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Segmentation of brain magnetic resonance images (MRI) into anatomical regions is a

useful task in neuroimaging. Manual annotation is time consuming and expensive, so

having a fully automated and general purpose brain segmentation algorithm is highly

desirable. To this end, we propose a patched-based labell propagation approach based

on a generative model with latent variables. Once trained, our Factorisation-based Image

Labelling (FIL) model is able to label target images with a variety of image contrasts.

We compare the effectiveness of our proposed model against the state-of-the-art using

data from the MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labelling.

As our approach is intended to be general purpose, we also assess how well it can

handle domain shift by labelling images of the same subjects acquired with different

MR contrasts.

Keywords: label propagation, atlas, machine learning, latent variables, variational bayes

1. INTRODUCTION

Accurate automated labelling of brain structures in MRI scans has many applications in
neuroscience. For example, studies of resting state fMRI or diffusion weighted imaging often
involve summarising measures of connectivity among a relatively small number of brain regions.
Typically, these regions are only very approximately defined, using simple methods such aligning
with a single manually labelled brain (Tzourio-Mazoyer et al., 2002). While more accurate methods
of brain parcellation are available, they usually have limitations in terms of the types of MRI scans
that can be labelled, and they are often very computationally expensive. For these reasons, they have
not yet been widely adopted by the neuroimaging field. We attempt to overcome some of these
limitations by presenting a novel brain image labelling toolbox for the widely used SPM software.

In this work, we adopt a multi-atlas labelling approach. Given a training set of scans from
N individuals, X = {x1, x2, ..., xN}, along with their corresponding manual annotations Y =

{y1, y2, ..., yN}, the aim would be to estimate a suitable labelling ŷ∗ for a target image x∗ that is
not part of the training set. This objective is often achieved by obtaining the single most probable
labelling, given by

ŷ∗ = argmaxy∗ P(y
∗|x∗,X,Y). (1)

Most label propagation methods require alignment between all the atlases in the training data
(X) and the target image (x∗), which is usually achieved by a series of pairwise registrations. The
Symmetric Normalisation algorithm (in the ANTS package) (Avants et al., 2008) is popular for this,
although other algorithms are available. This pair-wise strategy allows the label propagation to be
performed directly in the space of the target image, which may lead to increased robustness because
a small proportion of failures should have a relatively small impact on the results.
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Once mappings between the training images and target image
have been established, the manually defined labels are warped
using the samemappings. Each of these then provides a candidate
labelling of the target image. At this stage, some form of machine
learning approach is used to predict the labels (ŷ∗) for the target
image from all the candidate labellings. This procedure is often
conceptualised in terms of some form of local weighted voting
strategy, the simplest of which is to give each an equal vote. In
practice, this system is less effective than one that is weighted
according to how well informed the voters are.

Earlier methods were similar to k-nearest neighbour
classification, whereby a subset of atlases were chosen to label
each brain region (Rohlfing et al., 2004). Others use a non-local
patch-based framework (Coupé et al., 2013), with greater
weighting for votes based on a more accurate model of the target
image. This typically involves a measure of similarity between
patches in x∗ and the corresponding patches within each aligned
image in X. Many such approaches can be conceptualised as
a joint non-parametric generative model of both image and
label data (Sabuncu et al., 2010). An alternative framework
is Simultaneous Truth and Performance Level Estimation
(STAPLE) (Warfield et al., 2004), which is based on weighting
the votes from candidate atlases according to how well they
match the consensus over all votes. More local versions of
STAPLE have also been devised (Asman and Landman, 2012b;
Commowick et al., 2012), as well as hybrids between STAPLE
and the non-local approaches (Asman and Landman, 2012a).
Other approaches involve assuming that all voxels within each
labelled region should have similar intensities, in a similar way
to how many domain-adaptive tissue segmentations work. Some
methods treat this as a post-processing step in conjunction with a
Markov random field (MRF) (Ledig et al., 2013), whereas others
have used this assumption to drive the image registration (Tang
et al., 2013).

Rather than conceptualise label propagation entirely in terms
of optimising vote weightings, more recent work considers
it within the more general pattern recognition framework.
This includes using Random Forest approaches (Zikic et al.,
2014) and, more recently, using convolutional neural networks
(de Brebisson and Montana, 2015; Moeskops et al., 2016; Mehta
et al., 2017; Roy et al., 2017, 2019; Wachinger et al., 2018;
Kushibar et al., 2019; Rashed et al., 2020).

Many of these methods are impacted by the problem of
domain shift, which is the situation where images in the training
data (X) have different properties from those that the algorithm is
to be applied to (x∗). Typically, this is due to differences between
image acquisition settings, scanner vendors, field strength, and
so on. Our aim is to release an automated labelling procedure
for general purpose use, which would require overcoming the
domain shift problem. We attempt to circumvent it by working
with images that have previously been segmented into different
tissue types. This can be achieved using one of the many
domain-adaptive brain image segmentation approaches that have
been developed. Such approaches generally build on the idea
of fitting some form of clustering model to the data (Wells
et al., 1996; Ashburner and Friston, 1997), often with MRFs
(Van Leemput et al., 1999; Zhang et al., 2001) or deformable

tissue priors (Ashburner and Friston, 2005; Pohl et al., 2006;
Puonti et al., 2016) built in. While reducing medical images to
a few tissue types inevitably leads to some useful information
being lost, we consider that this is a price worth paying for the
increase in generality of the approach. A related strategy (this
time separating segmentation from diagnosis) has been used
for increasing the generalisability of deep learning approach for
diagnosing retinal disease (De Fauw et al., 2018).

In our proposed Factorisation-based Image Labelling (FIL)
method, we consider multi-atlas labelling as a special case of the
more general problem of image-to-image translation, but where
some of the data are binary or categorical in nature. Hence, our
approach differs from previous methods in a number of ways.

Because running many pairwise registrations can be quite
time consuming, we propose to label target images using only
a single image registration. Training involves first running an
image registration approach to warp all training data (X) into
the same atlas space (i.e., spatially normalise the data). After this,
only a single image registration step is required to align any target
image with the average atlas space. While we acknowledge that
this may sacrifice some registration accuracy and robustness, we
argue that working in a symmetric space (where no image is a
source or target) facilitates pattern recognition across the set of
training scans.

Other methods use purely discriminative methods for the
label propagation itself. These methods model y∗ conditional on
x∗, whereas we propose to use a parametric generative model
that encodes the joint probability of x∗ and y∗. In addition
to providing a new way of thinking about label propagation,
we hope this generative model will open up other avenues of
exploration in the future, particularly regarding multi-task and
semi-supervised learning (Zhu, 2005).

2. METHODS

The basic idea is to learn a generative latent variable model
that can be used to project labels onto images that have been
already warped into approximate alignment with each other
(i.e., spatially normalised). Alignment across individuals provides
prior knowledge about the approximate locations of the various
brain structures. Therefore, the fully convolutional machinery of
convolutional neural networks (CNNs) is not employed because
it may not fully use this prior knowledge.

Rather than use the original pixel/voxel values, the approach
aims to achieve generalisability across different types of images by
working with categorical maps obtained from one of many tissue
classification algorithms. Some confusion may arise from the
fact that both our images and labels are categorical. We will use
categorical images to denote the original images segmented into
tissue types and categorical labels to denote manually delineated
anatomical labels. The number of anatomical classes is typically
larger (and more fine-grained) than the number of tissue classes;
although this is not a requirement of the model, which is
symmetric with respect to both entries.

The approach is patch-based and applied to spatially
normalised tissue maps (i.e., categorical image data). It can
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be seen as a multinomial version of principal component
analysis, similarly to how linear regression can be generalised
to multinomial logistic regression. For each patch, a set of
basis functions model both the categorical image data and the
corresponding categorical label data, with a common set of latent
variables controlling the contributions from the two sets of basis
functions. The results are passed through a softmax to encode
the means of a multinomial distribution. Training the model at a
patch involves making point estimates of the set of spatial basis

functions (W(1) and M(1)) that model the categorical image data

(F(1)), along with the basis functions (W(2) andM(2)) that model

the label data (F(2)). For subject n, the contributions of the basis
functions to both the image patch and its corresponding label
patch are controlled by the same set of latent variables (zn). The
overall model for a patch is presented in Figure 1.

Once trained, the strategy is to determine the distribution of
z
∗ for each patch within the target image data, which we refer
to as the “encoding step”. This is achieved by fitting the learned

W(1) andM(1) to each patch (F∗(1)). Then by usingW(2) andM(2),
and given the estimated distribution of z∗, it is possible to use a
“decoding step” to probabilistically predict the unknown labels

(F∗(2)) for the patch.
The next section describes a simplified version of the full

model shown in Figure 1. Rather than model both F(1) and

F(2), it describes how to encode a single patch F using an
approach similar to a generalisation of principal component
analysis (PCA). Generalising this simple approach to jointly

model F(1) and F(2) is relatively straightforward.

2.1. Multinomial Logistic Principal
Component Analysis Model
This section describes a multinomial principal component
analysis (PCA), which is based on Khan et al. (2010). For PCA
of categorical data, the arrays involved are multi-dimensional, so
we represent them as collections ofmatrices at each of the I voxels

Categorical images: F =

{

Fi ∈ [0, 1]M×N

∣

∣

∣

∣

∣

M
∑

m=1

fmni ∈ [0, 1]

}I

i=1

(2)

Basis functions: W =
{

Wi ∈ R
M×K

}I

i=1
(3)

Means: M =
{

µi ∈ R
M×1

}I

i=1
. (4)

Note that categories lie on the simplex: there areM + 1 mutually
exclusive categories within the data (i.e., the number of possible
labels), but there is no need to represent all categories because
the final category is determined by the initial M categories.
Dimension N denotes the number of items (i.e., the number of
images in the training set). Dimension K denotes the number of
basis functions in the model, and therefore also the number of
latent variables per item

Z ∈ R
K×N . (5)

Our notation uses a bold sans serif font to denote 3D tensors
(e.g. F). Each slice is a 2D matrix, shown in bold serif upper
case (e.g. Fi). The next level of indexing extracts column vectors
from matrices, which are shown in bold lower case (e.g. fni).
Dimensions are shown in upper case italic (e.g. N), whereas
indices and other scalars are in lower case italic (e.g. n or fmni).
This work considers training a generalised PCA model to find
the most probable values of M and W, while marginalising with
respect to Z

M̂, Ŵ = argmaxM,W p(F,W|M) (6)

p(F,W|M) =

∫

Z
P(F|Z,W,M)p(Z)p(W)dZ. (7)

Within our model, the basis functions (W) are assumed to be
drawn from

wki ∼ N

(

0,
(

IM +
1

M+1

)−1
)

. (8)

No priors are imposed on the mean (M). The latent variables
are assumed to be drawn from an empirically determined
(see section 2.2.3) Gaussian distribution that imposes spatial
contiguity between neighbouring patches, such that

p(Z) =

N
∏

n=1

p(zn) (9)

zn ∼ N(z0,P
−1
0 ). (10)

In linear PCA, the likelihood takes the form of an isotropic
Gaussian distribution conditioned on the reconstructed data
(ηni = µi + Wizn). Here, it is based around a categorical
distribution conditioned on the softmaxed reconstruction,
similar to frameworks used for multinomial logistic regression

P(F|Z,W,M) =

I
∏

i=1

N
∏

n=1

P(fni|zn,Wi,µi) (11)

P(fni|zn,Wi,µi) = P(fni|ρni) =

M
∏

m=1

ρ
fmni

mni . (12)

The mean (ρni) of each categorical distribution is computed as
the softmax (σ ) of the linear combination of basis functions

ρni = σ
(

ηni
)

=
exp(ηni)

1+
∑M

m=1 exp(ηmni)
(13)

ηni =Wizn + µi. (14)

The log-likelihood from Equations (12) and (13) is re-written to
make use of the log-sum-exp (lse) function
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FIGURE 1 | Generative model for a single patch. Data from N subjects are assumed to be patches containing categorical data. Image voxels are denoted by f
(1)
ni

(where n ∈ [1..N] and i ∈ [1..I(1)]) and label voxels by f
(2)
ni (i ∈ [1..I(2)]). These are encoded by their means (µ

(1)
i and µ

(2)
i , respectively) and a linear combination of basis

functions (W
(1)
i and W

(2)
i , respectively). For each subject, the contributions of the two sets of basis functions are jointly controlled by latent variables zn, which are

assumed to be drawn from a normal distribution of mean z0 and precision P0.

ln P(fni|ηni) = ηTnifni − lse(ηni) (15)

where

lse(ηni) = ln

(

1+

M
∑

m=1

exp(ηmni)

)

. (16)

Numerous computations within this work benefit from having a
local quadratic approximation to the lse function around some
point η̂ni = Wiẑn + µi. This is based on a second order Taylor
polynomial that uses the gradient (ρ̂ = σ

(

η̂ni
)

), but replaces the
true Hessian with Böhning’s approximation (A) (Böhning, 1992)

lse(ηni) ≤ lse(η̂ni)+ (ηni − η̂ni)
T ρ̂ni +

1
2 (ηni − η̂ni)

TA(ηni − η̂ni)

(17)

where

ρ̂ni = σ (η̂ni) = exp(η̂ni − lse(η̂ni)) (18)

A = 1
2

(

IM −
1

M+1

)

. (19)

It is worth noting that Böhning’s proposed approximation is
more positive definite (in the Loewner ordering sense) than any
of the actual Hessians, which guarantees that the approximating
function provides an upper bound to the true lse function
(Böhning, 1992; Khan et al., 2010) (see Figure 2 for an illustration
whereM = 1).

2.2. Model Training
This section describes how the basis functions are estimated
for each patch. A variational expectation maximisation (EM)
approach is used for fitting the model in such a way that the
uncertainty of Z can be accounted for. Variational Bayesian
methods are a family of technique for approximating the types
of intractable integrals often encountered in Bayesian inference.
Further explanations may be found in textbooks, such as
Bishop (2006) and Murphy (2012). In summary, it uses an
approximating distribution to enable a lower bound on a desired
log-likelihood to be sought. In this work, the approximating
distribution is q(Z), which is used to provide a lower bound
L(q) on the likelihood P(F|M,W). This bound is tightest when
q(Z) most closely approximates p(Z|F,M,W) according to the
Kullback-Liebler divergence (i.e. KL(q||p))

ln p(F, Ŵ|M̂) = L(q)+ KL(q||p) (20)

L(q) =

∫

Z
q(Z) ln

(

p(F,Z, Ŵ|M̂)

q(Z)

)

dZ (21)

KL(q||p) = −

∫

Z
q(Z) ln

(

p(Z|F, Ŵ, M̂)

q(Z)

)

dZ. (22)

Fitting the model by variational EM involves an iterative
algorithm that alternates between a variational E-step that
updates the approximation to the distribution of the latent
variables q(Z) using the current point estimates ofM andW (i.e.,
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FIGURE 2 | Böhning’s bound plotted for various values of η̂ for the binary case. The thick line shows the actual lse function, whereas the fine lines show the local

quadratic approximations centred around various points (solid circles).

M̂ and Ŵ), and a variational M-step that uses q(Z) to update M̂

and Ŵ. These two steps are outlined next.

2.2.1. Variational E-Step
We choose a product of Gaussian distributions for the
approximate latent distribution, such that each factor is
parameterised by a mean ẑn and a covariance matrix Vn

q(Z) =

N
∏

n=1

N(zn|ẑn,Vn). (23)

Keeping only terms that depend on (ẑn, Vn), the evidence lower
bound in Equation (21) can be written as

L(ẑn,Vn) =

∫

zn

(

ln p(Fn, zn, Ŵ|M̂, z0,P0)− ln q(zn)
)

q(zn)dzn + const. (24)

Making use of the local approximation in Equation (17) about
η̂ni = Ŵiẑ

prev
n + µ̂i and of Jensen’s inequality, we can devise

a quadratic lower bound on the evidence lower bound. Note
that, as in classical EM, this quadratic lower-bound touches
the variational lower-bound in each estimate; increasing the
former therefore ensures to also increase the latter. A closed-form
solution to the substitute problem exists, and we find

Vn =

(

P0 +

I
∑

i=1

Ŵ
T
i AŴi

)−1

(25)

ẑn = Vn

(

P0z0 +

I
∑

i=1

Ŵ
T
i

(

fni − ρ̂ni + A(η̂ni − µ̂i)
)

)

. (26)

This Gaussian approximation has the following expectations,
which can be substituted into various other equations
when required

E[zn] = ẑn (27)

E[znz
T
n ] = ẑnẑ

T
n + Vn. (28)

2.2.2. Variational M-Step
The M-step uses q(Z) to update the point estimates of M

and W. For simplicity, our implementation updates M and W
separately, although it would have been possible to update them
simultaneously. The strategy for updating M̂ is similar to a Gauss-
Newton update, but we formulate it in a manner that would
be familiar to those working with variational Bayesian methods.

This involves using the estimates of M̂, Ŵ and Ẑ to set the
variational parameters to η̂ni = Ŵiẑn + µ̂i. Then the local
approximation of Equation (17) is substituted for lse(Ŵiẑn +µi)
in the expectation of ln p( Fi,Z, Ŵi|µi) with respect to q(Z).
Terms that do not involve µi are ignored, giving

Eq(Z)[log p(Fi,Z, Ŵi|µi)] ≤

µT
i

N
∑

n=1

(fni − ρ̂ni + A(η̂ni − Ŵi E[zn]))−
N
2 µT

i Aµi

+const. (29)

Completing the square shows that µi would be drawn from
a multivariate Gaussian distribution, although we are only
interested in its mean. Substituting Equation (27) gives the
following update for µ̂i

µ̂i = (NA)−1

(

N
∑

n=1

(fni − ρ̂ni + A(η̂ni − Ŵiẑn))

)

. (30)

A similar approach is used for updating Wi, although the vec
operator is required to treat the Wi matrices as vectors of
parameters. The Kronecker tensor product (⊗) is also used to
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construct the following upper bound, which is substituted into
Eq(Z)[log p(Fi,Z, Wi|µ̂i)]

Ezn [f
T
ni(Wizn + µ̂i)− lse(Wizn + µ̂i)]

≤− 1
2 vec(Wi)

T(E[znz
T
n ]⊗ A) vec(Wi)

+ vec(Wi)
T(E[zn]⊗ (fni − ρ̂ni + A(η̂ni − µ̂i)))

+ const. (31)

Substituting (Equations 27, 28) into Eq(Z)[log p(Fi,Z,Wi|µ̂i)]
and completing the square reveals the following Gaussian
distribution, and update forWi

vec(Wi) ∼N(vec(Ŵi),H
−1
i ) (32)

Hi =

N
∑

n=1

(ẑnẑ
T
n + Vn)⊗ A+ IK ⊗ (IM +

1
1+M ) (33)

vec(Ŵi) =H
−1
i

(

N
∑

n=1

ẑn ⊗ (fni − ρ̂ni + A(η̂ni − µ̂i))

)

. (34)

2.2.3. Conditional Random Field
This section describes how spatial contiguity is achieved. Rather
than treat the data as a collection of independent patches, the
proposed approach attempts to model the relationship between
the latent variables encoding each patch and those encoding
the six immediately neighbouring patches (or four neighbouring
patches in 2D). For a valid mean-field approximation, updating
patches is done via a “red-black” (checkerboard) ordering scheme
(see Figure 3), such that one pass over the data updates the “red”
patches, while making use of the six neighbouring patches of each
(which would correspond to ‘black’ patches). The next pass would
update the “black” patches, while making use of the six (“red”)
neighbouring patches of each. The remainder of this section
explains how information from neighbouring patches is used to
provide empirical priors (z0 and P0) for the latent variables of a
central patch. We note that this approach is related to work by
Zheng et al. (2015) and Brudfors et al. (2019).

Recall that the posterior means and covariances of each
latent variable are denoted ẑn and Vn. Here, we refer to the
concatenated means and covariances of the latent variables in all
adjacent patches as ŷn and Un, respectively, where Un is block
diagonal. We assume that

[

zn
yn

]

∼ N(0,P−1). (35)

Using K to denote the order of P, the model assumes a Wishart
prior on P.

ln p(P) = lnW(90, ν0)

= ν0−K−1
2 ln det |P| − 1

2 Tr(9
−1
0 P)

− ν0
2 ln det |90| −

ν0K
2 ln 2− lnŴK

(

ν0
2

)

(36)

This leads to the following approximating distribution for P.

FIGURE 3 | Schematic of the “red-black” checkerboard scheme in 2D. In this

illustration, updating the priors for the latent variables encoding the central

(white) patch makes use of the latent variables from the four neighbouring

(grey) patches. This illustrates that the latent variables in each patch are

conditional on those of the neighbouring patches (Markov blanket).

ln q(P) =Eq(Z),q(Y)[ln p(Z,Y|P)+ ln p(P)]

=N
2 ln det |P| − 1

2 Tr

(

E

[

N
∑

n=1

[zTn yTn ]
T[zTn yTn ]

]

P

)

+ ν0−K−1
2 ln det |P| − 1

2 Tr(9
−1
0 P)+ const (37)

By substituting expectations from Equations (27) and (28), we
can represent this as the Wishart distribution

q(P) =W(P|9 , ν) (38)

where

9 =

(

N
∑

n=1

[

ẑnẑ
T
n + Vn ẑnŷ

T
n

ŷnẑ
T
n ŷnŷ

T
n + Un

]

+9−10

)−1

(39)

ν =N + ν0. (40)

From the properties of Wishart distributions, we have

E[P] = ν9 . (41)

For the next step, the matrices P and 9 are conformably
decomposed into

P =

[

Pzz Pzy
Pyz Pyy

]

and 9 =

[

9zz 9zy

9yz 9yy

]

. (42)

Now, we wish to compute priors for the latent variables of each
patch, conditional on the latent variables of the neighbours. This
can be derived from
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FIGURE 4 | Illustration of (encoding) model fit to an example image, where each row shows a different tissue class. The first column shows the warped categorical

image data for one subject. The second and fourth columns shows the mean (parameter M within each patch), with and without a softmax, respectively. The third and

fifth columns show the model fit (mean plus linear combination of basis functions within each patch) to the categorical image data, with and without a softmax.

Eq(yn),q(P)

[

ln p(zn, yn)
]

= − 1
2 Eq(yn),q(P)

[

[zTn y
T
n ]P[z

T
n yTn ]

T
]

+const

= − 1
2z

T
n E[Pzz]zn − zTn E[Pzy]E[yn]

+const.
(43)

By completing the square and substituting expectations from
Equations (27) and (41), we can derive suitable priors for use in
Equation (10) from section 2.1.

zn ∼N(z0,P
−1
0 ) (44)

where

P0 =E[Pzz] = ν9zz . (45)

z0 =− E[P−1zz Pzyyn] = −9−1zz 9zyŷn. (46)

2.2.4. Implementation Details
Training the model is an iterative procedure. Our
implementation consists of a number of outer iterations,
each involving a “red” and “black” sweep through the data.
During each outer iteration, patches are updated by first
determining a new P0 and a new prior expectation z0 for each
zn. Then from these priors, the variational EM steps are repeated
five times within each patch. For each of these sub-iterations, the
E-step is run five times, as is the M-step.

Unlike most other methods, our proposed approach performs
label propagation on spatially normalised versions of the
images. To account for this, our implementation considers the
expansions and contractions involved in warping the images
using the Jacobian determinants to weight the data appropriately,
which is effected by a slight modification to the likelihood term
in Equation 15. This weighting essentially is an integration
by substitution, and is used both during the training and
testing phases.

Because the method is patch-based, not every patch needs to
encode all possible brain structure labels. To save memory and
computation, the model is set up so that each patch only encodes
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FIGURE 5 | The “encoding” step for each patch can be conceptualised as

recurrent neural network, consisting of matrix-vector multiplications and a

softmax. The section within the dotted-lines represents each iteration of the

variational updates of the latent variables.

the categories that it requires. This is determined by whether that
category exists in the corresponding patch in all training scans,
and results in dimensionM(2) varying across patches.

The Bayesian formulation of the model tends towards
an automatic relevance determination solution, whereby the
distributions of some latent variables approach a delta function
at zero. To speed up the computations, the model is “pruned”
after every second iteration of the training. This involves using

PCA to make Ẑ
T
Ẑ orthonormal within each patch (along with

applying the corresponding rotations to each Ŵ
(1)
i , Ŵ

(2)
i and

Vn). Any latent variables that contributed a negligible amount to
the model fit were then removed, along with the basis functions
they controlled.

As a simple attempt to make better use of the limited number
of labelled images, the training data are augmented by also
using versions translated by integer numbers of voxels along all
three directions, up to some maximum radius. We weight the
contribution of each presentation of the data according to the
amount of translation used. This weighting is based on Gaussian
function of distance (exp(− 1

2d
2/s2), and is parameterised by a

standard deviation (s). The weights are re-normalised to sum to
one over all possible amounts of translation. Weighting enters
into the algorithm as a modification to the updates in the
variational M-step, as well as when updating the parameters of
the conditional random field.

2.3. Labelling a Target Image
In this section, we explain the computations that take place
during deployment of a trainedmodel, such that themodel can be
used for labelling new and unseen images. To re-iterate, labelling
a new image involves an encoding step, where the distribution of
z∗ is estimated for each target image patch (F∗(1)) by fitting M(1)

andW(1) to it (see Figure 4). This is followed by a decoding step,
whereby the label probabilities (F∗(2)) are reconstructed from the

distribution of z∗ using M(2) and W(2). We show that encoding
a patch in a new image can be achieved by expressing Equations
(26) and (46) as a type of recurrent ResNet (He et al., 2016).

2.3.1. Encoding
Latent variables are all initialised to zero, before the “red-black”
scheme is used to update them. One cycle updates the estimates
of the latent variables (ẑ) for the “red” patches, based on values
of the latent variables in the neighbouring “black” patches ( ŷ).
The next cycle updates the latent variables of the “black” patches,
using the recently updated neighbouring “red” latent variables.
Our implementation repeats this procedure for a fixed number
of iterations, although it would be possible to terminate based
on some convergence criterion. For each patch, the parameters
computed during training that are required during encoding

are Ŵ
(1)
, M(1), ν and 9 . The procedure for computing the

distribution of the latent variables z for a patch in a target
image F∗(1) ∈ {0, 1}M×I can be made more efficient by first pre-
computing some new matrices. The following covariance matrix
is required, which is obtained by combining 25 and 45.

V =

(

9zzν +

I
∑

i=1

Ŵ
T
i AŴi

)−1

(47)

The spatial basis functions (Ŵ
(1)

andM(1)) are reshaped to make
them easier to work with.

W =













ŵ
(1)
11 ŵ

(1)
21 . . . ŵ

(1)
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(1)
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(1)
22 . . . ŵ

(1)
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...
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. . .
...

ŵ
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1I ŵ

(1)
2I . . . ŵ

(1)
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











and µ =













µ
(1)
1

µ
(1)
2
...

µ
(1)
I













(48)

The additional matrices that are pre-computed to speed up the
updates in 26 are

B(0) = − V9zyν (49)

B(1) = VWT (50)

B(2) = VWT (II ⊗ A)W. (51)

Each patch in the target image is reshaped to a column vector.

f∗ =













f
∗(1)
1

f
∗(1)
2
...

f
∗(1)
I













(52)

Computing the distribution of the latent variables can then be
achieved by iterating the following.

ẑ∗ ←B(1)f∗ + B(0)ŷ∗ + B(2)ẑ∗ − B(1)σ (Wẑ∗ + µ) (53)

In practice, this is iterated five times per patch for every full sweep
through the image. This specific number was chosen based on
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FIGURE 6 | Tissue priors used for diffeomorphic alignment and tissue classification (not showing the background class). The first three classes encode most of the

tissues within the brain, and roughly encode pure grey matter, partial volume grey/white and pure white matter.

what was reported in Khan et al. (2010). It may be worth noting
that these variational updates of the latent variables consist only
of matrix-vector multiplications, additions and a softmax. The
procedure can be conceptualised as a sort of ResNet, which we
have attempted to illustrate in Figure 5.

2.3.2. Decoding
Once the expectation of the latent variables has been computed
for the patches, the probabilistic label map can then be generated

using Ŵ
(2)

and M̂
(2)
. Slightly more accurate probabilities could

be achieved by repeated sampling from z∗ ∼ N(ẑ∗,V∗), but our
approach simply reconstructs voxel probabilities using ẑ∗.

f
∗(2)
i ∼ Cat

(

σ

(

Ŵ
(2)
i ẑ∗ + µ̂

(2)
i

))

(54)

2.3.3. Registration With Trained Model
Labellings achieved from the simple encoding-decoding model,
while fast to compute, are of limited accuracy. We note that
our proposed model also allows a subject-specific template (see
Figure 4) to be generated, such that

f
∗(1)
i ∼ Cat

(

σ
(

Ŵ
(1)
i ẑ∗ + µ̂

(1)
i

))

. (55)

Because the trained model is able to generate synthetic template
images with which new images can be aligned, this leads to a
strategy that allows the alignment between any new image and
the training data to be improved. Higher labelling accuracies can
be achieved by finessing the warps that align the images to label
and the trainedmodel. For each subject’s image data, this involves

alternating between running the encoding and decoding model
to generate a subject-specific template, and using this to refine
the diffeomorphic alignment to achieve a closer match with the
training data.

3. EXPERIMENTS AND RESULTS

Two experiments were performed. The first involved assessing
labelling accuracy compared with a ground truth based
on manual annotations. The second involved assessing the
replicability of the labelling using different image contrasts.

3.1. Datasets Used
We used the dataset from the MICCAI 2012 Grand Challenge
and Workshop on Multi-Atlas Labelling, which is available
through http://www.neuromorphometrics.com/2012_MICCAI_
Challenge_Data.html. These data were provided for use in
the MICCAI 2012 Grand Challenge and Workshop on
Multi-Atlas Labelling (Landman and Warfield, 2012). The
data is released under the Creative Commons Attribution-
NonCommercial license (CC BY-NC) with no end date. Original
MRI scans are from OASIS (https://www.oasis-brains.org/).
Labellings were provided by Neuromorphometrics, Inc. (http://
Neuromorphometrics.com/) under academic subscription. The
dataset consists of 35 manually labeled volumetric T1-weighted
(T1w) MRI brain scans (1 mm isotropic resolution) from 30
unique subjects, with five of the subjects scanned twice. The
dataset is split into 15 training images and 20 testing images,
where the testing images included those subjects who were
scanned twice (the test-retest subjects). We note that each of
the images is an average of several rigidly-aligned face-stripped
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rawMRI scans. Because missing voxels in the face-stripped scans
were coded with a value of zero, it was necessary to erode the
images to remove voxels containing an average of present and
missing values.

We also used T1-, T2- and PD-weighted scans from the IXI
dataset (EPSRC GR/S21533/02), which is available from https://
brain-development.org/ixi-dataset/. This dataset is a collection
of MR images from almost 600 normal, healthy subjects, which
was collected on 1.5T and 3T MRI scanners at three different
London hospitals.

3.2. Tissue Probability Atlas
Alignment and tissue segmentation of images prior to training
and applying our proposed method used the approach described
by Brudfors et al. (2020), which extends ideas presented in
Blaiotta et al. (2018). These works combine diffeomorphic
image registration and Gaussian mixture model based tissue
classification within the same generative model, and also allow
average shaped tissue probability maps to be computed. The
software is incorporated into SPM12 as the Multi-Brain (MB)
toolbox. Default settings were used throughout, except for the
regularisation for the diffeomorphic registration, which was set
to be higher than the default settings (“Shape Regularisation” on
the user interface was set to [0.0001 0.5 0.5 0.0 1.0]).

First of all, the Brudfors et al. (2020) approach was used to
construct a tissue probability map from T2-weighted and PD-
weighted scans of the first 64 subjects from the IXI dataset,
along with the T1-weighted scans of the next 64 IXI subjects.
The 15 training subjects” scans from the MICCAI Challenge
Dataset were also included in the template construction. After
merging several of the automatically identified tissue classes, the
tissue probability map has 1mm isotropic resolution, dimensions
of 191×243×229 voxels and consists of 11 tissue types, three
of which approximately corresponded with brain tissues. This
atlas of tissue priors (illustrated in Figure 6) was used for all
subsequent image alignment and tissue classification.

3.3. Tuning Settings on the MICCAI
Challenge Training Dataset
Scans from all 15 training subjects from the MICCAI 2012
Grand Challenge and Workshop on Multi-Atlas Labelling dataset
were aligned with the tissue prior atlas (described previously)
and the brains segmented into three tissue classes using the
method of Brudfors et al. (2020). To facilitate training, warped
versions of the tissue classes and labels were generated for
the training subjects at 1 mm isotropic resolution. Warped
tissue class images were saved in NIfTI format, whereas
a custom sparse matrix format was used to encode the
warped labels.

Subsequently, various settings for training the proposed
method were then tuned using data from these 15 subjects,
whereby the first 10 were used for model training, with the
remaining five used for validation.

Following training, labelling of the five validation scans was
done with either:

• No additional diffeomorphic registration.

• Four Gauss-Newton updates of additional diffeomorphic
registration, which involves alternating between estimating the
latent variables and updating the alignment. The registration
regularisation was one quarter of that used for the initial
registration/segmentation of the data.

Because label predictions were made in normalised space, the
label probabilities were warped back to match the original image
volumes using partial volume interpolation (Maes et al., 1997),
where they were converted into categorical data by assigning the
most probable label at each voxel. Accuracy was assessed by the
average Dice-Sorensen Coefficient (DSC), measuring the overlap
between the ground truth and our predictions.

It was not feasible to explore all possible model settings via
a full grid search, so we selected a few choice settings and
examined the DSC that these achieved on the validation set.
Because training is slower when augmentation is used, the initial
tuning was done without augmentation. Four outer iterations
were used during each training attempt.

Because relatively small regions had proven successful in
previous label propagation works, we chose to use patch sizes
of 4×4×4 voxels. The model accounts for the covariance among
latent variables in neighbouring patches, so it is able to induce
locally correlated behaviour across neighbouring patches. If the
model can benefit from weights in neighbouring patches always
varying in unison, then this will be exploited. Therefore, we did
not explore patch sizes and instead focussed on those settings that
control the behaviour of the conditional random field.

Initially, the main settings that were varied were those
controlling the Wishart prior on the conditional random field
(ν0 and v0, where 9−10 = Iν0v0). Three values for ν0 were used:
the first was a value of 1.0, which encodes an improper prior;
the second used the least informative proper prior in a way that
varied according to how the model was pruned (named “var” in
Table 1); the third was a relatively uninformative proper prior
based on ν0 = 7K − 0.9. Three different values for v0 were also
explored. For these experiments, the maximum number of basis
functions K was set to nine, although one run involved training
with K = 0 to serve as a majority-voting baseline.

Once suitable Wishart prior settings were identified, the
next step was to continue the tuning using data that have
been augmented by translating by up to 1.5 voxels. This scaled
the amount of training data by a factor of 19, leading to a
concomitant increase in training times. We considered that K =
16 would be a reasonable maximum number of latent variables
to use for each patch. These experiments varied the standard
deviation of the Gaussian weighting used for augmentation. A
final run involved augmenting by translating by up to 3 voxels
during training, which increased the training time by about a
factor of 123.

DSC scores are presented in Table 1. Varying the settings
of the Wishart prior made relatively little difference to the
DSC, although the variable setting for ν0 with v0 = 1.0 was
the most effective without additional registration. Augmentation
and using additional registration gave greater improvements.
Although using the 3 voxel radius augmentation led to less
accurate labelling of non-cortical structures, it gave the best
overall DSC.
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TABLE 1 | Training/validation DSC with different settings.

Settings DSC-no registration DSC-with registration

ν0 v0 K r sd Overall Non-cort. Cortical Overall Non-cort. Cortical

N/A N/A 0 0.0 0.0 0.7008 0.8215 0.6564 0.7260 0.8341 0.6862

1.0 0.3 9 0.0 0.0 0.7264 0.8370 0.6858 0.7423 0.8429 0.7053

1.0 1.0 9 0.0 0.0 0.7277 0.8374 0.6874 0.7427 0.8427 0.7059

1.0 3.0 9 0.0 0.0 0.7284 0.8373 0.6883 0.7426 0.8428 0.7058

var 0.3 9 0.0 0.0 0.7294 0.8385 0.6894 0.7440 0.8442 0.7072

var 1.0 9 0.0 0.0 0.7302 0.8385 0.6904 0.7435 0.8440 0.7066

var 3.0 9 0.0 0.0 0.7301 0.8386 0.6902 0.7424 0.8436 0.7052

62.1 0.3 9 0.0 0.0 0.7285 0.8366 0.6889 0.7435 0.8426 0.7071

62.1 1.0 9 0.0 0.0 0.7295 0.8369 0.6900 0.7432 0.8428 0.7065

62.1 3.0 9 0.0 0.0 0.7294 0.8374 0.6898 0.7421 0.8430 0.7051

var 1.0 16 1.5 1.0 0.7405 0.8419 0.7033 0.7504 0.8453 0.7156

var 1.0 16 1.5 3.0 0.7408 0.8416 0.7037 0.7506 0.8451 0.7158

var 1.0 16 1.5 10.0 0.7408 0.8416 0.7037 0.7506 0.8450 0.7159

var 1.0 16 3.0 3.0 0.7438 0.8392 0.7087 0.7526 0.8429 0.7194

FIGURE 7 | DSC for validation set using different numbers of registration iterations and degrees of regularisation, relative to that used for the initial registration and

segmentation.

The effects of the number of Gauss-Newton iterations used for
the registration refinement was assessed, as well as the amount of
regularisation. This used the model trained with 3 voxel radius
augmentation, and involved scaling the regularisation used for
the initial registration by various different amounts. For each
registration iteration, re-estimation of latent variables used 10
outer iterations (sweeps over the patches) and 16 inner iterations
(recomputing latent variables at each patch), which was more
than was used for the results in Table 1 (9 and 5, respectively).
The resulting DSC are plotted in Figure 7.

3.4. Accuracy on MICCAI Challenge Test
Dataset
The FIL model was then re-trained on all 15 training subjects,
using a minimally informative, but proper Wishart prior, with
v0 = 1.0. An augmentation search radius of 3 voxels was used
with a Gaussian weighting standard deviation of 2.0 voxels. Patch
sizes were 4×4×4 voxels, and four outer iterations were used for
model training. Up to K = 24 basis functions were available to
encode each patch, although no more than 15 were needed for
any patch after the automatic pruning.
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TABLE 2 | Average Dice-Sorenson coefficients (DSC) across testing subjects

using the proposed method in comparison with published methods, including the

top three approaches from the MICCAI workshop.

Method Overall Non-cortical Cortical

MICCAI-2012: 1. PICSL-BC

(Wang et al., 2012)

0.765 0.838 0.739

MICCAI-2012: 2.

NonLocalSTAPLE (Asman and

Landman, 2012a)

0.758 0.830 0.732

MICCAI-2012: 3. MALP-EM

(Ledig et al., 2012)

0.758 0.825 0.733

MICCAI-2012: 4. PICSL-Joint

(Wang et al., 2012)

0.750 0.827 0.722

MICCAI-2012: 5. MAPER

(Heckemann et al., 2012)

0.741 0.814 0.714

MICCAI-2012: 25. Last-place

entry

0.711 0.786 0.683

Joint label fusion + corrective

learning (Wang and Yushkevich,

2013)

0.771 0.836 0.747

Random Forest (Zikic et al.,

2014)

0.728 0.805 0.699

CNN (de Brebisson and

Montana, 2015)

0.725 — —

CNN (Moeskops et al., 2016) 0.735 0.785 0.717

CNN (Mehta et al., 2017) 0.743 0.805 0.720

Transfer learning FCN (Huo et al.,

2019)

0.776 — —

Majority voting (proposed) 0.717 0.804 0.684

FIL (proposed) 0.744 0.819 0.716

The test subjects were automatically labelled, using six Gauss-
Newton iterations for the additional registration. As for the
MICCAI challenge, the DSC was computed over all 20 target
scans, with results presented as average DSC for cortical labels,
non-cortical labels and the overall average. Table 2 shows the
accuracies from the proposed method, alongside previous results
from the literature where the same MICCAI challenge data were
used. We also trained the model without any basis functions (i.e.,
K = 0) or augmentation, which gave majority voting predictions
for the spatially normalised data. These results are also presented
in Table 2 and show that the proposed FIL method increases the
overall overlap from a majority voting baseline by about 2.7%
(1.5 and 3.2% for non-cortical and cortical regions, respectively).
For comparison, the PICSL joint label fusion method (Wang
and Yushkevich, 2013) gave similar improvements over majority
voting (3.1% overall, 2.9% non-cortical and 3.1% cortical),
although the authors achieved additional DSC increases by
including their corrective learning step (additional 1.4, 1.1, and
1.5%, respectively). We note that the regularisation used for the
registration was quite high, and a higher DSC baseline may have
been achieved if this regularisation was lower.

There were 25 entries to the original MICCAI challenge,
and the top five entries are also shown in Table 2. These
were PICSL-BC (Wang et al., 2012), NonLocalSTAPLE (Asman
and Landman, 2012a), MALP-EM (Ledig et al., 2012), PICSL-
Joint (Wang et al., 2012) (same as PICSL-BC, but without

the corrective learning Wang et al., 2011) and MAPER
(Heckemann et al., 2012). Since then, a number of other papers
have reported accuracies on these data that were obtained
using other methods, so the table also includes several of
those results.

While the average DSC from our proposed FIL method were
not as high as those from the top performing methods, they
would still have achieved fifth position on the leaderboard of
the MICCAI challenge. Most of the challenge entries required
each test scan to have been registered pairwise with all of
the 15 training scans, but our proposed method used a single
nonlinear registration for each test scan to the tissue probability
template, followed by iterative refinement of the registration,
which saves a considerable amount of time. After a single tissue
classification and registration (taking about 23 min per subject),
the labelling itself took about 24 min (3.25 min without the
additional registration) to label each volumetric T1w scan. The
laptop computer used in this work is an ASUS ZenBook 14
UX434 with 8 GB of RAM and an AMD Ryzen 5 3500U
processor. A GPU implementation would likely lead to much
better performance.

Figure 8 illustrates the predicted and ground truth labellings,
along with their tissue classifications, for the scans with the
highest and lowest average DSC. As can be seen, the white matter
hyperintensities in the scan with the lowest average DSC led to
less accurate tissue classification, which in turn resulted in less
accurate FIL labellings. The DSC (all individuals and mean) for
non-cortical and cortical brain regions are shown in Figures 9,
10, respectively.

To better understand the upper limit of the accuracies
that may be achieved, the test-retest subjects were coregistered
together using SPM12’s implementation of normalised mutual
information coregistration (Studholme et al., 1999) and the label
maps that had been manually defined on the second scans were
resliced to match those of the first scans using partial volume
interpolation. DSC was computed between the first scan labels
and the resliced second scan labels and the overall average was
found to be 0.816 (0.846 for non-cortical and 0.805 for cortical).
Similarly, the hard labels generated by the FIL method for the
second scans were resliced, and the overall average DSC was
0.933 (0.932 for non-cortical and 0.934 for cortical). This shows
higher test-retest reliability for the FIL method compared with
manual labelling.

3.5. Replicability Under Domain Shift
This section assesses the replicability of the proposed label
propagation method, by computing DSC between labellings
computed from T1w scans, versus those obtained from jointly
using T2w and PDw scans of the same subjects. The last
10 subjects for each of the three scanning sites within
the IXI dataset were used for this work (Guys Hospital:
IXI639 – IXI662; Hammersmith Hospital: IXI632 – IXI646;
Institute of Psychiatry: IXI553 – IXI596). The T2w and
PDw scans were rigidly aligned with the T1w scans of each
subject using normalised mutual information (Studholme et al.,
1999).
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FIGURE 8 | Best case (scan 1,038, top row) and worst case (scan 1128, bottom row) labellings from the fusion challenge dataset. The figure shows the original T1w

scan (first column), the tissue classes (second column) identified using the method of Brudfors et al. (2020), the majority voting labelling (third column), the predicted

labels using the proposed FIL method (fourth column) and the manually defined ground truth labels (fifth column).

FIGURE 9 | DSC for non-cortical brain regions (fusion challenge data). Plots show individual DSC (+) as well as average DSC (•) across subjects for each brain region.
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FIGURE 10 | DSC for cortical brain regions (fusion challenge data). Plots show individual DSC (+) as well as average DSC (•) across subjects for each label.

The scans were subsequently processed as described
previously, and labelled using the FIL model trained on the
MICCAI 2012 Workshop on Multi-Atlas Labelling dataset, as
described in the previous section. No ground truth is available
for these data so we simply assess the DSC between the two sets
of labellings, so that the DSC measures how similar a labelling
obtained from a subject’s T1w scan is to the labelling obtained
from their T2w and PDw scans. Example labellings are shown in
Figure 11 and average DSC from scans from the three different
sites are presented in Table 3.

As can be seen fromTable 3, the overall DSC of 0.785 indicates
that the two sets of labellings are similar, although there was
considerable systematic variability in this similarity across the
different sites. Visual inspection of the IXI scans (not shown)
suggests that better grey-white contrast in the T2w and PDw
scans in the Guys Hospital data led to more consistent tissue
segmentations, which in turn led to greater labelling consistency.
These results suggest that the FIL method is able to generalise
well to scans that have sufficient contrast to achieve good
tissue classification.

4. DISCUSSION

We have proposed a patch-based, variational Bayesian model for
label map prediction using aligned tissue segmented MR scans
from SPM12. We computed the DSC for overall brain, cortical
and non-cortical regions, which we compared with the MICCAI
2012 challenge leader table. We also assessed the replicability of
labelling MRI data acquired with different image contrasts.

Applying the basic method to a new scan only uses a single
image registration, which is subsequently refined, to align with an
average shaped template, rather than several separate registration
steps to align with all the training scans. We also note that the
proposed method is applied to automatically identified tissue
classes, which we hope will enable it to generalise better to a
broader range of new image types.

In its current form, our proposed labelling approach is not
as accurate as some other approaches when applied to scans
with the same MRI contrast as the training images. One likely
reason for this is that the tissue classification itself may be the
limiting factor, as it uses an atlas of tissue priors based only on
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FIGURE 11 | Example labellings of different modalities from three different scanners. First column: T1-weighted scan. Second column: Labelled T1-weighted scan.

Third and fourth columns: PD- and T2-weighted scans. Fifth column: Labelled PD- and T2-weighted scans. First row: Guys Hospital; Second row: Hammersmith

Hospital; Third row: Institute of Psychiatry.

spatial warping. Because our proposed model is generative, it
may be better able to encode priors that could be used for tissue
classification, overcoming the limitations of purely warping-
based priors. This would also increase compatibility between
the tissue classification method and the labelling method, as
both would use the same underlying model. However, this may
come with the cost of making it more difficult to formulate
the training so that the results generalise to scans with a
wide variety of MR contrasts. We leave these explorations to
future work.

In addition to experimenting with different model settings,

there are a number of other areas that could lead to potential

improvement. As suggested in Sabuncu et al. (2010), the simple

data augmentation approach could probably be improved by
augmenting based on the uncertainty of the image registration
(Simpson et al., 2012; Iglesias et al., 2013; Wang et al., 2018),
which would effectively “integrate out” this source of uncertainty.
Such an approach would also need to consider the expected
uncertainty with which target images could be aligned. While
it benefited cortical segmentation, we found that our simple
augmentation strategy often decreased DSC for many non-
cortical structures, where registration uncertainty was lower. This
supports the idea that it would be more effective to augment
according to this uncertainty.

The proposed method is generative, so we speculate that
this may make it easier to extend to do semi-supervised and

TABLE 3 | Average DSC between FIL labelling of T1w scans versus jointly

labelling T2w and PDw scans.

Method Overall Non-cortical Cortical

FIL: Guys Hospital (Philips 1.5T) 0.835 0.848 0.830

FIL: Hammersmith Hospital (Philips 3T) 0.776 0.754 0.784

FIL: Institute of Psychiatry (GE 1.5T) 0.745 0.743 0.745

FIL: Overall 0.785 0.782 0.786

The average DSC was computed for data from each site, as well as the overall average

DSC.

multi-task learning. For example, it might be possible to achieve
greater accuracy by training using additional data that does
not have manually defined labels associated with it. Although
we know that this would allow the model parameters used for

encoding (i.e., Ŵ
(1)
, M(1), ν and 9) to be more accurately

characterised, we can currently only speculate on whether this
would translate into more accurate labelling. Similarly, the model
could be learned by combining sets of annotations defined
using different labelling protocols. While this could be another
approach for estimating more accurate encoding parameters, we
do not yet know whether encoding many different aspects of
images using the same sets of latent variables would improve
overall performance.
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