol γ through maintaining the ssDNA
in a favorable conformation and preventing the formation of
secondary structure (Ciesielski et al., 2015). SSBP1 also stimulates
the unwinding activity of Twinkle (Oliveira and Kaguni, 2011).
Missense mutations in SSBP1/OPA13 cause autosomal OA in
at least 14 different European families, though the prevalence
of this mutation in other populations is not known (Jurkute
et al., 2019; Del Dotto et al., 2020; Piro-Megy et al., 2020).
Almost all families show dominant inheritance of non-syndromic
autosomal OA and rod-cone dystrophy in addition to the optic
atrophy is common, indicating that retinal neurons other than
RGCs are susceptible to mitochondrial dysfunction induced by
SSBP1/OPA13 mutations (Jurkute et al., 2019; Del Dotto et al.,
2020). Autosomal OA-causing mutations in SSBP1/OPA13 do
not affect gene expression, though stability of the SSBP1 protein,
particularly protein dimers, is likely reduced by some missense
mutations (Del Dotto et al., 2020; Piro-Megy et al., 2020).
Moreover, patient fibroblasts consistently reveal significant
depletion of mtDNA, providing strong evidence that autosomal
OA-causing mutations destabilize the replication machinery and
disrupt the fidelity of mtDNA replication (Del Dotto et al.,
2020; Piro-Megy et al., 2020). Loss of mtDNA results in swollen
mitochondria with disorganized cristae and a severe respiratory
deficit, which are common in patient fibroblasts (Del Dotto
et al., 2020; Piro-Megy et al., 2020). This is consistent with
mitochondrial disruption observed in SSBP1 knockdown cells
(Wang et al., 2017) and supports a loss of function pathogenic
mechanism underpinning autosomal OA in these patients.

MCAT
Malonyl-CoA-acyl carrier protein transacylase (MCAT) is a
nuclear-encoded gene involved in mitochondrial fatty acid
synthesis (mtFAS), a comparatively poorly understood pathway
distinct from the cytosolic equivalent. Malonyl-CoA is a key

intermediate in mtFAS, transferring malonate from malonyl-
CoA to the acyl carrier protein (ACP), an important step
in fatty acid elongation. A rare cause of autosomal OA,
MCAT mutations give rise to non-syndromic-autosomal OA,
and appear to have a recessive mode of inheritance (Li H.
et al., 2020; Gerber et al., 2021). In silico analysis suggests
autosomal OA-causing mutations make the resulting MCAT
protein unstable and less able to bind malonyl-CoA (Gerber et al.,
2021), however, this has not been examined directly in patient
samples or model systems. Studies in conditional Mcat knockout
mice reveal that the mtFAS pathway produces the octanoyl
precursor required for lipoylation of key mitochondrial proteins
involved in the citric acid cycle, namely pyruvate dehydrogenase
complex and α-ketoglutarate dehydrogenase (Smith et al., 2012).
Depletion of Mcat, or other genes involved in mtFAS, results
in a significant depletion of the respiratory complexes and
limits the ability of mitochondria to respire (Smith et al.,
2012; Nowinski et al., 2020). Mitochondria in cells expressing
MCAT mutations are disrupted, displaying a thin, thread-like
morphology with unidentified debris within the mitochondrial
matrix (Li H. et al., 2020). Moreover, they show a reduced ability
to uptake MitoTracker, consistent with impaired IMM function,
specifically an inability to sustain its membrane potential
(Keij et al., 2000). Interestingly, mutations in another mtFAS
component, MECR, cause the rare neurological disorder MEPAN
syndrome, which features optic atrophy (Heimer et al., 2016;
Gorukmez et al., 2019). Further study is needed to characterize
this pathway, in order to better understand why perturbation
leads to mitochondrial dysfunction.

Taken together, it is clear that there are converging pathogenic
pathways related to mitochondrial organization and function
underpinning autosomally inherited OA. Going forward, we
should look to studies of animal models of OA to help elucidate
the particular susceptibility of RGCs and other long axons to
these disruptions, as well as to identify promising targets for
therapeutic interventions.

IN VIVO MODELS OF AUTOSOMAL
OPTIC ATROPHY

Whilst in vitro models are invaluable for investigating the
molecular underpinnings of disease, there are limitations in their
applicability to studying OA. The specific architecture of RGCs,
with long and heterogeneously myelinated axons, cannot yet be
accurately replicated in cell culture nor in non-polarized cells
such as patient fibroblasts. Moreover, as the progressive loss
of visual acuity is a key unifying symptom of OA, the ability
to assess visual function is paramount to both the study of
OA disease pathology and assessing the value of any potential
treatment. This necessitates the use of in vivo models which can
be used for in situ examination of RGCs and optic nerves, as
well as functional studies reflecting changes in visual function in
response to OA-associated genetic mutations, and subsequently
assessing treatments. This section evaluates the utility of the most
commonly used animal models in the study of mitochondrial
disruption in neurons of relevance to OA.
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Mouse Models
Anatomically, the mouse retina is stratified in a very similar
manner to that of humans, with the outermost ganglion
cell layer facing the vitreous body and the innermost retinal
pigment epithelium adjacent to the choroid. There are however
some notable differences, for example, mice do not possess a
collagenous lamina cribrosa, which is relevant to the study of
OA as it surrounds and supports the unmyelinated RGC axons
as they exit the sclera and form the optic nerve (Chen et al.,
2017). Optic nerve density also appears to vary considerably
between populations of laboratory mice, which may affect
susceptibility to optic nerve atrophy, and should be considered
when selecting backgrounds for autosomal OA models (Jeon
et al., 1998). As with all models – gene editing – in particular
CRISPR/Cas9 mediated gene editing, has become an invaluable
tool for recapitulating genetic disease in mice. There are many
established protocols for creating KOs, recreating patient-specific
mutations and the insertion of human genes of interest into
mice (Platt et al., 2014; Chen et al., 2019; Min et al., 2019).
However, there are important considerations when selecting
a laboratory strain to develop an autosomal OA model as
several strains of laboratory mice develop age-related hearing
loss, a common extra-ocular symptom of many autosomal OAs
(Turner et al., 2005), and basal visual acuity varies significantly
between strains (Wong and Brown, 2006), which may confound
results. An advantage of mice for modeling OA is the array
of assays available for examining both visual function and
RGC morphology. Typically, measuring visual acuity orientates
around measuring the optokinetic and optomotor reflexes and
the pupillary response (Kretschmer et al., 2017). A significant
obstacle is that some of these assays require some form of trained
behavior. Mice are proficient learners at repetitive tasks, therefore
increased task performance over time may somewhat obscure
aspects of the degenerative phenotype seen in most forms of OA
(Birtalan et al., 2020).

Many mouse models of autosomal OA have been reported
and several common features are apparent from these studies
(Table 2). Dominantly inherited autosomal OA-causing
mutations are generally found to be embryonic lethal in
homozygous mice and as such, many mouse studies linked to
autosomal OA are conducted in heterozygotes (Wakabayashi
et al., 2009; Jiang et al., 2021). Some studies report a progressive
loss of visual acuity (Davies et al., 2007; Zaninello et al., 2020),
although most do not investigate the presence of a visual
phenotype. Many studies observe progressive degeneration of
the RGCs which in some cases is accompanied by myelination
defects of the optic and peripheral nerves (Li et al., 2017;
Waszczykowska et al., 2020). Most models exhibit extra-
ocular symptoms common to syndromic-autosomal OA,
including progressive motor and hearing impairments often
attributed to neuropathy (Sarzi et al., 2012; Mancini et al., 2019).
Significantly, nearly all autosomal OA mouse models show
some form of neuronal mitochondrial dysfunction, generally in
the form of a highly fragmented mitochondrial network with
a reduced number of malformed cristae (Powell et al., 2011;
Sarzi et al., 2012). Elongated networks have also been observed
in mice with Slc25A46 and Dnm1l mutations, consistent with

observations from patient fibroblasts (Wan et al., 2016; Gerber
et al., 2017b). Furthermore, several mouse models faithfully
recapitulate gene-specific symptoms, such as glucose intolerance
in Wfs1 mutants (Ishihara et al., 2004; Kõks et al., 2009). Taken
together, it’s clear that mouse models of autosomal OA can
recapitulate key characteristics of this disorder. Despite many
autosomal OA-type phenotypes, there are several phenotypes
which are consistently observed in mouse autosomal OA-models
which are not generally associated with the corresponding
human pathogenic mutations. Most commonly, mice with loss
of autosomal OA-causing genes display: reduced body size and
difficulty gaining weight (Smith et al., 2012; Wells et al., 2012) and
cardiomyopathy (Davies et al., 2008; Jiang et al., 2021). In many
cases, these symptoms are not detectable in patients carrying the
comparable pathogenic mutation and whilst many autosomal
OA-causing genes are thought to have a developmental role
in humans, there is presently little evidence for developmental
abnormalities affecting these organs in patients (Maltecca et al.,
2008; Caglayan et al., 2020).

Zebrafish-Danio rerio Models
Danio rerio (subsequently referred to simply as zebrafish), and
particularly zebrafish larvae, are an emerging model in vision
research. The stratification and function of the zebrafish retina
is very similar to that of humans, with a comparable cone
density. Zebrafish have four different cone types in comparison
to the three cone types found in humans, conferring superior
color vision, which is often affected in autosomal OA patients.
Zebrafish possess RGCs which converge to form the optic nerve
(also known as cranial nerve II in zebrafish), cross at the optic
chiasm, and innervate the optic tectum, the visual center of the
brain (Diekmann et al., 2015). Notably, RGCs in zebrafish exhibit
intraretinal myelination, in contrast to rodents and primates in
which myelination of the optic nerve begins a short distance
outside of the globe of the eye. Unlike mammals, zebrafish can
regenerate their optic nerve following chemical or mechanical
damage, although this ability reduces somewhat with age (Münzel
et al., 2014). It is unclear whether this will impede the pathogenic
effects of autosomal OA-associated mutations. Zebrafish visual
function can be readily assessed in larvae, principally through
measuring the optokinetic (OKR) and visual motor responses
(VMR), on a much larger scale than rodents (Emran et al.,
2008; Zou et al., 2010). Zebrafish models are available for study
much faster than rodent models with RGCs differentiating at
28 h post fertilization and OKR and VMR assays possible
from 3 days post fertilization. At least 71% of human genes
have an ortholog in zebrafish (Howe et al., 2013), with most
genes demonstrating between 50 and 80% homology with their
human equivalent (Broughton et al., 2001). Notably, there was
a whole genome duplication event in the evolution of teleost
fish (Pasquier et al., 2016) and consequently, many zebrafish
homologs for mammalian genes are present in duplicate and
may exhibit some degree of functional redundancy. This is
the case for Wfs1 (Cairns, 2019), and may confound results
when recreating pathogenic mutations (Kleinjan et al., 2008;
Lu et al., 2012). Zebrafish develop externally, making them
accessible to genetic manipulation through microinjection. There
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TABLE 2 | Summary of phenotypes observed in in vivo models of autosomal OA.

Phenotypes
observed

Mouse Zebrafish Fruit fly Worm

Homozygous
lethal

Opa1 (Davies et al., 2008), Ssbp1
(Jiang et al., 2021), Dnm1l
(Wakabayashi et al., 2009)

Wfs1 (Cairns, 2019) Opa1 (Shahrestani et al., 2009),
Dnm1l (Batzir et al., 2019), Ssbp1
(Maier et al., 2001), Afg3l2 (Pareek
and Pallanck, 2020)

Aco2 (Simmer et al., 2003), Afg3l2
(Zubovych et al., 2010), Dnm1l
(Breckenridge et al., 2008)

Reduced
lifespan

Opa3 (Davies et al., 2008), Afg3l2
(Maltecca et al., 2008), Mcat
(Smith et al., 2012)

Opa1 (Rahn et al., 2013), Opa3
(Pei et al., 2010)

Opa1 (Tang et al., 2009), Wfs1
(Sakakibara et al., 2018), Afg3l2
(Pareek and Pallanck, 2020)

Opa1 (Byrne et al., 2019)

Abnormal
mitochondria

Opa1 (Davies et al., 2008), Sspb1
(Jiang et al., 2021), Dnm1l (Gerber
et al., 2017b), Opa3 (Powell et al.,
2011), Afg3l2 (Mancini et al.,
2019), Mcat (Smith et al., 2012)

Opa1 (Eijkenboom et al., 2019),
Wfs1 (Cairns, 2019), Slc25a46
(Wan et al., 2016)

Opa1 (Shahrestani et al., 2009),
Dnm1l (Altanbyek et al., 2016),
Ssbp1 (Maier et al., 2001), Afg3l2
(Pareek and Pallanck, 2020),
Slc25a46 (Ali et al., 2020)

Opa1 (Kanazawa et al., 2008),
Ssbp1 (Sugimoto et al., 2008),
Afg3l2 (Benedetti et al., 2006),
Rtn4ip1 (Fujii et al., 2011), Dnm1l
(Scholtes et al., 2018)

Reduced
visual acuity

Opa1 (Zaninello et al., 2020), Opa3
(Davies et al., 2008), Wfs1
(Bonnet-Wersinger et al., 2014)

Rtn4ip1 (Angebault et al., 2015),
Wfs1 (Cairns, 2019)

N/A N/A

Neuro-
degeneration

Opa1 (Sarzi et al., 2012), Opa3
(Davies et al., 2008), Afg3l2
(Maltecca et al., 2009), Wfs1
(Waszczykowska et al., 2020)

Opa3 (Pei et al., 2010), Wfs1
(Cairns, 2019), Slc25a46 (Abrams
et al., 2015)

Opa1 (Shahrestani et al., 2009),
Wfs1 (Sakakibara et al., 2018),
Afg3l2 (Pareek and Pallanck, 2020)

N/A

Motor defects Opa1 (Sarzi et al., 2012), Opa3
(Davies et al., 2008), Afg3l2
(Maltecca et al., 2008), Mcat
(Smith et al., 2012)

Opa1 (Rahn et al., 2013), Opa3
(Pei et al., 2010), Slc25a46
(Abrams et al., 2015)

Opa1 (Shahrestani et al., 2009),
Wfs1 (Sakakibara et al., 2018),
Afg3l2 (Pareek and Pallanck,
2020), Slc25a46 (Suda et al.,
2018)

Opa1 (Byrne et al., 2019), Dnm1l
(Scholtes et al., 2018)

Reduced
size/BMI

Opa3 (Davies et al., 2008), Afg3l2
(Maltecca et al., 2008), Mcat
(Smith et al., 2012), Wfs1 (Kõks
et al., 2009)

Wfs1 (Cairns, 2019) N/A Opa1 (Kanazawa et al., 2008),
Rtn4ip1 (Knowlton et al., 2017)

Cardiac
Defects

Ssbp1 (Jiang et al., 2021), Dnm1l
(Wakabayashi et al., 2009), Opa3
(Davies et al., 2008)

Opa1 (Rahn et al., 2013),
Slc25a46 (Buglo et al., 2020),
Ssbp1 (Del Dotto et al., 2020)

Opa1 (Shahrestani et al., 2009) N/A

Created using Biorender.com.

are 2 principal methods of genetic manipulation in zebrafish
embryos, CRISPR/Cas9 and morpholinos. Morpholinos are short
oligomers designed to be complementary to the transcription
start site or splice site of pre-mRNAs to transiently block
splicing or translation of a desired transcript, reducing the
expression of the target gene. Although the typical duration
of the knockdown (usually a few days post-injection) would
be sufficient for studies in larvae, it would not be sustained
in adult fish (Rahn et al., 2013). Whilst this could be used to
look at the developmental abnormalities implicated in some of
the autosomal OA-associated genes, it may be unsuitable for
looking at progressive, degenerative phenotypes. It should also
be noted that as much as 20% of morpholinos exhibit non-
specific toxicity, particularly relating to apoptotic cell death
(Ekker and Larson, 2001; Robu et al., 2007). CRISPR/Cas9 editing
technology has been extensively exploited in zebrafish, with some
protocols reporting editing efficiencies over 90% (Hoshijima
et al., 2019). This technique can be used to create stable, heritable
Kos of genes, but can additionally be utilized to insert human
transgenes, or replicate patient mutations. Finally, zebrafish have
many well established transgenic reporter lines, a particularly
effective approach in translucent zebrafish embryos. There are

several examples of lines expressing fluorescent proteins under
the control of retinal ganglion cell specific promoters, for example
Atonal BHLH Transcription Factor 7 (atoh7; Masai et al., 2003).
Multiple transgenic lines specifically targeting mitochondria are
also available, notably zebrafish with mitochondrial expression
of photo-activatable fluorescent protein (mito-PAGFP) which,
after photoactivation, allows for the tracking of individual
mitochondria within sensory neurons (Wehnekamp et al., 2019;
Mieskes et al., 2020), and MitoFish, which has been used for
intravital imaging of mitochondria in immobilized larvae (Paquet
et al., 2014). It would be valuable to apply available transgenic
approaches to the study of retinal ganglion cell mitochondrial
structure and function in zebrafish disease models of autosomal-
OA.

To date, most of the published zebrafish autosomal OA models
are based on morpholino-based knockdown of gene expression,
many of which present with abnormalities in eye and optic nerve
morphology (Pei et al., 2010; Del Dotto et al., 2020). Although
vision has only been addressed in a limited number of studies,
reduced visual acuity has been noted (Angebault et al., 2015;
Cairns, 2019). Common secondary symptoms of autosomal OA
such as motor deficits (Rahn et al., 2013; Angebault et al.,
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2015) and inner ear abnormalities (Cairns, 2019; Del Dotto
et al., 2020) have also been observed. Models frequently exhibit
mitochondrial abnormalities including disrupted mitochondrial
networks, respiratory deficiency, and reduced mitochondrial
trafficking (Abrams et al., 2015; Eijkenboom et al., 2019). As in
the murine models, many zebrafish homozygous for autosomal
OA-causing genes exhibit developmental defects of the heart and
brain (Wan et al., 2016; Buglo et al., 2020; Del Dotto et al.,
2020), perhaps emphasizing the need for further research into any
developmental origins for autosomal OA pathogenicity. Given
the relative ease of generating novel zebrafish models, there
is ample opportunity for creating models for autosomal OA-
causing genes, in addition to examining degenerative phenotypes
in adult fish. The extant zebrafish models could be well suited to
drug screening, due to the prevalence of strong visual phenotypes
from the early larval stage and relative ease with which visual
acuity can be determined.

Drosophila Models
The fruit fly, Drosophila melanogaster, is a well-established in vivo
model system with at least 75% of disease-linked genes having
Drosophila orthologs (Reiter et al., 2001). They are relatively
inexpensive to rear, produce large numbers of offspring and have
a maximal lifespan of approximately 3 months (Huang et al.,
2020), which may prove useful in studying degenerative diseases.
Of relevance to autosomal OA, flies have eyes, relatively complex
brains and some organs which have comparable function to
their human equivalents. A notable disadvantage of Drosophila
as a model for autosomal OA is the significant disparity in
eye morphology. Flies have compound eyes, comprising over
700 repeating units called ommatidia. Each ommatidium is
composed of eight photoreceptors which do not converge to
form a structure resembling the optic nerve (Paulk et al., 2013).
Despite the lack of RGCs, Drosophila offer a strong platform for
examining neurons in vivo. Their relatively simple organization
allows for easily reproducible examination of the morphology
and function of long axons in situ (Dolph et al., 2011). As
with other models, CRISPR techniques have meant that targeted
gene editing is now relatively straightforward in flies, though
most published studies to date have employed knockdown of
gene expression.

Efficient ubiquitous knockdown of most OA-associated genes
is lethal, corroborating findings in the other animal models
suggesting a developmental role for many autosomal OA genes.
As such the UAS-GAL4 system, which allows for generation
of tissue-specific expression of RNAis (Dolan et al., 2017;
Ogienko et al., 2020), is commonly used to study the role
of autosomal OA-causing genes by targeted knockdown in
neurons. Locomotor issues are common, in some instances age-
dependent and progressive, generally in keeping with mobility
issues present in corresponding patients (Sakakibara et al., 2018;
Suda et al., 2018; Pareek and Pallanck, 2020). The majority of
fly autosomal OA-models do not have a gross eye phenotype,
but the limited number of studies that investigated visual
function have reported developmental and electrical response
defects (Maier et al., 2001; Verstreken et al., 2005). Most
published Drosophila models of autosomal OA-associated genes

have highly abnormal mitochondria including: abnormal cristae,
fragmented or aggregated mitochondrial networks, perturbed
axonal trafficking, mtDNA depletion, hyperfused or elongated
mitochondria, reduced ATP content, increased ROS, and reduced
abundance and/or activity of complexes of the electron transport
chain, generally replicating the perturbation seen in patients
(Tang et al., 2009; Pareek and Pallanck, 2020). Similar to the
mice, some fly models exhibit heart tube abnormalities, despite
abnormal cardiac development not being prevalent in patients
(Shahrestani et al., 2009; Bhandari et al., 2015). Overall, the
few existing Drosophila autosomal OA models present a strong
platform for examining mitochondrial and neurodegenerative
phenotypes associated with autosomal OA genes.

Caenorhabditis elegans Models
Like Drosophila, the roundworm Caenorhabditis elegans has
been an invaluable asset to biological research generally, as
an extremely simple and abundant organism. C. elegans is
inexpensive to rear, can produce up to 1,000 offspring, has an
extremely short lifespan of ∼20 days, and may be kept in frozen
storage over long periods of time and revived (Vita-More and
Barranco, 2015). Human homologs exist for at least 80% of
the C. elegans proteome (Lai et al., 2000) with known worm
homologs for most autosomal OA genes, with the exception
of WFS1. C. elegans does not possess eyes, retinas, or opsin
pigments, and therefore has no structure that directly parallels
the optic nerve or retinal ganglion cells. Instead, it perceives
UV light using its distinct LITE-1 photoreceptor (Edwards et al.,
2008; Gong et al., 2016), Due to this disparity between the
human and nematode visual systems, they have limited use in
directly modeling visual defects associated with autosomal OA.
Nevertheless, C. elegans presents an interesting model for the
study of mitochondrial morphology and dynamics, particularly
within neurons, due to their simplistic and transparent body plan
facilitating a wide array of microscopy techniques. Furthermore,
as gene editing in C. elegans can be as straightforward as feeding
sgRNA to transgenic animals (Liu et al., 2014), combined with
the comparatively small expense of roundworms as a model
organism, this could be a highly accessible avenue for expanding
the field of autosomal OA research.

Many C. elegans mutants for autosomal OA-linked genes
exist (Table 2), however many were created during large
mutagenesis or RNAi screens. Despite this, there are several
phenotypes seen within the C. elegans autosomal OA models
that are conserved within higher eukaryotic organisms, notably
abnormal mitochondrial morphology often accompanied by
irregular cristae (Knowlton et al., 2017; Machiela et al., 2020),
respiratory defects (Fujii et al., 2011; Luz et al., 2015), embryonic
or larval lethality (Zubovych et al., 2010; Nargund et al., 2012),
locomotor dysfunction (Machiela et al., 2020), and neuronal
dysfunction (Zaninello et al., 2020). There are some notable
disparities between the vertebrate and C. elegans autosomal
OA models. While aberrant expression of autosomal OA genes
frequently reduces maximal lifespan in Drosophila or vertebrate
models, in some worm autosomal OA models lifespan is
extended (Kanazawa et al., 2008; Chaudhari and Kipreos, 2017;
Maglioni et al., 2019). This may be due to the ability of C.
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elegans to arrest development in the dauer state in response
to adverse environmental conditions. Dauer larvae are highly
resistant to all forms of stress, including oxidative stress, favor
anaerobic respiration, and are comparatively long-lived. In at
least two studies arrest in the dauer state was observed (Avery,
1993; Maglioni et al., 2019). As with all studies involving
model systems, careful consideration must be given to ensure
that the system used is appropriate for the research question
being investigated.

Retinal Organoids
Much of our understanding of human biology has stemmed
from research involving animal model organisms like those
discussed previously. They have played a substantial role in
informing many important scientific discoveries over the years,
however, there are many fundamental differences that exist
between humans and their model organism counterparts (Huch
et al., 2017), especially in the context of optic neuropathies.
Recent studies have highlighted significant differences in both
the number and distribution of RGCs in rodents compared
to primates (Peng et al., 2019) and this may explain why
therapeutic approaches that appear to show great promise in
animal models do not always translate effectively to human
patients, highlighting the need for an accurate ex vivo model.
The discovery of induced pluripotent stem cells (iPSCs)
has enabled biologists to reprogram human somatic cells
to a pluripotent, embryonic stem cell-like state (Takahashi
et al., 2007), which, combined with recent improvements
in three dimensional culture techniques has led to the
emergence of organoid models as a potential avenue to
remedy this issue.

An “organoid” can be simply defined as a structure that
resembles an organ (Dutta et al., 2017). Derived from either
pluripotent stem cells or organ progenitor cells, they undergo
differentiation, forming organ-like structures in a process which
appears to mimic in vivo organogenesis (Dutta et al., 2017).
The first protocol for the directed differentiation of retinal
organoids was published in 2012 (Nakano et al., 2012) and
since then a variety of approaches have been developed (Chen
et al., 2016; Chichagova et al., 2019). The differentiation process
results in the formation of retinal organoids that contain all
of the major retinal cell types, organized in a laminar manner
which emerge at roughly the same time points as in the human
retina (Capowski et al., 2019; Chichagova et al., 2019). RGCs
are the first distinct cell population to emerge during retinal
development and this is mirrored in organoid development
(Rabesandratana et al., 2018). Differential expression of OPN4
reveals the presence of melanopsin expressing-photosensitive
RGCs at as early as 5 weeks of differentiation, with positive
immunostaining for the RGC-specific markers Smi32 and
RBPMS indicating their orientation in the basal aspect of
the organoid (Mellough et al., 2019), reminiscent of the
native retina. Mitochondrial function can also be studied
with relative ease in retinal organoids through the use of
transmission electron microscopy (Duong et al., 2021) and the
use of bioassays measuring viability (Das et al., 2020), ATP
production (Duong et al., 2021) and oxygen consumption rate

(Roy-Choudhury and Daadi, 2019). These organoids are capable
of forming functional synapses and are responsive to light
stimulation (Mellough et al., 2015), however, they still lack many
features of the native retina – such as vasculature (Laschke
and Menger, 2012) and the presence of microglial cells (Fathi
et al., 2021) – which can somewhat limit their use in the
context of modeling optic neuropathies. Retinal organoids are
becoming an increasingly attractive model for the study of
inherited ocular disorders as they provide researchers with the
unique opportunity to model patient-specific mutations through
the use of iPSCs (Bell et al., 2020). As with in vivo models,
CRISPR/Cas9 gene-editing technology can also be applied,
either to introduce de novo mutations or to generate isogenic
controls by correcting mutations in patient-derived iPSC lines
(VanderWall et al., 2020). While disease modeling through
the use of retinal organoids is highly applicable, there are
currently no published examples of retinal organoids being
used to model OA.

The main advantage of disease modeling through the use
of retinal organoids is that they provide researchers with the
opportunity to study human disease within a human model
system while simultaneously circumventing the ethical challenges
surrounding the study of early embryonic development in
humans. Organoids are highly amenable to drug screening and
to genetic manipulation, meaning they have a wide range of
potential applications within this field. However, there are still
many issues that need to be addressed in order for retinal
organoids to reach their full potential. Despite being able to
produce all of the major retinal cell types (Chichagova et al.,
2019), as time in culture is extended the innermost layers of
the organoid containing the RGCs begin to degenerate (Fathi
et al., 2021). This is likely due to the fact that there is no
vasculature present in the organoid, so as it grows bigger the
amount of oxygen and nutrients that can diffuse through to
the inner layers is not sufficient to maintain viability (Fathi
et al., 2021), while spatial constraints imposed by the culture
vessels in which organoids are grown mean that RGC axons
cannot extend to the length they normally would in the native
retina (Ohlemacher et al., 2019). In addition to this, microglial
cells, which would ordinarily interact with Müller glial cells to
regulate neuronal development (Li et al., 2019) are absent (Fathi
et al., 2021), while mature structures such as an optic nerve are
also not present. Retinal organoids have already proven to be
a valuable tool for studying development and disease, and hold
huge therapeutic potential from the perspective of regenerative
medicine (Kobayashi et al., 2018; Eastlake et al., 2019). They can
overcome limitations of in vivo disease models in that being a
human model system removes the need to account for cross-
species differences and could also bypass the issue of homozygous
lethality caused by the introduction of OA-causing mutations
seen in many of the other models. The ability to produce fully
functional, mature retinal organoids in combination with gene-
editing technologies such as CRISPR could hold the key to
the treatment of inherited neuropathies such as autosomal OA.
Research in this field is constantly evolving with the development
of co-culture methods to promote RGC axon growth (Fligor
et al., 2021) and the potential use of CRISPR reporter iPSC
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lines making it possible to produce organoids that resemble their
human organoid counterparts even more closely.

The conservation of mitochondrial aberrations and
phenotypic symptoms seen in both animal models and patients
supports the causative relationship between OA pathology and
mitochondrial dysfunction. Additionally, as visual pathology is
often able to be replicated, specifically in zebrafish and mice,
through expression of OA-causing gene mutations, this indicates
that RGC vulnerability likely relates to common anatomical
and molecular features within these models. This is especially
relevant as research is underdeveloped in this area. There is some
disparity between the animal models discussed here and patients,
for example heart and brain developmental abnormalities
(Angebault et al., 2015). Retinal organoids derived from human
cells could be a useful addition to the field for the study of human
RGCs, however it is clear that there is significant refinement
required before they are sufficiently able to replicate in vivo
human RGC morphology and function. The model organisms
discussed here already have assays and histological techniques
which would be readily applicable to the study of autosomal OA:
Drosophila and C. elegans are well suited to provisionally studying
perturbations in mitochondrial and neuronal function, whilst
mice and zebrafish are highly applicable for examining changes
in RGCs and visual acuity. Lastly, there is currently a paucity
of studies investigating genetic or therapeutic modifiers of OA-
associated degeneration, despite the abundance of methods to
do so in all species mentioned. This is of eminent importance
for future development in this field due to the lack of treatment
options available for patients.

CONCLUDING REMARKS

Autosomal OA is a highly genetically heterogeneous condition,
with a growing list of genes which have been shown to give rise to
the disorder. Despite this, as we have made clear in this review,
there is an evident commonality with all presently implicated
genes involved in the function and organization of mitochondria.

It is unclear whether a particular aspect of mitochondrial function
makes RGCs vulnerable, or induces cell degeneration, however
this may be further elucidated through examining common
pathways between affected genes, and common dysfunction
caused by pathogenic mutations. Although various animal
models bearing mutations for autosomal OA-genes exist, many
recreate mutations associated with other diseases. Given the
accessibility of CRISPR/Cas9 gene editing technologies, this
could be easily remedied. Finally, retinal organoids present an
exciting intermediary between in vitro and in vivo model systems,
which could be used for the study of autosomal OA-associated
pathological changes within the human eye. Any of the models
discussed here could be utilized for drug screening so that we
might begin to develop much needed treatment strategies for
retinal disease.
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