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Editorial on the Research Topic

Neurotechnologies for Human Augmentation

Neurotechnologies combine neuroscience and engineering to create tools for studying, repairing,
and enhancing brain function. Traditionally, researchers have used neurotechnologies, such
as Brain-Computer Interfaces (BCIs), as assistive devices, for example to allow locked-in
patients to communicate. In the last few decades, non-invasive brain imaging devices, such as
electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), have become
more portable and inexpensive, paving the way to innovative applications of neurotechnologies
(Ayaz and Dehais, 2018). Recent trends in neuroergonomics and neural engineering have
used neurotechnologies to enhance various human capabilities, including (but not limited
to) communication, emotion, perception, memory, attention, engagement, situation awareness,
problem-solving, and decision making (Cinel et al., 2019; Kosmyna and Maes, 2019).

This Research Topic provides a collection of 12 contributions on recent advances in the
development of non-invasive BCIs for human augmentation, with a particular emphasis on brain
stimulation and neural decoding.

To introduce the topic of human augmentation, Dehais and colleagues propose a
two-dimensional framework that incorporates arousal and task engagement to characterize
different variables typically used in human augmentation, such as mental workload and human
performance (Dehais et al., 2020). Specifically, poor task engagement leads to mind wandering or
effort withdrawal depending on arousal level, while a too high arousal could lead to perseveration
or in attentional blindness and deafness. Neurotechnologies could, therefore, be used to guide the
brain to an optimal position in the arousal-engagement space to maximize performance, a position
characterized by medium levels of arousal and high task engagement, which could be achieved, for
example, by using brain stimulation or neurofeedback.

A few studies in this Research Topic investigated the use of non-invasive brain stimulation to
augment human performance: a very popular topic in the area of neurotechnologies (Kadosh,
2014; Santarnecchi et al., 2015). Pilly and colleagues propose a novel paradigm based on virtual
reality to use transcranial electrical stimulation (tES) to extend long-termmetamemory (Pilly et al.).
By applying periodic brief pulses while participants were asleep, they improved memory recall of
one-shot viewing of naturalistic episodes over 48 h by 10–20%. Patel and colleagues performed
a systematic meta-analysis to review the use of transcranial direct-current stimulation (tDCS)
for improving motor performance in upper limbs (Patel et al.). Brain stimulation significantly
reduces reaction time, task execution time, and increases force and accuracy in elbow flexion tasks.
Wang and colleagues reported that combining brain stimulation with physical training increases
motor-evoked potential (MEP) amplitude and muscle strength, and decreases the dynamic posture
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stability index, reaction time, and error rate in motor learning
tasks (Wang et al.). Similarly, Hollis and colleagues explored the
use of transcranial static magnetic field stimulation (tSMS) to
facilitate motor learning in healthy children. They found that
tSMS did not increase MEP amplitude in children (as found by
Wang and colleagues in adults), suggesting that age is a critical
factor for the effectiveness of brain stimulation. Yet, they found
tSMS inhibited early motor learning and facilitated later stage
motor learning in the non-dominant hand, which motivated
future investigations of tSMS as a potential non-invasive therapy
for children with cerebral palsy (Hollis et al.).

Another set of studies focused on using non-invasive
neuroimaging to decode specific mental states, which could
provide further insights into brain activity. Asgher and colleagues
used fNIRS and deep learning to estimate four different levels of
mental workload in human participants (Asgher et al.). While
traditional machine learning algorithms reached accuracies
below 70%, convolutional neural networks with long short-
term memory layers achieved significantly better performance
of almost 90% accuracy across the four classes. These results
exemplify the potential of deep learning in neural decoding for
human augmentation. In another contribution, Klaproth and
colleagues used passive BCIs to track perception and auditory
processing of pilots during operations (Klaproth et al.). In
particular, they found that a passive BCI could use EEG to
distinguish between task-relevant and irrelevant alerts received
by the pilot, hence improving situation awareness. This work
demonstrates how passive BCIs could work as monitoring
devices in a practical scenario without disrupting the main task.

Another neural decoding problem with direct applications
in BCI research is mental imagery. Wairagkar and colleagues
showed that temporal patterns extracted from EEG activity are
sufficient to achieve single-trial classification of five different
mental imagery tasks (Wairagkar et al.). These patterns can,
therefore, be used as control signals of non-invasive BCIs, which
could translate them into commands for external devices. Also
in the area of neural decoding, Li and colleagues have shown
the possibility of using advanced machine learning and signal
processing techniques to decode emotions from EEG signals (Li
et al.). In this domain, other work has tackled this challenge
using more invasive recordings (Sani et al., 2018). Yet, to enable
broadly-applicable human augmentation, similar results have to
be achieved with non-invasive devices, such as the EEG used by
Li and colleagues, which pose fewer ethical and socio-economic
barriers than invasive devices.

Another study tackles the exciting area of speech decoding,
which aims at translating brain activity into meaningful speech.
This problem has been extensively tackled using invasive
recordings, such as electrocorticography (Herff et al., 2015; Herff
and Schultz, 2016; Angrick et al., 2019; Anumanchipalli et al.,
2019). Here, Dash and colleagues demonstrated that this is
possible even with non-invasive and, therefore, more practical
neural recording devices, such as MEG (Dash et al.).

The transition to non-invasive, real-world BCIs for
human augmentation would require strategies to enhance
the limited signal quality recorded from the brain. As
such, multimodal BCIs depending on a combination of
physiological signals will be increasingly important. In
that domain, Stuldreher and colleagues determined the
synchrony between EEG, heart rate, and electrodermal
activity while participants were engaged in an auditory task
(Stuldreher et al.). They found that each modality works well
in certain scenarios, and that merging all modalities into
a unique metric seems most robust across a broad range
of applications.

Finally, the development of new non-invasive
neurotechnologies presents many opportunities for clinical
and field applications as well as multifaceted new challenges
(Dehais et al., 2020). In a review paper of this Research Topic,
Gaudry and colleagues delve into the neuroethical issues that
we might face in the upcoming decades as neurotechnologies
transition from research to practice, and even home and office
settings (Gaudry et al.).

We hope this Research Topic provides the reader with updates
on recent advances in the area of non-invasive neurotechnologies
for human augmentation.Wewould like to thank all authors who
contributed, the reviewers who provided invaluable and timely
feedback to the authors, and Dr. Eleonora Adami for designing
the cover picture of this Research Topic.
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