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Background: Prediction and early diagnosis of Parkinson’s disease (PD) and
Parkinson’s disease with depression (PDD) are essential for the clinical management
of PD.

Objectives: The present study aimed to develop a plasma Family with sequence
similarity 19, member A5 (FAM19A5) and MRI-based radiomics nomogram to
predict PD and PDD.

Methods: The study involved 176 PD patients and 181 healthy controls (HC). Sandwich
enzyme-linked immunosorbent assay (ELISA) was used to measure FAM19A5
concentration in the plasma samples collected from all participants. For enrolled
subjects, MRI data were collected from 164 individuals (82 in the PD group and 82
in the HC group). The bilateral amygdala, head of the caudate nucleus, putamen, and
substantia nigra, and red nucleus were manually labeled on the MR images. Radiomics
features of the labeled regions were extracted. Further, machine learning methods were
applied to shrink the feature size and build a predictive radiomics signature. The resulting
radiomics signature was combined with plasma FAM19A5 concentration and other risk
factors to establish logistic regression models for the prediction of PD and PDD.

Results: The plasma FAM19A5 levels (2.456 + 0.517) were recorded to be
significantly higher in the PD group as compared to the HC group (2.23 + 0.457)
(P < 0.001). Importantly, the plasma FAM19A5 levels were also significantly higher
in the PDD subgroup (2.577 4+ 0.408) as compared to the non-depressive subgroup
(2.406 + 0.549) (P = 0.045 < 0.05). The model based on the combination of
plasma FAM19A5 and radiomics signature showed excellent predictive validity for
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PD and PDD, with AUCs of 0.913 (95% CI: 0.861-0.955) and 0.937 (95% CI:

0.845-0.970), respectively.

Conclusion: Altogether, the present study reported the development of nomograms
incorporating radiomics signature, plasma FAM19A5, and clinical risk factors, which
might serve as potential tools for early prediction of PD and PDD in clinical settings.

Keywords: Parkinson’s disease, Parkinson’s disease with depression, plasma FAM19A5, radiomics, machine

learning

INTRODUCTION

Parkinson’s disease (PD) 1is the second most common
neurodegenerative disease in the world. The main pathological
changes reported in PD include degeneration of dopaminergic
neurons in the substantia nigra pars compacta, decreased striatal
dopamine, and neuronal formation of Lewy bodies (Jankovic,
2008). Clinical diagnosis of PD is often based on the emergence
of motor symptoms. However, certain studies have shown that
in many cases non-motor symptoms are often present before
the onset of motor symptoms (Schapira et al., 2017). Therefore,
non-motor symptoms are potentially more valuable for the
early PD diagnosis. The onset of depression seems to have no
clear correlation with the course of PD. It might appear during
the early or late stages of the disease. Previous studies have
shown that atrophy occurs in the putamen, globus pallidus,
dorsal thalamus, midbrain, and other regions of the brain in
PD patients with depression (PDD) (Shiba et al., 2000). It is
expected that treatment during the early stages of the disease
would improve depressive symptoms. In fact, some of the
studies considered depression to be the strongest predictor of
impaired quality of life in PD patients (Benoit and Robert, 2011).
Therefore, it is important to recognize the risk of depression
during the early stages of PD.

Neuroinflammation occupies a pivotal position in the
pathogenesis of PD (Cardoso et al.,, 2009; Yu et al., 2020). In
fact, both the release of numerous pro-inflammatory mediators
and activation of immune cells are known to be involved in
the regulation of neurogenesis, reduction of synaptic plasticity,
and neuronal survival. These in turn reduce the binding of
receptors, present on the surface of neurons, to excitatory
neurotransmitters, which affect emotions negatively (Hu et al,
2015). Immune cells, such as astrocytes, not only exist in
all the areas of the brain but these cells are positioned in
close proximity to neuronal structures (Prange et al., 2019).
This ensures direct communication between the cells. Under
pathological conditions, astrocytes release pro-inflammatory
factors, such as IL-1, IL-6, and TNF-a, and chemokines such as
CCL2, CCL3, CCLS5, and CCL8. All these molecules can damage
dopaminergic neurons, when present in excessively elevated
levels. In fact, these factors can also interact with the receptors
present on the surface of microglia and glutamatergic neurons,
inducing a cascade of neuroinflammatory reactions (van Mierlo
et al,, 2015). In the Central Nervous System (CNS), microglial
cells secrete glutamate and are metabolized to quinolinic acid
by kynurenine. In this case, astrocytes can enhance neuronal
survival via glutamate uptake, consequently, released glutamate

once exceed the amount that could be cleared by astrocytes via
reuptake (Choudary et al., 2005; Pierozan et al., 2016). Together,
glutamate and quinolinic acid will further enhance neurotoxicity,
leading to the development of depressive symptoms (Ali et al.,
2011). In recent times, FAM19A5 was defined as a new type
of chemokine. This is mainly attributed to its similarity to the
CC chemokine family, in terms of nature, and induction of
reactive astrocytosis during immune activation, following CNS
injury. Theoretically, it could be utilized as an immunoreactive
brain-specific chemokine. In fact, it has been previously reported
to control axonal sprouting and functional recovery after brain
injury (Dias et al., 2013). Recent studies showed that increased
FAMI19AS5 expression promoted major depression (Burda and
Sofroniew, 2014). The occurrence and development of vascular
dementia in patients with severe depression linked increased
plasma FAM19A5 levels to cortical atrophy (Pekny and Nilsson,
2005). However, associations between FAM19A5 and depression
have not been previously studied in PD.

Radiomics analysis is a process that is used to extract
quantitative features from medical images via advanced feature
extraction procedures (Arnone, 2020). Subsequently, machine
learning methods, such as the least absolute shrinkage and
selection operator LASSO) logistic regression method was used
to shrink the dimension of radiomics features, and build models
for disease detection and classification, prognosis prediction,
and therapeutic response evaluation (Rappold and Tieu, 2010).
Radiometric is widely used to predict the recurrence of many
cancer diseases, such as optic neuroblastoma, colorectal cancer,
and liver cancer (Ammari et al.,, 2020; Antunes et al., 2020;
Li Z. et al, 2020; Zhao et al., 2021), which inspire us. During
post-mortem analyses of the brain of PD patients, astrocyte
density was found to be reduced in the substantia nigra, and
the severity of dopamine neuronal loss was positively correlated
with astrocytic a-synuclein (Carta et al., 2017). Neuroimaging
studies also confirmed these findings. Recent imaging omics
studies showed that certain inflammatory factors were associated
with reduced gray matter volume (Harms et al., 2018). However,
no previous studies reported the utilization of radiomics and
machine learning studies, combined with plasma FAM19A5 for
the prediction of PD and PDD.

The present retrospective study was based on the hypothesis
that increased blood FAM19A5 would reflect neuroinflammation
and neurodegeneration in PD patients, and thus plasma
FAMI9A5 levels in PD patients are related to depressive
symptoms. The present study aimed to create prognostic logistic
regression models based on plasma FAMI9AS5 levels, radiomics
signature, and other clinical risk factors, to predict the occurrence
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of PD and PDD, which would further provide a valuable tool for
early diagnosis of PD and PDD in clinical settings.

MATERIALS AND METHODS

Participants

The present study protocol received ethical approval from
the Ethics Committee of the Affiliated Hospital of Qingdao
University. All participants agreed to provide their written
informed consent to participate in the study. Participants with
idiopathic PD were diagnosed by neurologists with reference
to the clinical criteria formulated by the Movement Disorders
Society (Hirsch et al, 2012; Postuma et al, 2015). A total of
176 individuals with PD and 181 healthy controls were enrolled
in this study from May 2018 to September 2020. The patient
exclusion criteria were as follows: (1) patients with Parkinson’s
plus syndrome (such as multiple system atrophy, progressive
supranuclear palsy, or corticobasal degeneration) and any type
of secondary Parkinson’s syndrome; (2) severe complications
or insufficiency of the heart, brain, liver, and kidney. For
comparison, 181 age- and sex-matched individuals were included
in the HC group. The inclusion criteria for the HC group were
as follows: no obvious abnormalities detected during routine
physical examination, no history of CNS disease, no history of
long-term use of drugs affecting neurological diseases, and no
family genetic history of PD.

Clinical Data Evaluation and Grouping

Retrospective analyses were conducted using the clinical data
of all patients, including the age of onset, gender, non-motor
symptoms, duration of disease, age, levodopa daily equivalent
dose (LEDD) (Tomlinson et al., 2010; Kohler et al.,, 2017),
Patient Health Questionnaire-9 (PHQ-9) (Spitzer et al., 1999;
Williams et al., 2012; Chagas et al., 2013; Hurley and Tizabi,
2013), the modified Hoehn and Yahr (H&Y) scale (Tom Tang
et al, 2004), and UPDRS Part III (motor symptoms) score.
The H&Y scale established the stage of PD: early stage 1-2
or moderately advanced stage 2.5-5 (Goetz et al., 2004; Kang
et al,, 2005; Kahn et al., 2012; Brys et al., 2016). According
to the standard of the UPDRS Part III (motor symptoms),
the tremor score was calculated as the sum of UPDRS III
items 20 and 21 divided by 7, while the non-tremor score
was calculated by summing the UPDRS III items 18, 19, 22,
and 27-31 divided by 12 (Han et al, 2020). If the patient’s
average tremor score was more than 2 times the average non-
tremor score, the condition was defined as tremor-dominant
(TD). If the patients average non-tremor score was more than
2 times the average tremor score, it was defined as akinetic-
rigid (AR). The remaining patients with the difference between
tremor and non-tremor scores < 2x were categorized to have a
mixed subtype (MT) condition (Rajput et al., 2017; Li J. et al,,
2020). Statistics of 3 non-motor symptoms of PD patients were
compared in a subgroup analysis: (1) Constipation—according to
the presence of gastrointestinal symptoms as measured by ROME
III functional constipation criteria (Kumar et al., 2012; Knudsen
et al., 2017), subjective constipation was defined by > 25% of
bowel movements being characterized by two or more symptoms:

(i) straining during defecation, (ii) lumpy/hard stools, (iii)
the sensation of incomplete evacuation, (iv) the sensation of
anorectal obstruction, (v) manual maneuvers to assist defecation,
or (vi) < 3 bowel movements in a week. According to the
ROME III criteria, patients were divided into constipation and
a non-constipation group; (2) Rapid eye movement (REM) sleep
behavior disorder (RBD)—patients with a score of > 6 and < 6
on the Rapid Eye Movement Sleep Behavior Disorder Screening
Scale (RBDSQ) (Nomura et al., 2011; Gillies et al., 2016) were
categorized into a PD with RBD group and a PD without RBD
group, respectively; (3) Depression—patients with a score of > 10
and < 10 on the PHQ-9 depression scale were categorized into
a PDD group and a PD without depression group, respectively
(Chaddad et al., 2019).

Measurement of the Plasma FAM19A5

Levels

All subjects fasted for > 8 h before an early morning blood
collection via the cubital veins. The venous blood samples
were collected in ethylene diamine tetraacetic acid (EDTA)
tubes and dispatched to the Inspection Department at the
Institute of Cerebrovascular, Qingdao University Affiliated
Hospital for further analyses. Briefly, the blood sample was
centrifuged at 1,000 x g for 15 min to obtain two layers
(Thermo Fisher Scientific, Am Kalkberg, Germany). The upper
layer of transparent light-yellow liquid, which represented the
plasma, was collected and frozen at -80°C. According to the
manufacturer’s instructions. the plasma FAM19A5 levels were
determined using 50 pL of each sample by the FAM19A5 ELISA
kit (Jiang Lai, Shanghai, China). The absorbance was measured
at 450 nm by using the SpectraMax M4 Multiplate Reader
(Molecular Devices, Wokingham, United Kingdom).

MRI Acquisition

MRI examination was performed within 24 h of venous blood
collection. The subjects who met this criterion (82 PD patients
and 82 healthy controls) were selected for routine MRI scans
using the GE Signa 1.5 T and 3.0 T MRI scanners (General
Electric Healthcare, Milwaukee, WI, United States) with an 8-
channel phased-array head coil. The number of patients with
1.5-T scanners in the HC group was 40, while that of patients
with 3.0-T scanners in the HC group was 42. In the PD group,
there were 54 MRI images with a 1.5-T field strength and 28 with
a 3.0-T field strength. The parameters of a three-dimensional T1-
weighted brain scan were as follows: TR-550-2,200 ms, TE-2.5-
33 ms, FA-69~111°, FOV-22—24 cm, and 5-mm slice thickness.
The parameters of a three-dimensional T2-weighted brain scan
included: TR-3,400—6,554 ms, TE-90-150 ms, FA-90—150°,
FOV- 22—24 c¢m, and 5-mm slice thickness. The parameters of
the T2 liquid attenuation inversion recovery sequence scan were
as follows: TR-6,004-9,000 ms, TE-85—154 ms, FA-90—160°,
FOV-22—24 cm, and 5-mm slice thickness.

Neuroimage Processing

Manually Segmentation of the Region of Interest
T1-weighted (T1W) images and T2-weighted (T2W) images
were manually labeled using ITK-SNAP (Huang et al., 2016;
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Wilson etal,, 2019)! by three experienced radiologists. The
labeled ROI in the T1W image included the bilateral amygdala,
bilateral caudate nucleus head, and bilateral putamen. The labeled
ROI in T2W images included the bilateral substantia nigra and
red nucleus (Figure 1, for example, images).

Radiomics Feature Extraction and Analysis

The workflow of radiomics feature extraction and prediction
modeling is shown in Figure 2. In the feature extraction
procedure, all Digital Imaging and Communications in Medicine
(DICOM) formatted images were resampled with the same
pixel spacing (0.5 x 0.5 mm). The Pyradiomics toolkit* was
utilized to extract 322 radiomics features for each ROI, including
16 shape and size features related to the three-dimensional
size and shape of the ROL 18 first-order features based on
the distribution of voxel intensities; 104 texture-based features,
which were calculated from the gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), gray-level
size-zone matrix (GLSZM), and gray-level dependence matrix
(GLDM)—the above features have been proven to showcase the
characteristics of cancer heterogeneity and potentially reflect
changes in the image structure (Mayerhoefer et al, 2020);
and 184 wavelet features, which were decompositions of first-
order statistics and texture features. Finally, there were a total
of 1,610 radiomics features extracted from 10 ROIs defined

'http://itksnap.org/
“http://PyRadiomics.readthedocs.io/en/latest/

on T1IW and T2W extracted for each subject. In the feature
selection and feature dimension reduction procedure, Pearson
correlation analyses and multivariate analyses were employed
to eliminate poorly correlated and repeated radiomics features.
LASSO logistical regression was performed to further shrink
the effective radiomic feature dimension and normalize the
radiomics features to 0-1. The normalized radiomics feature is
the radiomics signature.

Parkinson’s Disease Prediction Model

The radiomics signature extracted from bilateral substantia nigra
and red nucleus regions, the plasma FAM19A5 level, gender, and
age were included as risk factors to predict the PD diagnosis with
logistic regression. Then, fivefold cross-validation was conducted
to test the performance of the logistic regression model after
calculating the ROC curve and AUC value. The prediction model
was visualized using a nomogram (Figure 3).

Parkinson’s Disease With Depression
Prediction Model

The radiomics signature extracted from the bilateral amygdala,
head of the caudate nucleus, putamen, the plasma FAM19A5
level, gender, and age were included as risk factors to predict
PDD diagnosis with logistic regression. Then, fivefold cross-
validation was performed to test the performance of the logistic
regression. The ROC curves were drawn to visualize the ability of
the logistic model to identify the PD depressive and PD without

FIGURE 1 | Regions of interest. (A) Left (green) and right (red) amygdala. (B) Left (yellow) and right (dark blue) caudate nucleus head. (C) Left (sky blue) and right
(purple) putamen. (D) Left (dark green) and right (white) SN. (E) Left (beige) and right (red) red nucleus.
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FIGURE 3 | ROC curves of the logistic model for prediction of PD. The accuracy of the logistic model in predicting PD was 85.6% (AUC = 0.913, 95%

Cl = 0.861-0.955).

depressive subgroups. The logistic model was visualized using a
nomogram (Figure 4).

Statistical Analysis

The experimental data were statistically analyzed using
the SPSS 26 software; the plasma FAMI9AS5 levels were
converted to a normal distribution by natural logarithm (log-
transformed plasma FAMI9AS5 levels) and then analyzed. The
gender distribution of the two groups was compared by the

Chi-squared test. Student’s t-tests or Mann-Whitney U-tests
were performed for between-group comparisons. Measurement
data were expressed as mean =+ standard deviation (SD).
Kruskal—Wallis test and Chi-squared test were performed
to compare the AR, TD, and MT groups. ANCOVA was
performed to assess group differences in the plasma FAMI9A5
levels, with grouping as a fixed factor and age and gender
as covariates. The threshold of statistical significance was set
to P < 0.05.
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RESULTS

Comparison of Baseline Data and
Plasma FAM19A5 Levels Between
Parkinson’s Disease Group and Healthy

Control Group

No significant differences were recorded between PD and HC
groups in terms of age or gender (Table 1). Interestingly,
log-transformed plasma FAMI19A5 levels were found to be
significantly higher in the PD group as compared to the HC group
(P < 0.001, t = -4.370). There were no significant correlations
between plasma FAM19A5 and gender or age.

Expression of Plasma FAM19A5 in Motor

Subtypes

According to UPDRS Part-score, 47 patients were included
in the akinetic-rigid group (AR), 71 in the tremor-dominant
group (TD), and 58 in the mixed group (MT). No significant
differences were recorded in plasma FAM19A5 levels among

different exercise types. Further, log values for FAM19A5 levels
were found to be smaller in the MT group as compared to

TABLE 1 | Demographic and clinical characteristics of patients with Parkinson’s
disease and healthy controls.

PD HC Test value P-value
Number 176 181
Age (years) 67.35+9.50 65.57 £10.25 t=1.698 0.090
Gender 102/79 104/72 xz =0.274 0.601
(female/male)
FAM19A5(log) 2.46 £ 0.51 2.23 +£0.46 t=4.433 <0.001*
Modified HY-stage 2(1.4) / / /
Duration of illness 24 (12.60) / / /
(months)
LEDD 337 (237.375) / / /

Normally distributed data are presented as the means =+ standard deviation (SD),
skewed data are presented as the median (interquartile range), and categorical data
are presented as the count (percentage). FAM19A5(log), log-transformed plasma
levels of FAM19A5; LEDD, levodopa daily equivalent dose.

* indicates statistically significant values with P < 0.05.
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TABLE 2 | Comparison of three motor subtypes of PD.

AR D MT Test value P-value

Number 47 71 58 / /

FAM19A5(log) 2.48 +£0.58 2.52 £ 0.46 2.37 £0.50 F=1.509 0.224
Gender (female/male) (29,18) (42,29) (33,25) x2 =0.248 0.883
Age (year) 65.81 +8.73 68.85 + 9.01 66.78 + 10.53 F=1.615 0.202
Duration of illness (months) 24 (12,36) 24 (12,60) 33(12,61.5) H=0.925 0.630
Age of onset (year) 63.08 + 8.54 65.07 + 10.08 62.97 + 10.66 F =0.907 0.406
Modified HY-stage 2(1.5,2.5) 2(1,2) 2(1.38,2.5) ¥2 =5.021 0.081
LEDD 337.5 (237.5,375) 337.5 (237.5,350) 337.5 (228.13,390.63) x° =0.568 0.753

v

[ PD without

P=0.86 P=0.045 *

[ PD with

P=0.67

b s

Plasma Log FAM19A5 (pg/ml)

Constipation RBD Depression

FIGURE 5 | Expression of FAM19A5 in different non-motor symptoms. In
constipation and RBD subtypes, log-transformed plasma levels of FAM19A5
were not significantly different between two subtypes. In depression subtype,
FAM19A5(log) PD with depression was 2.576 + 0.408 and PD without
depression was 2.406 + 0.549 (P = 0.045 < 0.05,t = —2.012). *indicates
statistically significant values with P < 0.05.

AR and TD groups. However, these differences were found to
be statistically insignificant, as assessed using post-hoc multiple
comparison tests (P = 0.389 and P = 0.163, respectively) (Table 2).

Expression of Plasma FAM19AS5 in

Non-motor Symptoms
On the basis of ROME III functional constipation criteria, 98 PD
patients were included in the PD without constipation group,
while 78 patients were included in the PD with constipation
group. Although plasma FAM19A5 levels were found to be higher
in PD with the constipation group (2.475 =£ 0.479) as compared
to PD without the constipation group (2.442 £ 0.547), these
differences were statistically insignificant (P = 0.67, t = -0.472).
Further, based on the RBDSQ score, 62 PD patients were
included in the PD with RBD group (2.447 £ 0.584) and 114
patients in PD without RBD group (2.462 & 0.471). Most of
the patients with RBD experienced insomnia, dreaminess, dream
enactment behavior (DEB), and limb movement behaviors.
Importantly, a Student’s t-test revealed that differences in the

plasma FAMI19AS5 levels for the two groups were not statistically
significant (P = 0.862, t = -0.174).

Following this, the patients were further grouped on the basis
of the PHQ-9 questionnaire score. In particular, 52 PD patients
were included in the PDD subgroup and 124 patients in the
PD without depression subgroup. A Student’s t-test showed that
plasma FAM19A5 levels were significantly elevated in the PDD
group (2.576 % 0.408) as compared to PD without depression
(2.406 £ 0.549) group (P = 0.045 < 0.05, t = —2.012) (Figure 5).

All these findings indicated that the plasma FAM19AS5 levels
were related to Parkinson’s depression. Following this, correlation
analysis was carried out between plasma FAMI19A5 levels and
degree of depression in Parkinson’s patients, which showed
a significant correlation at the level of 0.05. Interestingly, it
was observed that PDD developed at an earlier age, which
indicated that the disease in such cases would likely last
longer. In addition to this, no differences were recorded in
the depression factors, including gender, age, and phenotype of
motor symptoms (Table 3).

Diagnostic Efficacy of Radiomics
Combined With Plasma FAM19A5 for
Prediction of Parkinson’s Disease

The extracted and normalized radiomics signature of bilateral
substantia nigra and red nucleus regions in MRI images were
combined with log-transformed plasma levels of FAM19A5,
gender, and age to develop a logistic regression model for the
prediction of PD. Further, fivefold cross-validation was used
to test the model performance. For each cross-validation, 164
subjects were randomly divided into two groups, namely training
and validation groups, which included 131 and 33 subjects,
respectively. The results showed that the logistic model exhibited
excellent prognostic ability in predicting PD, with an accuracy
of 85.6% (AUC = 0.913, 95% CI = 0.861-0.955) (Figure 3). The
weightage of each risk factor was visualized using a nomogram
(Figure 6).

Diagnostic Efficacy of Imaging Omics
Combined With Plasma FAM19A5 in
Parkinson’s Disease Depression
Subgroup

For depression subgroup analysis, logistic regression was
performed using extracted and normalized radiomics signatures
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TABLE 3 | Comparison of PD with/without depression.

PD with depression PD without depression Test value P-value
Number 52 124 / /
FAM19A5(log) 2.59 + 0.39 2.41 £0.55 t=2.146 0.033*
Gender (female/male) 33/19 71/53 x2=0916 0.339
Age (year) 65.17 +£9.03 68.27 + 9.60 t=-1.978 0.048*
Duration of illness (months) 36 (19.5,60) 24 (12,60) Z=-1.745 0.081
Age of onset (year) 61.28 + 10.22 64.92 + 9.59 t=2.253 0.026*
Modified HY-stage 2+ 0.754 2.08 £ 0.761 t=0.804 0.422
LEDD 337.5 (271.875,375) 337.5 (206.25,375) Z =-1.100 0.271
Phenotype of onset
Tremor-dominant 16 (30.8%) 31 (25%) ¥2=0.723 0.697
Akinetic-rigid 19 (36.5%) 52 (41.9%)
Mixed 17 (32.7%) 41 (33.1%)

* indicates statistically significant values with P < 0.05.

for the bilateral amygdala, head of the caudate nucleus,
and putamen ROIs, obtained from MRI images, which were
combined with log-transformed plasma levels of FAMI19AS5,
gender, and age. The modeling procedure utilized fivefold cross-
validation to test the performance of the resulting model. For
each cross-validation, a total of 83 subjects were randomly
divided into training and validation groups, which included 66
and 17 subjects, respectively. The results were recorded and
visualized using ROC curves, and the area under the curve
(AUC) was calculated. The results demonstrated the excellent
performance of the logistic model in discriminating PD and PDD,
with an accuracy of 87.8% (AUC = 0.937, 95% CI = 0.845-
0.970) (Figure 4). The logistic weights for each risk factor were
visualized using a nomogram (Figure 7).

DISCUSSION

In this study, the plasma levels of FAM19A5 were found to be
significantly increased in PD patients. The present study is the
first to assess FAM19A5 expression in PD patients. The study
tried to explore the association between plasma FAM19A5 levels
and some of the common non-motor symptoms observed in
PD, wherein a correlation with PDD was reported. In particular,
plasma FAM19A5 levels in the PDD group were recorded to be
higher as compared to PD without depression group. Radiomics
features and plasma FAMI9A5 levels were further used to
establish a PD prediction model, which effectively improved
predictive performance to identify PD and PDD.

Family with sequence similarity 19 member A (FAM19A5) is
a chemokine, which is expressed in the brain, optic nerve, and
spinal cord. In particular, FAM19A5 exhibits a wider expression
pattern throughout the CNS (Yushkevich et al., 2018; Lei et al.,
2019). It can be secreted by glutamate neurons and neuroglia,
which include microglia and astrocytes. These two types of
cells constitute the innate immune cells of the brain. In recent
years, many clinical and animal studies confirmed the role of
neuroinflammation in PD. It has been previously shown that the
CNS immune response interacts with the peripheral circulatory

system immune response, which could further destroy the
blood-brain barrier and induce peripheral lymphatic invasion.
Neurotoxic factors released by microglia and astrocytes increase
and aggravate inflammatory responses in the brain (Hirsch et al.,
2012; Muldoon et al., 2013; Shao et al., 2015). Previous studies
also reported evidence to support the current hypothesis that
plasma FAM19A5 acts as a pro-inflammatory factor. In one
of the studies, TNF-a was injected into the lateral ventricle
of the mouse, wherein it mimicked the neuroinflammatory
response and increased the expression of FAM19A5, IL-1b, IL-
6, cyclooxygenase 2 (COX2), and mPGES-1 in the hypothalamus
(Jha and Suk, 2013). In PD, TNF-a is known to bind to TNF-
o receptor, present on the surface of microglia, to produce
more pro-inflammatory factors, such as inducible nitric oxide
synthase (iNOS), COX2, and IL-6 (Goetz et al., 2004; Lefkowitz
and Lefkowitz, 2008; Hernandes and Britto, 2012; Kang et al,,
2020), which may be one of the reasons for the increased plasma
FAMI19A5 levels in PD patients. However, none of the previously
conducted meta-analysis studies reported any association of
depression or its severity with IL-6, IL-1f, and TNF-a. It is
previously known that demyelination occurs after brain injury,
which leads to axonal degeneration and neuronal and glial cell
death. In a previous study (Zhang et al., 2018), increased levels of
FAM19AS5 in oligodendrocyte precursor cells of traumatic brain
injury-induced FAM19A5-LacZ KI mouse penumbra, which
supported a positive role of neuroinflammation in the repair
process during the early stages of PD (Shahapal et al., 2019).
However, in the long-term pathological process, astrocytes and
microglia were reported to get constantly activated, resulting in
the production of glial scars and causing irreversible damage
(Galli et al,, 2019). Clarification of the underlying pathological
mechanisms of FAM19A5 involved in the onset of PDD has
important clinical significance. A larger multicenter study is
warranted in the future to further confirm the correlation
between the serum FAM19A5 levels and PD and PDD subjects.
Non-motor symptoms of PD are very common. In fact, these
symptoms might appear before motor symptoms, suggesting
their potential to be used as a means for early PD diagnosis.
The most remarkable predictors of non-motor PD symptoms
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FIGURE 7 | MRI-based radiomics and FAM19A5 nomogram for discrimination of PDD.

are constipation, anosmia, RBD, and depression. Among these,
constipation usually occurs first (Schapira et al., 2017). The
mechanism of action of the brain-gut axis in PD has been
proposed in recent years. According to the proposed mechanism,
the deposition of a-synuclein spreads from the intestine through
the autonomic plexus to the brainstem, which further involves
the cortex (Niranjan, 2013). The pathogenesis of RBD in
PD patients might be related to dopaminergic defects in the
substantia nigra, striatum, and brain stem nuclei, such as the
locus coeruleus/subcoeruleus complex (Sommerauer et al., 2018;
Ambrosini et al., 2019). This mechanism explains the pattern
and sequence of non-motor symptoms. In this study, plasma
FAM19A5 levels were found to be unrelated to constipation and
RBD, which might be attributed to the absence of FAM19A5
expression in the intestinal tract (Li et al, 2017). However,
in the present study, plasma FAM19A5 levels correlated with
PD depression symptoms. In a previous study, Han et al.
(2020) reported that MDD patients who did not receive drug
treatment exhibited significantly higher FAM19A5 levels as
compared to healthy controls. Moreover, the serum FAM19A5

levels in MDD patients were found to be negatively correlated
with the thickness of the frontal prefrontal area, left posterior
cingulate gyrus, right cuneate lobe, and prefrontal area. This
study further indicated that FAM19A5 might be associated
with neurodegeneration in brain regions involved in emotional
processing. The pathogenesis of PDD is quite complex, and the
pathophysiological mechanisms involved in this disease are not
fully understood. One well-established factor is the deletion of
dopamine in the substantia nigra-striatal system in PD patients.
The decreased ability of glial cells to clear glutamate, induced by
repeated chronic stress, might play a role in the pathogenesis of
PD. This neurotoxicity further leads to a decrease in the density
of glutamate neurons, y-aminobutyric acid neurons, and acetyl
cholinergic neurons in PDD patients, which ultimately leads to
prolonged depression symptoms (Valentine and Sanacora, 2009;
Wang et al., 2018).

The loss of dopamine neurons in the substantia nigra is a
typical pathological feature of PD. It manifests as atrophy of
the black volume in T2-weighted images. Han et al. (2020)
previously showed that in patients with major depression, plasma
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FAMI19AS5 levels were significantly negatively correlated with
gray matter volume of the prefrontal area, left posterior cingulate
gyrus, and right cuneiform lobe. However, this study did not
make predictions based on imaging features. In the current
study, the prediction model established by combining radiomic
features of MRI data, plasma markers, and white matter lesions
demonstrated high accuracy in the prediction of PD. In a
previous study, Xiao et al. (2019) proposed a method based
on a convolutional neural network (CNN) with quantitative
susceptibility mapping (QSM), which could distinguish PD and
HC groups (accuracy: 0.85, AUC: 0.93), wherein 141 subjects
were divided into PD and HC, with 88 and 53 patients,
respectively. Dopamine is known to be involved in motor
symptoms. Additionally, it also participates in the regulation of
emotional activities. It has been previously reported that multiple
DA transmission pathways get affected during PD, which leads to
striatal-frontal and limbic system dysfunction. This in turn causes
behavioral, emotional, and cognitive impairment. To study the
changes in the nigrostriatal-limbic system in PD depression, 82
PD patients and 82 healthy controls were selected, and plasma
FAMI19A5 and structural MRI data were collected. Further,
radiomics features were extracted from several representative
ROIs (black, red nucleus, caudate nucleus head, and putamen).
The AUC value for the logistic regression model, based on the
combination of radiomic features and plasma marker, was found
to be 0.913 (95% CI = 0.861-0.955), which indicated that the
model could efficiently distinguish PD patients from controls.
In addition to research on depression prediction in PD patients,
a logistic regression model was trained using extracted and
normalized radiomics signature of the bilateral amygdala, head
of the caudate nucleus, and putamen regions in MRI images,
and combined with plasma FAMI19AS5 level, gender, and age.
The AUC value of the logistic regression model was recorded
to be 0.937 (95% CI = 0.845-0.970), which indicated the good
predictive ability of the model for the occurrence of depression
in PD patients. The present study was associated with certain
limitations. First, the study did not involve MR images for
all participants, which might weaken the connection between
plasma FAM19A5 and brain nuclei, and thus reduce the accuracy
of the prediction model. In addition, recently have found that
different fields have a strong impact on image texture eigenvalues
and human exploration (Mayerhoefer et al., 2020). Although we
did not differentiate between MRI of different field intensities,
we randomly selected patients in the training and validation
groups. The data in the validation group included 3-T and 1.5-
T data, which proved that our model was effective for different
field intensities.

In summary, the results of the present study suggested
that increase in blood FAM19A5 levels might be related to
neuroinflammation and neurodegeneration in PD patients. The
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