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Restoring sensory circuit function after spinal cord injury (SCI) is essential for recovery of
movement, yet current interventions predominantly target motor pathways. Integrated
cortical sensorimotor networks, disrupted by SCI, are critical for perceiving, shaping,
and executing movement. Corticocortical connections between primary sensory
(S1) and motor (M1) cortices are critical loci of functional plasticity in response
to learning and injury. Following SCI, in the motor cortex, corticocortical circuits
undergo dynamic remodeling; however, it remains unknown how rehabilitation shapes
the plasticity of S1-M1 networks or how these changes may impact recovery
of movement.
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INTRODUCTION

Sensory circuits provide essential components for accurate movement, including texture
discrimination, spatial awareness, object perception, and tactile feedback (Abraira and Ginty, 2013).
Sensory inputs for goal-directed movements provide information about location, size, weight, and
shape of an object; therefore, successful integration of sensory inputs is key for generating a motor
plan to execute a given movement. Additionally, sensory feedback during motor performance is
required to refine ongoing movements. Sensorimotor integration is disrupted in spinal cord injury
(SCI) (Edwards et al., 2019) and the recovery of sensory function will be a critical aspect in the
recovery of movement.

SENSORY AFFERENTS AND MOVEMENT RECOVERY

Proprioceptive feedback transmitted through the dorsal column-medial lemniscal system is
essential for movement control in healthy and injury conditions (Pearson, 1995; Windhorst, 2007;
Tuthill and Azim, 2018). Within the spinal cord, proprioceptive and mechanoreceptive circuits
are known to remodel below the level of SCI, providing an alternative circuit for transmission of
afferent information (Hollis et al., 2015; Granier et al., 2020). After a lateral hemisection of the
thoracic spinal cord, mice show spontaneous recovery of ipsilesional hindlimb control, whereas
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transgenic mice lacking muscle spindle-mediated proprioceptive
input fail to recover locomotor function (Takeoka et al.,
2014). Level-specific ablation of proprioceptive neurons
demonstrated that locomotor recovery depends upon afferent
input from below, but not above, the lesion (Takeoka and
Arber, 2019). Furthermore, ablation of proprioceptive afferents
after spontaneous locomotor recovery leads to a deterioration
of the regained activity, indicating that proprioception is
indispensable for both driving functional recovery as well as
for maintaining that recovered function (Takeoka and Arber,
2019). Sensory function is not simply a passive byproduct
of motor rehabilitation; sensorimotor training on discrete
tactile substrates can improve recovery of locomotor function
and tactile sensitivity after SCI (Martinez et al., 2009). The
reactivation of S1 responses to cutaneous stimulation correlates
with tactile recovery (Martinez et al., 2009). These findings
suggest that rehabilitation can improve sensory function as
well as sensorimotor-dependent movement recovery after
SCI. A detailed understanding of the circuit mechanisms of
rehabilitation-dependent S1 cortical plasticity is not known and
further studies are required to address this mechanism that could
provide critical data for designing therapeutic strategies for the
recovery of movement after SCI.

SENSORY CORTEX RESPONSES TO
SPINAL CORD INJURY

Representations of somatosensory responses in S1 are highly
plastic in response to nervous system damage, sensory
experience, and learning. Cortical reorganization is a complex
phenomenon that has been associated with both improved
functional recovery and aberrant phantom sensations (Moxon
et al., 2014). Thus, the underlying cellular mechanisms of
somatosensory map plasticity and its consequences for cortical
processing are highly relevant for shaping appropriate recovery
of function after injury. SCI disrupts afferent input to the central
nervous system and results in the reorganization of cortical
sensory representations, or maps (Kaas et al., 2008; Moxon et al.,
2014). In non-human primates, complete unilateral lesion of
the ascending dorsal columns deactivates hand representations
in area 3b of contralateral cortex (Jain et al., 1997, 2008). This
loss of afferent input results in tactile deficits in the deprived
forelimb and impaired performance on a reach-to-grasp task
(Qi et al., 2013). In contrast to the effects on fine motor control,
dorsal column lesion does not significantly impair locomotion,
indicating that cortical sensory processing is not necessary for
gross motor movements (Kaas et al., 2008).

After incomplete lesions of the dorsal column, reactivation
of S1 occurs with almost normal somatotopy (Yang et al.,
2014; Qi et al., 2019). In contrast, complete dorsal column
injuries immediately deactivate the hand representation in
contralateral S1 area 3b (Jain et al., 1997, 2008). Over time,
there is a reactivation of portions of the hand representation,
likely mediated by sparse surviving primary afferents, second-
order spinal neurons, and reorganization at each relay of
somatosensory path: spinal cord, dorsal column nuclei (nucleus

FIGURE 1 | Dorsal column sensory pathways. The left diagram shows the
pathway conveying tactile, proprioceptive, and vibratory sensory inputs
through the dorsal column nuclei (DCN), to thalamus, and on to primary
somatosensory cortex (S1) in normal conditions (black arrow). Sensory inputs
arrive in S1 layers 2/3, 4, 5, and 6. Sensory information is transmitted
between layer 2/3 neurons in S1 and primary motor cortex (M1), which in turn
influences the output layer 5 neurons. Spinal cord injury impairs the sensory
transmission along the sensory pathway (gray arrows) impacting the neurons
in S1 and eventually in M1. The deafferented cortical neurons in S1 after spinal
cord injury are shown in gray. The right diagram shows sites of axonal
plasticity at distinct nuclei along the somatosensory pathway. (I) After spinal
cord injury (SCI), inactivation of the cuneate dorsal column nuclei (DCN)
eliminates aberrant face stimulation responses in the cortex (Kambi et al.,
2014). (II) Reorganization of thalamic responses occurs after SCI (Jain et al.,
2008); however, it is likely that the circuit plasticity supporting this functional
reorganization arises in the DCN (Kambi et al., 2014). (III) Intracortical neurons
within S1 drive local connectivity changes after SCI (Liao et al., 2016).

cuneatus), thalamus (ventral posterolateral nucleus, VPL), and
cortex (S1) (Figure 1; Moxon et al., 2014). In chronic injury,
this leads to afferent information from neighboring regions
activating neurons in deafferented cortex and driving phantom
sensations rather than functional recovery (Jain et al., 1997).
Rehabilitation may be used to effectively shape S1 remodeling
as fMRI imaging in non-human primates trained on a reach-
to-grasp task shows reactivation of somatosensory cortex after
unilateral dorsal column lesion S1 (Qi et al., 2021). In this
study, cortex rendered unresponsive to vibrotactile stimulation
by injury began to respond to stimuli as hand use improved.
Thus, the balance between aberrant and beneficial S1 plasticity
may be tilted through appropriate rehabilitation.

In rodents using extracellular electrophysiology recordings
and functional magnetic resonance imaging (fMRI) it has been
shown that electrical stimulation of the forelimb after thoracic
SCI elicits responses in deafferented hindlimb S1 (Endo et al.,
2007) and an expansion of forelimb S1 (Ghosh et al., 2009).
Within S1, cortical responses to electrical hindpaw stimulation
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are eliminated in the hindpaw cortex and responses of forepaw
recorded in the forepaw cortex are increased immediately after
SCI (Aguilar et al., 2010; Humanes-Valera et al., 2013). This
expansion of intact forelimb sensory responses into deafferented
hindlimb S1 occurs as early as 3 days after injury and persists
for several months (Endo et al., 2007). The initial expansion
is similar to what has been observed in the motor system
where evoked motor maps of intact regions above the level of
injury expand and are strengthened in association with the loss
of output from deafferented motor areas (Topka et al., 1991;
Streletz et al., 1995; Mikulis et al., 2002; Nardone et al., 2013;
Hollis et al., 2016). As in S1, targeted rehabilitation results in
reorganization of M1 motor maps reorganize and functional
recovery of movements.

ANATOMICAL SUBSTRATES
UNDERLYING S1 REMODELING

Neither the underlying neural architecture that supports S1
reorganization after SCI nor the extent of the reorganization
has been clearly established. The reorganization of S1 after SCI
appears to be less extensive than in M1. Forepaw S1 regions
do not exhibit large-scale remodeling after SCI, but rather show
a more limited expansion (Dutta et al., 2014). Whether this
remodeling is limited by S1 circuitry is unknown. In M1, large-
scale remodeling occurs after SCI and peripheral nerve injury,
with early changes dependent on existing corticocortical circuitry
(Huntley, 1997; Hollis et al., 2016).

In both rodents and non-human primates, there is evidence
for anatomical reorganization of sensory circuits at the level
of the brainstem after central and peripheral injuries. Cervical
transection of dorsal roots (rhizotomy) in the rat has been
shown to increase projections from fasciculus gracilis into
the deafferented cuneate nucleus (Sengelaub et al., 1997). In
primates, dorsal column injuries result in reorganization of
afferent responses in thalamus and area 3b (Jain et al., 2008).
Aberrant cortical representations appear to depend on changes
in brainstem circuitry after SCI, as selective inactivation of the
reorganized cuneate nucleus eliminates expansion of responses
to face stimulation in area 3b (Figure 1I; Kambi et al., 2014).

For structural remodeling to provide a functional benefit,
newly generated circuits must contribute to the function of the
underlying sensory-motor networks. S1 plays a critical role in
integrating and processing sensory inputs during motor learning.
Similar to the activity in M1, S1 encodes muscle activity before
movement initiation (Umeda et al., 2019). It appears that S1
receives pre-movement input from M1, while during movement
S1 integrates M1 activity with afferent input (Umeda et al., 2019).
The ability of S1 to influence synaptic plasticity in M1 relies
on synapses in layer 2/3, which are a primary site for long
term potentiation (LTP) within M1 (Kaneko et al., 1994a,b).
The plasticity of sensory inputs to layer 2/3 M1 influences
motor output through excitatory connections with deeper layer
corticofugal neurons. In vivo intracellular recordings in cats have
shown that LTP can be induced in M1 layer 2/3 (but not in
deeper layers neurons) by high frequency stimulation in S1. This

plasticity is a likely mechanism underlying motor learning (Keller
et al., 1990) and rehabilitation from SCI.

In both S1 and primary motor (M1) cortex, layer 2/3
neurons are critical loci of functional plasticity in response to
learning and injury (Figure 1III). Forelimb function relies on
the sensory dorsal column-medial lemniscal circuit that carries
tactile, vibration, and proprioceptive information to thalamic
nucleus VPL before the circuit completes with projections to
S1. In rodents, S1 is adjacent to M1 and is the primary source
of corticocortical input to forelimb M1, indicating a major role
for afferent feedback in shaping motor output (Colechio and
Alloway, 2009). Within S1, layer 4, and to a lesser extent layers
2/3 and 5A, receive lemnisco-cortical input from VPL (Yamawaki
et al., 2021). Sensory information spreads both vertically and
horizontally throughout layer 2/3, suggesting that layer 2/3
S1 circuits integrate information from across diverse brain
regions (Feldmeyer et al., 2013). Electrophysiology recordings
in response to optogenetic activation in cortical slices have
shown that layer 2/3 and 5A S1 corticocortical neurons excite
layer 2/3 neurons in M1, with weaker connections to deeper
layers (Yamawaki et al., 2021). Within M1, motor learning drives
remodeling of both structure and activity of layer 2/3. Layer
2/3 neurons connect with deeper layer 5 corticofugal neurons,
shaping cortical output. In M1, layer 2/3 excitatory neurons
undergo a dynamic remodeling of network activity during task
training, along with an increase in structural remodeling of
dendritic spines (Peters et al., 2014). In a behavioral task in which
trained forelimb movements on a joystick task were modified
by external force affecting movement trajectory, mice made
adaptive movements to counteract the effects of applied force
(Mathis et al., 2017). Inhibition of S1 during the applied force
abolished motor adaptation, demonstrating an active role for S1
processing of afferent input in modifying motor outputs (Mathis
et al., 2017). The lateral corticocortical connections in layer 2/3
likely mediate S1-dependent motor adaptation needed for the
appropriate modulation of movements. Plasticity of these layer
2/3 connections in both S1 and M1 may play a prominent role in
functional recovery after SCI.

LOOKING TO THE FUTURE

The circuit mechanisms underlying functional reorganization of
sensory and motor cortex after SCI are not well-characterized
(Figure 1III). Studies in non-human primates and rodents that
focused on reorganization of S1 after SCI have lacked the cellular
resolution to measure the circuits involved. In part, this owes to a
limitation of the techniques used: eliciting responses to artificial
stimuli, rather than understanding endogenous responses to
sensory stimuli; as well as large, meso-scale measures that cannot
show real-time changes on a cellular level. Furthermore, most
mapping studies have been limited by the use of anesthesia, and
are not measures of active sensation in awake, behaving animals.
The use of modern in vivo imaging tools and sensitive sensory
and motor behavioral tasks (Morandell and Huber, 2017; Prsa
et al., 2019) will facilitate a deeper understanding of active circuit
changes following SCI.
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