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Choroid neovascularization (CNV) is one of the blinding factors. The early detection
and quantitative measurement of CNV are crucial for the establishment of subsequent
treatment. Recently, many deep learning-based methods have been proposed for CNV
segmentation. However, CNV is difficult to be segmented due to the complex structure
of the surrounding retina. In this paper, we propose a novel dynamic multi-hierarchical
weighting segmentation network (DW-Net) for the simultaneous segmentation of
retinal layers and CNV. Specifically, the proposed network is composed of a residual
aggregation encoder path for the selection of informative feature, a multi-hierarchical
weighting connection for the fusion of detailed information and abstract information, and
a dynamic decoder path. Comprehensive experimental results show that our proposed
DW-Net achieves better performance than other state-of-the-art methods.

Keywords: multi-target segmentation, choroid neovascularization, convolutional neural network, optical
coherence tomography, medical image processing, attention mechanism

INTRODUCTION

The choroid is an important tissue of the human eye. It is a soft and smooth brown film located
between the retina and the sclera (Hageman et al., 1995; Bressler, 2002). Optical coherence
tomography (OCT) is a noninvasive, high-resolution biological imaging technology that can be
used for in vivo measurement of fundus structures such as the retina, retinal nerve fiber layer,
macula, and optic disc (Huang et al., 1991; Fercher et al., 1993). In OCT image, the normal retinal
structure presents multiple interconnected retinal layers (Srinivasan et al., 2014; Zanet et al., 2019);
from the inside to the outside are: the nerve fiber layer (NFL), Ganglion cell layer (GCL), inner
plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer
(ONL), outer photoreceptor segment layer (OPSL), and retinal pigment epithelium (RPE). Figure 1
shows the OCT image with normal retinal layers.

Choroid neovascularization (CNV), also known as sub-retinal neovascularization, refers to the
pathologically proliferating blood vessels that extend from the choroid to the sub-retinal pigment
epithelium, the sub-retinal space, or a combination of the above (Lopez et al., 1991; Laud et al.,
2006). Figure 2 shows the OCT image of the retina with CNV. Due to the high permeability of
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FIGURE 1 | Optical coherence tomography (OCT) image of the normal retinal layer. (A) Original image. (B) Label. NFL, nerve fiber layer; GCL, ganglion cell layer; IPL,
inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OPSL, outer photoreceptor segment layer; RPE, retinal pigment
epithelium.

FIGURE 2 | Optical coherence tomography (OCT) image of the normal retinal layer containing choroid neovascularization (CNV). (A) Original image. (B) Label.

the vascular wall of neovascularization, it may lead to sub-
retinal hemorrhage, lipid exudation, detachment of the retinal
pigment epithelium and choroid, and the formation of fibrotic
scars (Zhang et al., 2017). The main symptoms are visual loss,
distortion of vision, and central or para-central dark spots, which
eventually lead to blindness (Saxe et al., 1993; Grossniklaus
and Green, 2004). Therefore, early detection and quantitative
measurement of CNV are crucial for the establishment of
subsequent treatment plans.

Medical-aided diagnosis segmentation algorithm based
on computer vision can quickly obtain the shape, size,
location, and optical density value, which can provide
reliable and accurate quantitative information for the
diagnosis and treatment of CNV (Chen et al., 2012, 2016;
Gao et al., 2015). Therefore, the development of a reliable and
automatic OCT-based CNV segmentation method requires
further attention.

However, accurate segmentation of CNV still faces great
challenges. Firstly, the structure of the retina is complex due
to the multiple retinal layers it contains (Garvin et al., 2009;
Roy et al., 2017). Secondly, with the existence of CNV or fluid,
the adjacent retinal layers will deform greatly, resulting in a
decrease in contrast (Shi et al., 2015). Thirdly, some CNVs
are small objects that are hard to discriminate, resulting in
performance degradation.

Therefore, focusing on these problems, we propose a new
dynamic multi-hierarchical weighting segmentation network
(DW-Net) for the joint segmentation of CNV and retinal
layers in retinal OCT images. To alleviate the increase in the
difficulty of CNV segmentation due to the complexity of the
retinal layer structure, we developed a joint framework for
the simultaneous segmentation of the retinal layers and CNV.
To reduce the impact of partial deformation of the retinal
layers and improve the segmentation performance on small
CNVs, multiple multi-hierarchical connections are introduced
in our proposed network, thus making full use of contextual
information. Comprehensive experimental results suggest that
our proposed DW-Net achieves superior performance in OCT-
based segmentation of retinal layers with CNV compared with
several state-of-the-art methods.

The major contributions of this paper can be summarized as
follows. Firstly, we create an end-to-end deep learning framework
for the simultaneous segmentation of the retinal layers and CNV.
Secondly, we develop multiple multi-hierarchical connections
to extract and fuse the features in a contextual-driven
manner. Thirdly, we evaluate the proposed methods on OCT
images of the retina, with experimental results suggesting the
effectiveness of our methods.

The rest of the paper is organized as follows. We first
briefly review related work in section “Related Work.” Then,
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we introduce the proposed dynamic multi-hierarchical weighting
segmentation network (DW-Net) in section “Methods”. In
section “Experiments and Results,” we present the experimental
settings, experimental results, ablation study, and the materials
used in this study. The ablation study and the limitations of
our current work are shown in section “Discussion,” as well as
possible future directions. Finally, we conclude this paper in
section “Conclusion.”

RELATED WORK

In recent years, several automatic CNV segmentation methods
of the retinal layers and CNV have been proposed. Lu et al.
(2010) segmented the retinal blood vessel into multiple vascular
and non-vascular slices, smoothed and filtered to refine the
layer boundary. Song et al. (2013) further used arc-based graph
representation, combined extensive prior information through
paired energy terms, and calculated the maximum flow in low-
order polynomial time. In the same year, Dufour et al. (2013)
proposed a graph-based automatic multi-surface segmentation
algorithm to add prior information from the learning model
and further improved the accuracy of segmentation. Xu et al.
(2013) used the Iowa reference algorithm to segment 10 retinal
layers, followed by a combined graph search/graph cut method
to segment pairs of adjacent retinal layers and any present
fluid-associated abnormality detection region in 3D. Xi et al.
(2017, 2018) developed a structure prior method based on
sparse representation classification and local latent function to
capture the global spatial structure and local similarity structure
prior, which improved the segmentation robustness of CNVs of
different sizes.

At present, deep neural networks have been widely used
for the segmentation of retinal images and CNV. Su et al.
(2020) proposed a differential amplification block to extract the
contrast information of the foreground and background, which
is integrated into the U-shaped convolutional neural network
for CNV segmentation. Based on density cell-like P systems,
Xue et al. (2018) proposed an automatic quantification method
of the CNV total lesion area on outer retinal OCT angiograms
to improve the accuracy of the segmentation boundaries. To
simultaneously segment layers and neovascularization, Xiang
et al. (2018) extracted well-designed features to find the coarse
surfaces of different OCTs and introduced a constrained graph
search algorithm to accurately detect retinal surfaces. Wang et al.
(2020) trained two independent convolutional neural networks
to classify the input scans according to the presence or absence
of CNVs in a complementary manner, forming a powerful CNV
description system.

METHODS

Overview
The encoder–decoder structure (Ronneberger et al., 2015; Zhao
et al., 2017; Feng et al., 2020) has been proven to be an efficient
architecture for pixel-wise semantic segmentation among many

deep learning-based methods; therefore, we propose a novel
joint segmentation framework to solve the challenges in retinal
CNV segmentation based on this. As shown in Figure 3A, the
proposed DW-Net consists of three parts: residual aggregation
encoder path, dynamic multi-hierarchical weighting connection,
and dynamic decoder path.

Residual Aggregation Encoder Path
In the conventional encoder path, encoders are composed of
stacked convolutional layers and pooling layers, which are used
to extract rich semantic information and global features layer by
layer. However, continuous convolution and pooling will reduce
the resolution of semantic features, which may lead to the loss
of some small objects (such as small CNVs). To reduce the loss
of resolution and enhance the selectivity of the feature encoder,
we utilized the residual module as our encoder in this paper.
By fusing the current feature maps with previous feature maps,
the residual module can obtain informative feature maps that are
more conducive to subsequent segmentation.

As shown in Figure 3B, the input data X ∈ RH×W×C is
encoded by a convolutional layer and four encoders, as follows:{

Xi,0
= Conv(X) i=0

Xi,0
= ResNet(Xi−1,0) 1 ≤ i ≤ 4

(1)

where H, W, and C denote the height, width, and channels of
the input data, respectively, and X0,0 represents the output of
the first convolutional layer. Xi,0(1 ≤ i ≤ 4) denotes the output
feature maps of four encoders, with channel numbers of 64, 128,
256, and 512, respectively. To improve the feature extraction
ability and save computing resources, we used the pre-trained
model of layers 1–4 in ResNet18 (He et al., 2016) to initialize the
parameters of the encoders.

Dynamic Multi-Hierarchical Weighting
Connection
Encoders of different hierarchies can extract features of different
levels. The local features extracted by the low-level encoder are
relatively simple and are more inclined to the basic components
of images such as points, lines, and contours, while the high-
level encoder is able to extract more complex features, such as
abstract globe information. As for the semantic segmentation
tasks, abstract global features can improve the overall positioning
ability of the object, while fine local features can refine the edges
of the segmented object.

To make full use of the feature maps in multilevel encoders,
as in Figure 4 (Zhou et al., 2018) developed UNet++.
They concatenated the features of encoders in order layer by
layer directly (gray dotted line in Figure 4), thus improving
the performance of the segmentation network. However, the
output feature map of the encoder usually contains interference
information such as background and noise, which need to be
selected and filtered. Also, the output features of each level have
different contributions to the segmentation task; therefore, direct
concatenation cannot highlight the importance of each part. In
addition, concatenation in each hierarchy will greatly increase the
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FIGURE 3 | (A) Architecture of the proposed dynamic multi-hierarchical weighting segmentation network (DW-Net). The dark yellow part in (B,C) indicate the
residual aggregation encoder path and the dynamic multi-hierarchical weighting connection, respectively.

parameters of the network, which may reduce the training and
increase the risk of overfitting.

In response to the above problems, we proposed a dynamic
multi-hierarchical weighting connection, which aims to take full

advantage of the multi-scale extracted features that are conducive
to segmentation in a contextual-driven manner and to filter
irrelevant information. Figure 3C shows the structure of our
proposed dynamic multi-hierarchical weighting connection, and

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 797166

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-797166 December 21, 2021 Time: 15:13 # 5

Wang et al. DW-Net

FIGURE 4 | Architecture of the UNet++ by Zhou et al. (2018).

its calculation process is as follows:

Xi,j
= Conv(Xi,0

+ DB(Xx+1,j−1)) 0 ≤ i ≤ 3, j = 1 (2)

Xi,j
= Conv(

j−2∑
k=0

αi,2j+k∗Xi,k
+ Xi,j−1

+DB(Xx+1,j−1)) 0 ≤ i ≤ 4−j, 2 ≤ j ≤ 4 (3)

where i and j denote the layer index and column index of the
feature mapXi,j, respectively, andDB represents a decode module
composed of a 3 × 3 convolutional layer and an upsampling
layer. αi,2j+k is a learnable parameter, which is optimized through
multiple iterations. To make full advantage of the known detailed
information and abstract information at all hierarchies, we
performed pixel addition on all higher-level feature maps and
current-level feature maps according to their weight, thereby
dynamically enhancing the segmentation ability of the current-
level decoder.

Dynamic Decoder Path
The dynamic decoder path contains four decoders, and the
channels of the output feature map X4−i,i(0 ≤ i ≤ 3) are 256,
128, 64, and 32, respectively. The decoder path is composed of
stacked convolutional layers and upsampling layers, which aims
to upsample the feature maps with strong semantic information

from a high level and restore the spatial resolution layer by layer.
Zhou et al. (2018), conducted pixel-wise averaging on the output
feature map of the decoder path and output feature maps at
the same hierarchy (the black straight line in the upper part of
Figure 4), as follows:

Y
′

= soft max

1
4

4∑
j=1

Conv
(
X0,j) (4)

where Conv is a simple 1 × 1 convolutional layer for
compressing the output feature channel. This strategy
directly merges different feature maps without considering
their depths. However, in convolutional neural networks,
segmentation tasks are sensitive to the depth of the network;
thus, a reasonable design of its depth will improve the
performance (Simonyan and Zisserman, 2014). For this
consideration, we modified the decoder path of UNet++ (Zhou
et al., 2018) to extract more informative prediction results.

Y
′

= soft max

1
4

4∑
j=1

DN
(
X0,j) (5)

where DN is a dynamic fusion module consisting of a bilinear
upsampling layer used to restore the input spatial resolution
and two 1 × 1 convolutional layers followed by a normalization
layer and a Relu nonlinear activation layer. Then, the 1 ×
1 convolutional layer is applied for channel compression.
Finally, we performed pixel-wise averaging on the output of
DN, followed by a softmax layer. Y

′

represents the predicted
probability map.

Loss Function
In the task of semantic segmentation of medical images, the
pixel-by-pixel cross-entropy loss, LCE, is a commonly used loss
function that compares the predicted probability map with the
gold standard (GT) in order according to the spatial position.

Y
′

= soft max

1
4

4∑
j=1

DN
(
X0,j) (6)

where k denotes the number of objects and Y represents
the gold standard.

TABLE 1 | Mean segmentation results (in percent) of the contrast experiments and ablation studies (mean ± SD).

Methods DSC IoU Acc Sen Pre

UNet 94.01 ± 1.34 88.89 ± 2.27 99.23 ± 0.17 94.10 ± 1.30 94.03 ± 1.32

AttUNet 93.19 ± 0.38 87.48 ± 0.67 99.13 ± 0.07 93.27 ± 0.49 93.25 ± 0.33

CE-Net 94.98 ± 0.32 90.55 ± 0.57 99.36 ± 0.03 95.19 ± 0.17 94.84 ± 0.45

Multi-ResUNet 94.41 ± 0.31 89.57 ± 0.54 99.28 ± 0.04 94.42 ± 0.25 94.49 ± 0.38

R2UNet 88.19 ± 1.10 79.48 ± 1.61 98.49 ± 0.11 88.38 ± 1.29 88.67 ± 0.87

DeepLab v3 95.05 ± 0.10 90.69 ± 0.18 99.38 ± 0.01 95.26 ± 0.19 94.90 ± 0.10

Backbone 93.54 ± 0.39 88.07 ± 0.68 99.17 ± 0.08 93.69 ± 0.32 93.50 ± 0.51

DW-Net 95.38 ± 0.22 91.26 ± 0.40 99.41 ± 0.02 95.44 ± 0.22 95.36 ± 0.23

Values in bold indicate the best performance. DSC, dice similarity coefficient; IoU, intersection-over-union; Acc, accuracy; Sen, sensitivity; Pre, precision.
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TABLE 2 | Choroid neovascularization (CNV) segmentation results (in percent) of the contrast experiments and ablation studies (mean ± SD).

Methods DSC IoU Acc Sen Pre

UNet 92.80 ± 2.17 87.15 ± 3.46 99.73 ± 0.08 93.12 ± 2.25 93.10 ± 1.72

AttUNet 91.27 ± 0.86 84.67 ± 1.31 99.68 ± 0.06 91.68 ± 1.73 91.75 ± 1.23

CE-Net 94.53 ± 0.92 90.00 ± 1.63 99.80 ± 0.04 95.61 ± 0.95 93.86 ± 2.17

Multi-ResUNet 93.70 ± 0.80 88.66 ± 1.26 99.77 ± 0.03 93.25 ± 0.88 94.72 ± 0.68

R2UNet 85.00 ± 3.48 75.64 ± 4.68 99.39 ± 0.02 89.52 ± 4.71 83.26 ± 3.17

DeepLab v3 93.74 ± 0.73 88.62 ± 1.23 99.77 ± 0.04 95.11 ± 0.76 92.77 ± 1.58

Backbone 92.51 ± 0.54 86.65 ± 0.85 99.72 ± 0.06 92.67 ± 0.94 92.99 ± 0.28

DW-Net 94.84 ± 0.80 90.48 ± 1.38 99.81 ± 0.02 95.13 ± 0.92 94.81 ± 0.78

Values in bold indicate the best performance. DSC, dice similarity coefficient; IoU, intersection-over-union; Acc, accuracy; Sen, sensitivity; Pre, precision.

FIGURE 5 | Visualization results of the different methods.
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FIGURE 6 | Histogram of choroid neovascularization (CNV) volume comparison.

Dice loss, LDice, is another widely used loss function (Milletari
et al., 2016) that aims to measure the overlap ratio of two samples,
and its value ranges from 0 to 1.

LDice = 1−
1
k

k−1∑
c=0

2YY
′

+ ξ

Y + Y ′ + ξ
(7)

where ξ is set to a very small constant to ensure that the divisor is
not equal to 0. The final loss function we used is as follows:

L= LDice+LCE (8)

EXPERIMENTS AND RESULTS

Dataset and Implementation
Dataset
To evaluate the effectiveness of the proposed method, we
conducted comprehensive experiments. The dataset we used in
the experiment was collected by the Joint Shantou International
Eye Center of Shantou University and The Chinese University
of Hong Kong. The acquisition process lasted 13 months, and
6,016 retinal OCT images from 47 three-dimensional retinal
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FIGURE 7 | Architecture of Res18UNet++ (A) and AdaptiveUNet++ (B).

OCT volumes with CNV were completely acquired through the
Zeiss canner. The size of the actual scanning area is 6 mm ×
2 mm × 6 mm (X × Y × Z), and the number of voxels is
512 × 1,024 × 128. Pixel-level annotations of NFL, GCL, IPL,
INL, OPL, ONL, OPSL+RPE, and CNV were provided by senior
ophthalmologists.

Implementation Details
The implementation of our proposed DW-Net is based
on the public platform Pytorch 1.8.0 with CUDA 11.0
parallel computing library and GeForce RTX 3090 GPU with
24-GB memory.

To save computing resources and increase network
receptivity, each slice was resized to 512 × 512 by bilinear
interpolation. We divided the 6,016 retinal OCT images into four
groups, with the slice number as balanced as possible. Fourfold
cross-validation was conducted on the divided dataset (1,664,
1,792, 1,280, and 1,280). The Adam optimizer with a learning
rate of 1e-4 was adopted as our optimizer. The batch size and
epoch were set to 4 and 100, respectively. For fair comparison,
we used the same training strategy in all experiments.

Evaluation Metrics
Five metrics including dice similarity coefficients (DSCs),
intersection-over-union (IoU), accuracy (Acc), sensitivity (Sen),

and precision (Pre) (Garcia-Garcia et al., 2017) were used to fully
and fairly evaluate the performance, where TN, TP, FN, and FP
represent true negative, true positive, false negative, and false
positive, respectively.

DSC =
2TP

2TP+ FP+ FN
(9)

IoU =
TP

TP+ FP+ FN
(10)

Acc =
TP+ TN

TP+ FP+ TN+ FN
(11)

Sen =
TP

TP+ FN
(12)

Pr e =
TP

TP+ FP
(13)

Results
We first compared our proposed DW-Net with other excellent
convolutional neural network (CNN)-based methods,
including UNet (Ronneberger et al., 2015), AttUNet (Oktay
et al., 2018), CE-Net (Gu et al., 2019), Multi-ResUNet
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TABLE 3 | Ablation experiments (mean ± SD).

Methods DSC IoU Acc Sen Pre

Backbone 92.51 ± 0.54 86.65 ± 0.85 99.72 ± 0.06 92.67 ± 0.94 92.99 ± 0.28

Res18UNet++ 94.64 ± 0.60 90.21 ± 0.91 99.80 ± 0.03 94.65 ± 0.83 95.02 ± 0.23

AdaptiveUNet++ 92.76 ± 0.60 87.06 ± 0.94 99.73 ± 0.05 92.96 ± 1.16 93.15 ± 0.75

DW-Net 94.84 ± 0.80 90.48 ± 1.38 99.81 ± 0.02 95.13 ± 0.92 94.81 ± 0.78

Values in bold indicate the best performance. DSC, dice similarity coefficient; IoU, intersection-over-union; Acc, accuracy; Sen, sensitivity; Pre, precision.

FIGURE 8 | Value of the learnable parameter αi,2j+k during training.

TABLE 4 | Choroid neovascularization (CNV) segmentation experiments without retinal layers (mean ± SD).

Methods DSC IoU Acc Sen Pre

DW-Net-2 90.06 ± 0.62 82.98 ± 0.90 99.63 ± 0.07 89.93 ± 0.50 91.52 ± 0.90

DW-Net 94.84 ± 0.80 90.48 ± 1.38 99.81 ± 0.02 95.13 ± 0.92 94.81 ± 0.78

Values in bold indicate the best performance. DSC, dice similarity coefficient; IoU, intersection-over-union; Acc, accuracy; Sen, sensitivity; Pre, precision.

(Ibtehaz and Rahman, 2020), R2UNet (Alom et al., 2018),
and DeepLab v3 (Chen et al., 2017). In addition, UNet++ (Zhou
et al., 2018) was applied as our backbone. Tables 1, 2 show the
mean joint segmentation results of the 7 retinal layers containing
CNV and the joint segmentation results of CNV, respectively.

From Table 1, it is worth noting that the proposed DW-
Net achieves better performance than all of the above methods,
with DSC, IoU, Acc, Sen, and Pre of 95.38, 91.26, 99.41, 95.44,
and 95.36%, respectively. As for CNV, the performance of our
proposed joint segmentation realized 2.52, 4.42, 0.09, 2.65, and
1.96% improvements in terms of DSC, IoU, Acc, Sen, and Pre,
respectively, over the backbone, as shown in Table 2.

The performance of CE-Net (Gu et al., 2019) was comparable
to that of the proposed DW-Net for CNV Sen, while being
slightly lower in other metrics. In Figure 5, we plotted the
visualization results of the different methods, where the red,
green, dark blue, yellow, light blue, purple, white, and navy blue
areas represent NFL, GCL, IPL, INL, OPL, ONL, OPSL+RPE,
and CNV, respectively. It can be seen that our proposed DW-
Net can accurately segment each retinal layer and CNV, which
is closer to the GT compared with the other methods.

Furthermore, we carried out a quantitative analysis of
the experimental results. Figure 6 shows a histogram of the
comparison between the size of the actual CNV and the
segmented CNV using DW-Net, which are represented by blue
and orange bars, respectively. It can be seen from the qualitative

and quantitative results in the figure that the volume difference
between the prediction of DW-Net and GT is generally small,
which further proves the effectiveness and stability of the joint
segmentation network and suggest promising clinical value and
application prospects.

DISCUSSION

In this section, we first conduct a series of ablation experiments.
Then, we study the contribution of the information on the retinal
layers to the CNV segmentation task. Finally, we introduce the
limitations of this work and possible future research directions.

Ablation Experiments for Residual
Aggregation Encoder Path
To evaluate the effectiveness of the residual aggregation encoder
path, we further compared the backbone with its counterparts
(called Res18UNet++). Specifically, Res18UNet++ directly
applies residual aggregation encoder path based on UNet++
(Zhou et al., 2018) and replaces concatenation by pixel addition,
as shown in Figure 7A, where α is a constant that is fixed to 1.
Table 3 reports the segmentation results.

It can be seen that our proposed Res18UNet++ achieves
better performance over the backbone on all metrics, which
suggests that the residual aggregation encoder path can retain
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more effective features as possible to alleviate the resolution loss
caused by network deepening.

Ablation Experiments for Dynamic
Multi-Hierarchical Weighting Connection
We also compared the backbone with another counterpart (called
AdaptiveUNet++), as shown in Figure 7B. Here, αi,2j+k is a
learnable parameter that is multiplied with the output feature
map of the corresponding encoder. Its value during the training
process is shown in Figure 8.

We can conclude from Table 3 and Figure 8 that our
proposed AdaptiveUNet++ enables the encoders to utilize
multi-scale context information and filter irrelevant information.
In addition, residual aggregation encoder path and dynamic
multi-hierarchical weighting connection can influence and
promote each other, thereby further improving the overall joint
segmentation performance of the network, as shown in the results
of DW-Net in Table 3.

Ablation Experiments for Retinal Layer
Information
All the experiments above were based on the assumption that the
introduction of complex retinal layer information is conducive to
improving the performance of CNV segmentation. Therefore, we
performed joint segmentation of the retinal layers and CNV. In
this section, we set out to verify the assumption.

Pre-processing
We considered CNV as the foreground, and the corresponding
spatial label was set to 1, then the remaining area including the
retinal layers was regarded as background, with the label of 0.
Here, the joint segmentation was transformed into a foreground–
background segmentation. A variant of DW-Net, named DW-
Net-2, was applied for a single CNV segmentation, where the
last layer of the network was modified to sigmoid function, and
the number of output channels was set to 1. Table 4 shows the
segmentation results of DW-Net-2 and DW-Net.

It can be clearly seen that the performance of DW-Net is
superior, which proves that the introduction of retinal layer
information is conducive to distinguishing the features of
background, retinal layers, and CNV, thereby improving the
segmentation performance of CNV.

Limitations and Future Work
The current work still has many limitations. Our proposed DW-
Net contains many learnable parameters, which will increase the
computational burden; therefore, further compression is needed
in practical applications. The dataset used in our experiment

needs further expansion, which is also one of our future works.
We will conduct experiments on more datasets to verify the
effectiveness and generalization of the proposed DW-Net.

CONCLUSION

CNV segmentation is a fundamental task in medical image
analysis. In this paper, we proposed a novel end-to-end dynamic
multi-hierarchical weighting segmentation network (DW-Net)
for the simultaneous segmentation of the retinal layers and CNV.
Specifically, the proposed network is composed of a residual
aggregation encoder path for the selection of informative feature,
a multi-hierarchical weighting connection for the fusion of
detailed information and abstract information, and a dynamic
decoder path. Comprehensive experimental results show the
effectiveness and stability of our proposed DW-Net and suggest
promising clinical value and application prospects.
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