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Purpose: This study aimed to develop a radiomics signature for the preoperative
prognosis prediction of isocitrate dehydrogenase (IDH)-wild-type glioblastoma (GBM)
patients and to provide personalized assistance in the clinical decision-making for
different patients.

Materials and Methods: A total of 142 IDH-wild-type GBM patients classified using
the new classification criteria of WHO 2021 from two centers were included in the study
and randomly divided into a training set and a test set. Firstly, their clinical characteristics
were screened using univariate Cox regression. Then, the radiomics features were
extracted from the tumor and peritumoral edema areas on their contrast-enhanced
T1-weighted image (CE-T1WI), T2-weighted image (T2WI), and T2-weighted fluid-
attenuated inversion recovery (T2-FLAIR) magnetic resonance imaging (MRI) images.
Subsequently, inter- and intra-class correlation coefficient (ICC) analysis, Spearman’s
correlation analysis, univariate Cox, and the least absolute shrinkage and selection
operator (LASSO) Cox regression were used step by step for feature selection and
the construction of a radiomics signature. The combined model was established by
integrating the selected clinical factors. Kaplan–Meier analysis was performed for the
validation of the discrimination ability of the model, and the C-index was used to evaluate
consistency in the prediction. Finally, a Radiomics + Clinical nomogram was generated
for personalized prognosis analysis and then validated using the calibration curve.

Results: Analysis of the clinical characteristics resulted in the screening of four risk
factors. The combination of ICC, Spearman’s correlation, and univariate and LASSO
Cox resulted in the selection of eight radiomics features, which made up the radiomics
signature. Both the radiomics and combined models can significantly stratify high- and
low-risk patients (p < 0.001 and p < 0.05 for the training and test sets, respectively)
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and obtained good prediction consistency (C-index = 0.74–0.86). The calibration plots
exhibited good agreement in both 1- and 2-year survival between the prediction of the
model and the actual observation.

Conclusion: Radiomics is an independent preoperative non-invasive prognostic tool
for patients who were newly classified as having IDH-wild-type GBM. The constructed
nomogram, which combined radiomics features with clinical factors, can predict the
overall survival (OS) of IDH-wild-type GBM patients and could be a new supplement to
treatment guidelines.

Keywords: radiomics, isocitrate dehydrogenase wildtype, glioblastoma, MRI, nomogram

INTRODUCTION

Among all primary brain and other central nervous system
tumors, gliomas account for about 26% (Ostrom et al., 2018).
Among all malignant brain and other central nervous system
tumors, glioblastoma (GBM) is the most common (Soomro et al.,
2017). Despite the advances in surgery and chemoradiotherapy
being great, the prognosis of GBM patients is still poor, with a
median survival of only 12–14 months (Henson et al., 2005; Stupp
et al., 2005; Van Meir et al., 2010; Lu et al., 2020; Soltani et al.,
2021). In addition, several previous studies have confirmed that
the status of isocitrate dehydrogenase (IDH) mutation has a great
impact on the prognosis of GBM patients (Parsons et al., 2008;
Hartmann et al., 2013; Reifenberger et al., 2014). According to
the latest classification criteria of the World Health Organization
(WHO) in 2021, the common diffuse gliomas of adults have
been divided into only three types: astrocytoma, IDH-mutant;
oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and
glioblastoma, IDH-wild type. IDH-wild-type diffuse astrocytic
(NB: diffuse and astrocytic) tumors in adults, if microvascular
proliferation or necrosis or telomerase reverse transcriptase
(TERT) promoter mutation or epidermal growth factor receptor
(EGFR) gene amplification or+7/-10 chromosome copy number
changes are present, should be diagnosed as IDH-wild-type
GBM. Based on the new classification criteria, a more reasonable
and personalized prognosis analysis method can be constructed,
which will directly affect the condition assessment, targeted
treatment, and follow-up management of IDH-wild-type GBM
patients (Louis et al., 2021).

In current clinical practice, several factors are usually
combined to predict the prognosis of GBM patients, including
age, gender, Karnofsky performance status (KPS; Buckner, 2003;
Chambless et al., 2015), tumor location, and laterality (Field et al.,
2014; Gately et al., 2018), molecular spectrum analysis (Binabaj
et al., 2018; Schaff et al., 2020), and treatment plan (Stupp et al.,
2009; Herrlinger et al., 2019), among others. In addition, it has
been reported that the prognosis of malignant glioma may be
affected by some basic characteristics of preoperative MRI, such
as the extent of peritumoral edema (PTE), tumor crossing the
midline, necrosis, enhancement, and the size of the cyst (Maldaun
et al., 2004; Pope et al., 2005; Wu et al., 2015; Hansen et al., 2018).
MRI is a non-invasive preoperative routine examination for GBM
with the advantage of multi-parameter imaging and excellent soft
tissue resolution, which can provide comprehensive structural

and functional information of the tumor (Henson et al., 2005;
Diehn et al., 2008). Currently, it has been proven that the MRI
technology exhibits great potential in predicting the survival of
patients with GBM (Gutman et al., 2013; Gevaert et al., 2014;
Rao et al., 2016).

Radiomics transforms the subjective and semi-quantitative
description of traditional imaging diagnosis (such as the
enhancement degree, edema range, and space occupying effect)
into objective and quantitative parameters (such as histogram
features, and texture features) (Lambin et al., 2012; Peeken
et al., 2017; Rogers et al., 2020). Compared to traditional
imaging features, these quantitative radiomics features contain a
number of invisible tumor biological information, such as tumor
heterogeneity, oncogenic processes, invasion, and metastasis
(Gillies et al., 2016; Limkin et al., 2017; Peeken et al., 2017; Liu
et al., 2019). Therefore, a more effective and reliable method may
be to analyze the prognosis of IDH-wild-type GBM by using a
comprehensive multivariate model based on radiomics features
and clinical risk factors.

This study aimed to develop machine learning models
that can be used to predict the prognosis of IDH-wild-
type GBM based on the radiomics features extracted from
multicenter, multi-parameter MRI images. By constructing
a combined Radiomics + Clinical nomogram, the overall
survival of IDH-wild-type GBM patients was analyzed and
predicted individually.

MATERIALS AND METHODS

Patients
Recruitment of the patients included in this study consisted
of two parts. The first part was from our hospital (Zhongnan
Hospital of Wuhan University), which was approved by
the Medical Ethics Committee of the hospital (approval
no. 2020181). Informed consent was waived because of the
retrospective nature of the study. Using the Picture Archiving and
Communications System (PACS), we searched and enrolled the
patients admitted to hospital between June 2016 and December
2020. The second part was from the public databases The Cancer
Genome Atlas (TCGA)/The Cancer Imaging Archive (TCIA;
Clark et al., 2013). The patient identifiers in the databases were
erased and approval of the Institutional Review Committee was
not required. All patients were included and selected based

Frontiers in Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 791776

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-791776 January 27, 2022 Time: 11:26 # 3

Wang et al. Radiomics for OS in IDH-Wildtype Glioblastoma

on the following exclusion criteria: (1) patients without any
sequence of contrast-enhanced T1-weighted image (CE-T1WI),
T2-weighted image (T2WI), or T2-weighted fluid-attenuated
inversion recovery (T2-FLAIR) images; (2) patients who had
received biopsy or operation; and (3) patients with large image
artifacts and poor quality images, which may cause deviation
in the follow-up process. Finally, a total of 142 patients from
multiple centers were included in this study, among which 70
were from our hospital and 72 were from public databases. The
detailed patient screening and grouping process is shown in
Supplementary Figure 1, while the individual characteristics of
these patients are shown in Table 1.

Follow-Up
The overall survival (OS) of the patients from our hospital was
calculated from the date of surgery to the last follow-up or
death, and the preoperative image date was not long before the
operation date. The minimum follow-up period to ascertain OS
was 18 months after the date of surgery, if patients were still alive.
The OS of the patients from TCGA/TCIA databases was obtained
from support documents of the TCGA GBM Project.

Data Flowchart
As seen in Figure 1, the data processing of this study
consisted of two modules: clinical characteristics and radiomics
analysis modules. Clinical risk factors were screened one by
one using univariate Cox regression, while radiomics analysis
could be divided into five parts: image preprocessing, image
segmentation, feature extraction, feature reduction, and step-
by-9step model construction. The radiomics and combined
(Radiomics + Clinical) models were constructed separately and
then compared. Finally, the nomogram was generated as an
effective tool to personally predict the 1- and 2-year survival of
patients based on the model with better predictive performance.

As shown in Table 1 and Supplementary Figure 1, all 70
samples from our hospital and 30 samples randomly selected
from TCGA/TCIA made up the training set (a total of 100
cases), while the remaining 42 samples from TCGA/TCIA made
up the test set. All feature analyses and modeling (clinical and
radiomics) were operated on the training set and then validated
on both the training and test sets.

Images Acquisition
All preoperative MRI images in our hospital were obtained
with a 3.0-T scanner [Umr790 (Philips, Best, Netherlands) or
MAGNETOM Trio (Siemens, Erlangen, Germany)] using an
8-channel array coil. The detailed acquisition parameters are
summarized in Supplementary Methods.

Analysis of the Clinical Characteristics
Two radiologists reviewed the images with the double-
blind method and negotiated the results together. Referring
to a previously reported method (Wu et al., 2015), we
collected radiological characteristics such as qualitative indicators
(location, number, tumor crossing the midline, degree of edema,
edema shape, degree of necrosis, degree of cystic change, and

TABLE 1 | Clinical and traditional imaging characteristics of patients included in
the study.

Characteristics All subjects
(n = 142)

Training set
(n = 100)

Test set (n = 42) p-value

Clinical

Age (years),
mean ± SD

58.72 ± 11.74 58.28 ± 10.86 59.76 ± 13.69 0.535

Gender, n (%) 0.870

Male 86 (60.56) 61 (61) 25 (59.52)

Female 56 (39.44) 39 (39) 17 (40.48)

KPS, median (range) 80 (40–100) 80 (40–100) 80 (40–100)

Treatment, n (%) 0.802

Standard 120 (84.51) 85 (85) 35 (83.33)

Non-standard 22 (15.49) 15 (15) 7 (16.67)

Traditional imaging

Location, n (%) 0.061

Frontal 61 (42.96) 45 (45) 16 (38.10)

Temporal 39 (27.46) 27 (27) 12 (28.57)

Parietal 23 (16.20) 11 (11) 12 (28.57)

Occipital 5 (3.52) 5 (5) 0 (0)

Others 14 (9.86) 12 (12) 2 (4.76)

Number, n (%) 0.741

Single 109 (76.76) 76 (76) 33 (78.57)

Multiple 33 (23.24) 24 (24) 9 (21.43)

Tumor crossing the
midline, n (%)

0.582

Yes 17 (11.97) 11 (11) 6 (14.29)

No 125 (88.03) 89 (89) 36 (85.71)

Maximum tumor
diameter, mean ± SD

48.67 ± 16.33 49.77 ± 16.79 46.08 ± 15.05 0.202

Maximum edema
diameter, mean ± SD

18.46 ± 10.55 18.99 ± 10.24 17.19 ± 10.28 0.377

PTE, n (%) 0.465

Minor, <1cm 38 (26.76) 25 (25) 13 (30.95)

Major, ≥1cm 104 (73.24) 75 (75) 29 (69.05)

Edema shape, n (%) 0.513

Rounded 65 (45.77) 44 (44) 21 (50.00)

Irregular 77 (54.23) 56 (56) 21 (50.00)

Edema diameter/tumor
diameter, mean ± SD

0.43 ± 0.33 0.44 ± 0.36 0.39 ± 0.24 0.274

Necrosis, n (%) 0.744

No 14 (9.86) 9 (9) 5 (11.90)

Mild 61 (42.96) 42 (42) 19 (45.24)

Severe 67 (47.18) 49 (49) 18 (42.86)

Cyst, n (%) 0.700

No 83 (58.45) 57 (57) 26 (61.90)

Small 30 (21.13) 23 (23) 7 (16.67)

Large 29 (20.42) 20 (20) 9 (21.43)

Enhancement, n (%) 0.815

Not marked 63 (44.37) 45 (45) 18 (42.86)

Marked 79 (55.63) 55 (55) 24 (57.14)

OS, median (range) 306 (17–1,185) 296 (23–1,185) 322 (17–1,143)

OS, overall survival.

degree of enhancement) and quantitative indicators (maximum
tumor diameter, maximum edema diameter, and maximum
edema diameter/maximum tumor diameter). In addition to the
above, information on the age, gender, KPS, and treatments were
included in this study. Univariate Cox analysis was performed
between OS and the clinical characteristics individually to screen
the clinical risk factors.

Image Analysis
Before image analysis, T2-FLAIR images and CE-T1WI were
strictly registered to T2WI using MATLAB software with
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FIGURE 1 | Data flowchart of the study. (A) Module of the clinical characteristic analysis. (B) Module of the radiomics analysis.

SPM. Then, the CE-T1WI, T2WI, and the T2-FLAIR images
were preprocessed using Analysis Kit software (GE Healthcare,
Chicago, IL, United States). This included bias correction,
skull stripping, and image resampling and normalization. One
radiologist (SW) used ITK-SNAP to manually segment the
regions of interest (ROIs). The region with a high signal on the
T2-FLAIR image was drawn as the ROI.

For each MRI sequence (CE-T1WI, T2WI, and T2-FLAIR),
402 radiomics features were extracted for the ROI using AK
Software (see Supplementary Methods). Then, all 1,206 features
were combined for further modeling.

TABLE 2 | Univariate analysis of the clinical and traditional imaging factors with the
overall survival (OS) of patients using Cox regression model.

Factors HR 95% CI p-value

Age 1.024 1.001–1.048 0.038*

Gender 1.064 0.697–1.623 0.774

KPS 0.987 0.976–0.998 0.021*

Treatment 0.708 0.442–1.134 0.151

Location 0.749 0.326–1.191 0.277

Number 1.18 0.778–1.788 0.436

Tumor crossing the midline 2.417 1.42–4.11 0.001*

Maximum tumor diameter 1.017 1.005–1.029 0.007*

Maximum edema diameter 0.996 0.979–1.013 0.626

PTE 0.896 0.604–1.327 0.583

Edema shape 1.069 0.753–1.518 0.708

Edema/tumor diameter 0.706 0.397–1.255 0.236

Necrosis 0.961 0.613–1.740 0.897

Cyst 1.108 0.717–1.484 0.815

Enhancement 0.942 0.663–1.337 0.737

PTE, peritumoral edema. *p < 0.05.

Twenty samples were randomly selected from all samples to
test feature reliability and reproducibility. Feature extraction by
two authors (SW and WS) was initially analyzed. The procedures
were completed together to guarantee the productivity and
stability of the features (see Supplementary Methods).

Feature Reduction and Radiomics
Signature Construction
Four methods were used in the feature reduction and modeling
processes (Figure 1B). Firstly, inter- and intra-class correlation
coefficients (ICCs) were calculated to assess the stability and
repeatability of each radiomics feature. Features with ICCs
larger than 0.8 were considered to be robust and were retained
for further analysis (see Supplementary Methods). Thereafter,
Spearman’s correlation coefficient for each pair of features was
calculated. Two features with a correlation coefficient (r) larger
than 0.9 meant that there is a high correlation between them, and
one of these features was erased randomly.

Subsequently, univariate Cox analysis was performed on each
radiomics feature to evaluate the ability of a single feature to
predict OS. Features with p-values less than 0.05 were considered
to be statistically significant and were retained in the least
absolute shrinkage and selection operator (LASSO) Cox model
for further analysis.

Least absolute shrinkage and selection operator Cox is
a multivariate Cox method with L1 regularization. During
modeling, the number of features could be reduced by imposing a
penalty term to the feature weights. In this work, the key penalty
coefficient of the LASSO Cox model was determined by the use
of fivefold cross-validation.

The radiomics signature was established by a linear
combination of the retained features (non-zero coefficients)

Frontiers in Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 791776

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-791776 January 27, 2022 Time: 11:26 # 5

Wang et al. Radiomics for OS in IDH-Wildtype Glioblastoma

FIGURE 2 | An example of region of interest (ROI) and the segmentation results of the MRI images of one patient. (A,B) Cross-section views of images before
segmentation (A) and after manual segmentation (B). The lesion in the original image was high and showed a bright signal (A), and the ROI of the lesion area is
represented as red after segmentation (B).

after LASSO Cox analysis. Kaplan–Meier (KM) survival
curve analysis of OS based on the optimal cutoff value of the
constructed radiomics and combined models was performed to
stratify patients into high-risk and low-risk groups in the training
set and test set, respectively. The optimal cutoff value of the
radiomics signature was determined through traversing all values
of the radiomics signature to obtain the best stratification result.
The log-rank test was used for comparisons of the differences
between the high- and low-risk patients stratified using the
constructed models. Ultimately, the Radiomics + Clinical
model was constructed using multivariate Cox analysis by
combining the clinical risk factors and the radiomics signature.
Proportionality assumption was tested based on the Schoenfeld
residuals test. The consistency of model prediction was assessed
using the C-index.

Nomogram Construction
The nomogram transformed the corresponding model
into a simple and visual graph, making the results of the
prediction model more distinct and of higher use value (see
Supplementary Methods). Calibration curves were used to
assess the consistency between the actual observation outcome
and the nomogram prediction.

Statistical Analysis
The distributions of the clinical characteristics in the
training and test sets were represented in the form of
mean ± standard deviation or proportion according to the
variable type. Group differences for these variables were
compared using an independent samples t-test, chi-square test,
or the Mann–Whitney U test according to the variable type
and distribution.

Statistical analysis was performed using R software (version
3.6.3).1 The following R packages were used: “glmnet” to
perform the LASSO Cox regression analysis, the “survival” and
“survminer” packages to implement the Kaplan–Meier analysis,

1http://www.Rproject.org

and the “rms” package to implement the nomogram construction
and calibration evaluation. A two-sided p-value < 0.05 was
considered to be statistically significant for all statistical analyses.

RESULTS

Clinical Characteristics and Overall
Survival
As presented in Table 1, no significant difference in the
OS and clinical characteristics was found between the
training and test sets. After univariate Cox analysis (Table 2),
four independent risk factors, which included age, KPS, tumor
crossing the midline and maximum tumor diameter significantly
influenced the OS.

Image Analysis and Radiomics Signature
Construction
Figure 2 shows an example of the lesion area segmented as ROI
using the manual segmentation method. For the ROI in each MRI
sequence image of a patient, 402 features were extracted. Thus, a
total of 1,206 quantitative features were obtained for one patient,
of which 614 features with ICC > 0.8 were retained for further
analysis. Spearman’s correlation analysis reduced the features to
241, and then by univariate Cox analysis to 45. Figure 3 shows
the results of feature reduction using LASSO Cox. Ultimately, 8
features were retained (Table 3), which made up the radiomics
signature through linear combination.

Validation of Radiomics Models
As presented in Figure 4 (p < 0.001 in the training
set and p < 0.05 in the test set), both radiomics and
Radiomics + Clinical models could effectively stratify
the risk of OS. The C-index score in the range 0.74–
0.86 (Table 4) in both the training and test sets meant
good consistency of the model prediction. In addition,
the Radiomics + Clinical model showed better predictive
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FIGURE 3 | Construction of the radiomics signature using least absolute shrinkage and selection operator (LASSO) Cox regression. (A) An optimal tuning parameter
(λ) in the LASSO regression model was selected using fivefold cross-validation and the partial likelihood deviance rule. Two vertical dashed lines were drawn for two
criteria: (1) the minimum of the partial likelihood deviance (lambda.min, red dashed) and the least feature number in the range of 1 standard error around lambda.min
(lambda.1SE, black dashed). In this study, lambda.min (0.1035244) was selected to minimize the partial likelihood deviance. (B) LASSO coefficient profiles of the
features. According to the fivefold cross-validation in panel (A), the optimal λ value was determined at lambda.min, and the corresponding features with non-zero
coefficients were included in the construction of the radiomics signature.

performance than the radiomics model, but the difference
was not statistically significant. The overall Schoenfeld global
test of the Radiomics + Clinical model was examined for
proportional hazards (PH) assumption, which was met
(p = 0.518). All covariates met the proportional hazards
assumption (Supplementary Figure 2). To further evaluate

the real performance of the model, we supplemented the 10
times tenfold cross-validation method to randomly divide the
dataset 10 times, aiming to perform a more balanced model
evaluation by calculating the average and standard deviation
values of the model C-index. The C-index scores are shown in
Supplementary Table 2.
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TABLE 3 | Features and their corresponding coefficients in the radiomics
signature.

Feature category Feature name Coefficients

Radiomics Contrast C_ShortRunEmphasis_
AllDirection_offset4_SD

−0.102

T2 T2_ClusterShade_AllDirection_
offset1_SD

−0.099

T2_ClusterShade_AllDirection_
offset7_SD

−0.073

T2_Correlation_angle45_
offset7

0.059

T2_sumAverage −0.047

T2_Elongation −0.198

FLAIR FLAIR_Elongation 0.001

FLAIR_IntensityVariability 0.256

FLAIR, fluid-attenuated inversion recovery.

Radiomics Nomogram
Ultimately, the radiomics signature and four clinical risk factors
(age, KPS, tumor crossing the midline, and maximum tumor
diameter) were included in the nomogram (Figure 5A). The total
score obtained by integrating the individual scores for age, KPS,
tumor crossing the midline, maximum tumor diameter, and the
radscore can be used to quantitatively predict the probability of
a patient’s 1- and 2-year survival (Figure 5A). The calibration
curves of OS prediction at 1 and 2 years (Figures 5B,C) showed
good agreement between the nomogram prediction and the
actual observations.

DISCUSSION

In this study, we extracted more comprehensive features from
CE-T1WI, T2WI, and T2-FLAIR sequences than those in
previous studies so that we could mine radiological images in
more depth. The radiomics signature has been identified as
an independent prognostic biomarker of IDH-wild-type GBM.
Therefore, we combined it with clinical risk factors (age, KPS,
tumor crossing the midline, and maximum tumor diameter) to
construct a combined model and nomogram as a personalized
tool to estimate the OS of IDH-wild-type GBM patients. The
models were constructed based on a multicenter training queue
and verified based on a multicenter test set.

Traditional central nervous system tumor grading is mainly
based on histological features, but now, some molecular markers
can provide strong prognostic information. Therefore, molecular
markers have been added as grading biomarkers and used to
further evaluate the prognosis of several tumor types. The
2021 classification criteria of the WHO classified common
adult diffuse gliomas into three types: astrocytoma, IDH-
mutant; oligodendroglioma, IDH-mutant and 1p/19q-codeleted;
and glioblastoma, IDH-wild type. In addition, it should be
noted that IDH-wild-type diffuse astrocytic tumors in adults,
if microvascular proliferation or necrosis or TERT promoter
mutation or EGFR gene amplification or +7/−10 chromosome

copy number changes are present, should be diagnosed as IDH-
wild-type glioblastoma (Louis et al., 2017, 2021; Brat et al., 2018).
Previous studies have explored the prognosis of glioblastoma
according to the old classification (Alexander and Cloughesy,
2017; Chaddad et al., 2018; Rao et al., 2018; Zhang et al., 2019).
Therefore, on this basis, according to the latest guidelines, we
included some tumors previously considered to be of lower
grade but now diagnosed with GBM into the study. This updates
the prognosis prediction for such tumor patients and provides
more real-time help with personalized treatment. This is a more
complete and comprehensive retrospective study for patients
with newly diagnosed IDH-wild-type GBM. Radiomics uses
advanced computing methods to extract potential radiomics
features from images and obtain more tumor information in
a non-invasive manner. Previous studies have reported that
radiomics features can predict the prognosis of gliomas. Bae
et al. (2018) showed that radiomic MRI phenotyping can improve
survival prediction when integrated with clinical and genetic
profiles and thus has potential as a practical imaging biomarker.
Tan et al. (2019) showed that radiomics can accurately reflect
the heterogeneity of the tumor and edema areas of high-grade
glioma so as to reflect the prognostic information to a certain
extent. Compared with some previous studies, our model showed
similar or even better predictive ability. The C-index of a model
constructed for high-grade glioma was 0.764 (Tan et al., 2019).
This may be related to the fact that we extracted more features
from three different MRI sequences. The combination of multiple
sources of information allows for an overall analysis of the
tumor and better prognosis prediction. Except as mentioned
above, it is more reasonable that multicenter data are adopted
in the training and test processes. Although the performance of
the constructed models is not the best among existing studies,
they have stronger generalization ability, reproducibility, and
usability. In addition, to further evaluate the real performance of
the model, we supplemented the 10 times tenfold cross-validation
method to randomly divide the data set 10 times, aiming to
perform a more balanced model evaluation by calculating the
average and standard deviation values of the model C-index.

We finally screened out 8 features, including 1 CE-T1WI
feature, 5 T2WI features, and 2 T2-FLAIR features. The CE-
T1WI sequence can well display the activity and necrotic area of
the tumor, the T2WI sequence can reflect the anatomical location
and cellularity of the tumor, and the T2-FLAIR sequence can
depict the cellularity of the tumor and the density of tumor
cells (Tan et al., 2019; Tian et al., 2020). The radiomics features
of the combined sequences can represent the characteristics of
tumors from different aspects and reflect the information of all
aspects of tumors, evaluating tumors and their heterogeneity
more comprehensively.

According to the latest classification, we excluded the IDH
status and identified the constructed radiomics signature, age,
KPS, tumor crossing the midline, and maximum tumor diameter
as independent risk factors using multivariable Cox regression
analysis. Both the radiomics and Radiomics + Clinical models
could effectively stratify the risk of OS in IDH-wild-type GBM.
The combined model showed better prediction effect than the
single radiomics model, but the effect was limited. This indicates
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FIGURE 4 | Strata: index for risk stratification. Kaplan–Meier analysis of the overall survival (OS) of patients based on the radiomics model with optimal cutoff values
(1.2311) in the training set (A) and the test set (B) and based on the Radiomics + Clinical model with optimal cutoff values (1.1489) in the training set (C) and the test
set (D).

that radiomics features may play a greater role in prognosis
prediction. Moreover, it may be partly due to the IDH mutation
status factor being reduced by including all IDH-wild-type
patients according to the new classification, which may have
reflected the importance of IDH mutation status in the prognosis
of GBM patients. In addition, the nomogram built based on
radiomics features and selected clinical features is a graphical
representation of a statistical model and makes the results of
the prediction model more prominent and of higher use value.
By combining the scores of each risk factor in the nomogram,
the 1- and 2-year survival probability of each patient can be
estimated, making it a useful tool for the personalized diagnosis
and treatment of IDH-wild-type GBM.

However, there are still some limitations in our study. Firstly,
manual segmentation will produce personal errors. Automatic
tumor segmentation based on deep learning will minimize user

TABLE 4 | Comparison of the predictive performance of the models using the
C-index in the training and test sets.

Model C-index (95%CI)

Training set Test set

Radiomics 0.803 (0.744–0.861) 0.764 (0.680–0.848)

Radiomics + Clinical 0.836 (0.785–0.886) 0.799 (0.720–0.878)
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FIGURE 5 | Radiomics nomogram. (A) Radiomics + Clinical nomogram constructed by integrating the independent risk factors, including age, Karnofsky
performance status (KPS), maximum tumor diameter, tumor crossing the midline, and radscore to predict the 1- and 2-year survival of patients with isocitrate
dehydrogenase (IDH)-wild-type glioblastoma (GBM). (B,C) Calibration curves used to assess the prediction consistency of the nomogram in the training set (B) and
the test set (C).

bias and facilitate large-scale research. Secondly, due to the
heterogeneity of the imaging parameters in the TCGA/TCIA
databases, we only included conventional sequences, but did not
analyze advanced MRI sequences. Finally, we did not consider the
impact of various treatments on tumor progression after standard
chemoradiotherapy in the analysis of OS.

CONCLUSION

In conclusion, for patients newly classified as IDH-wild-
type GBM, radiomics features are still independent prognostic
biomarkers, and age, KPS, tumor crossing the midline,

and maximum tumor diameter can, to a certain degree,
supplement radiomics features. The nomogram constructed by
combining radiomics features and relevant clinical factors can
improve the individualized prediction of survival of IDH-wild-
type GBM patients, which provides help with personalized
clinical treatment.
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