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Objectives: This study analyzed differences in the mean cerebral blood flow (mCBF)
and arterial transit time (ATT) of the anterior and posterior circulations between
patients with intracranial atherosclerotic stenosis (ICAS) and control subjects. We also
investigated the correlation between ATT and mCBF in the two groups, and evaluated
whether the blood flow velocity of the extracranial carotid/vertebral arteries can influence
mCBF.

Methods: A total of 32 patients with ICAS were prospectively enrolled at the Radiology
Department of the China-Japan Friendship Hospital between November 2020 and
September 2021. All patients had extensive arterial stenosis, with 17 having cerebral
arterial stenosis in the anterior circulation and 15 in the posterior circulation. Thirty-two
healthy subjects were enrolled as a control group. Enhanced arterial spin labeling (eASL)
imaging was performed using a 3.0-T GE magnetic resonance imaging scanner, and all
patients underwent carotid and vertebral Doppler ultrasound examinations. CereFlow
software was used for post-processing of the eASL data, to obtain cerebral perfusion
parameters such as mCBF and ATT. Independent samples t-tests were used to analyze
and compare mCBF and ATT of the anterior circulation (frontal lobe, parietal lobe,
and insula) and posterior circulation (occipital lobe, cerebellum) between the patient
and control groups. The relationships of ATT and mCBF in the two groups were
evaluated with Pearson’s correlation. The blood flow velocity of the extracranial internal
carotid/vertebral arteries, including the peak systolic velocity (PSV), end diastolic velocity
(EDV), mean PSV (mPSV), and mean EDV (mEDV), was compared between the control
and study groups using t-tests. Multiple linear regression analysis was then applied to
determine the factors associated with mCBF in the two groups.
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Results: The mCBFs of the anterior and posterior circulations in the patient group
were lower than those of the control group. The ATTs in the patient group were all
significantly longer than those of the control group (p < 0.05). Except for the insula
in the control group, significant correlations were found between ATT and mCBF in
all other investigated locations in the two groups (p < 0.05). The blood flow velocity
of the extracranial internal carotid/vertebral arteries differed significantly between the
control and patient groups (p < 0.05). The multiple linear regression analysis revealed
that in patients with ICAS, mPSV of the vertebral arteries and local ATT correlated with
mCBF of the occipital lobes and the cerebellum, respectively (p < 0.05). In contrast,
there was no significant correlation within the anterior circulation (frontal lobes, parietal
lobes, and insula).

Conclusion: There was a significant relationship between ATT and mCBF in patients
with ICAS. Extracranial blood flow may influence intracranial hemodynamics in the
posterior circulation in patients with ICAS. The maintenance of extracranial blood flow is
of great significance in the preservation of intracranial hemodynamics.

Keywords: arterial spin labeling, intracranial atherosclerotic stenosis, magnetic resonance imaging,
ultrasonography, hemodynamics

INTRODUCTION

Intracranial atherosclerotic stenosis (ICAS) is a major cause
of ischemic stroke in the Chinese population, accounting
for 30–50% of ischemic stroke (Wang Y. et al., 2014). The
risk of hypoperfusion in patients with ICAS is an important
consideration in prognosis and the development of treatment
strategies. At present, the commonly used methods for perfusion
evaluation are CT perfusion (CTP) imaging using an exogenous
contrast agent, and magnetic resonance dynamic susceptibility
contrast perfusion-weighted imaging. CTP is routinely used to
evaluate cerebral hemodynamics because it provides relatively
accurate perfusion quantification, including cerebral blood flow
(CBF), cerebral blood volume, and mean transit time (MTT;
Kang et al., 2008). However, the administration of exogenous
contrast agents is invasive and presents risks from contrast
agent allergy and renal interstitial fibrosis (Zaharchuk, 2007).
Furthermore, the perfusion results obtained from patients with
severe ICAS may present with errors because of changes in the
blood–brain barrier (Leng et al., 2019). The three-dimensional
pseudo-continuous arterial spin labeling (3D-pCASL) technique
does not require administration of exogenous contrast agents,
instead using magnetically labeled hydrogen protons in the
blood as a freely diffusible contrast agent to measure CBF.
It is advantageous as it is non-invasive, is repeatable, and
does not require vascular injection of a contrast agent for the
evaluation of cerebral blood perfusion. A previous study showed
a significant correlation between perfusion data from ASL and
(CTP) imaging in patients with moyamoya disease (Wang R.
et al., 2014). However, the quantification of CBF by 3D-pCASL
is affected by the arterial transit time (ATT). The delay in the
time the hydrogen protons in the arterial blood take to flow
through the labeled area to the acquisition area is likely to result
in the loss of labeled signals and errors, leading to reduced

CBF signals (Cheng et al., 2012; Ferré et al., 2013). Therefore,
uncertainty in the ATT weakens the potential advantages of
3D-pCASL for the accurate and quantitative measurement of
CBF. In contrast, the enhanced arterial spin labeling (eASL)
imaging technique uses multiple post-labeling delay (PLD) times
to calculate ATT (Detre and Alsop, 1999). Compared with a single
PLD or three PLDs, eASL can better quantify blood perfusion
and ATT, reduce physiological background noise, and improve
the accuracy of mean CBF (mCBF) measurement (Wells et al.,
2010; Wang et al., 2013).

Patients with ICAS usually have hemodynamic disorders,
resulting in abnormal cerebral blood flow and elongation
of ATT. ATT is a physiological parameter that reflects the
time required for labeled spins to reach the region of
interest in the brain (Wang et al., 2003). A previous study
demonstrated significant correlations between ASL, ATT, and
CTP MTT in moyamoya disease (Ravindra et al., 2020). In
hemispheric transient ischemic attack patients, both perfusion-
weighted imaging and ASL findings were more common in the
symptomatic hemisphere. Agreement between neuroradiologists
regarding abnormal studies was good for ASL and perfusion-
weighted imaging (Zaharchuk et al., 2012). However, most
studies focused on investigation of the hemodynamic changes
in the anterior circulation. The posterior circulation, which is
supplied by the basilar artery formed by the confluence of
bilateral vertebral arteries at the level of the brainstem, has
not been widely studied using ASL. The relationship between
the ATT and CBF in the posterior circulation may not be as
consistent as that in the anterior circulation. The upstream blood
flow from the extracranial carotid and vertebral arteries may
exert an effect on the blood flow downstream. If so, the blood
flow velocity of the extracranial carotid/vertebral arteries should
affect the intracranial hemodynamics. In this study, we aimed to
investigate the relationship between ATT and CBF in both the
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anterior and posterior circulation, determining the influence of
extracranial flow on the intracranial hemodynamics.

MATERIALS AND METHODS

Subjects
A total of 32 patients [15 men and 17 women, mean age (standard
deviation) 66.5 ± 9.8 years] with ICAS were prospectively
enrolled at the Radiology Department of the China-Japan
Friendship Hospital between November 2020 and September
2021. All patients had extensive arterial stenosis, with 17 having
severe cerebral arterial stenosis in the anterior circulation and
15 in the posterior circulation. The inclusion criteria were
as follows: patients were diagnosed with intracranial artery
stenosis by CT angiography (CTA) and magnetic resonance
angiography (MRA) of the head and neck; CTA of the head
and neck and carotid Doppler ultrasound (CDU) showed
no severe stenosis (stenosis >50% of the normal vessel
diameter) or occlusion of the extracranial carotid and vertebral
arteries; and the intervals between CTA, MRA, and CDU
examinations were less than 72 h. The exclusion criteria were
as follows: other diseases that could affect the hemodynamics,
such as intracranial space-occupying lesions, arteriovenous
fistula, moyamoya disease, cerebral edema, and massive cerebral
infarction; systemic diseases that could affect cerebral blood
flow, such as heart failure, serious cardiovascular disease,
severe anemia, and hypovolemia; and intake of medications
that could markedly affect the brain blood flow. Additionally,
thirty-two healthy volunteers [16 men and 16 women; mean
age (standard deviation) 64 ± 1.78 years] were enrolled as
the control group. The study protocol was approved by the
Institutional Review Boards of the China-Japan Friendship
Hospital (approval number: 2015-23). Informed consent was
obtained from each subject.

MRI Data Acquisition and Processing
A 3.0-T magnetic resonance imaging scanner (Discovery MR750,
GE Healthcare, Waukesha, WI, United States) with an 8-channel
head coil was used for imaging. The MRI sequences included
T1-weighted imaging, T2-weighted imaging, diffusion-weighted
imaging, three-dimensional time-of-flight MRA, and the eASL
sequence. The perfusion-weighted images were acquired at seven
consecutive pulsed pCASL labeling durations of 0.22, 0.26, 0.30,
0.37, 0.48, 0.68, and 1.18 s, with PLDs of 1.00, 1.22, 1.48, 1.78,
2.15, 2.62, and 3.32 s in the eASL sequence. The scan parameters
included a 512 × 512 matrix, a 22 cm × 22 cm field of view,
a 62.5-kHz bandwidth, 4-mm slice thickness, 36 slices, an echo
time of 10.5 ms, and a repetition time of 5,936 ms. IDL-based
RWCON code was used to reconstruct images, which were stored
in the database as DICOM images.

CereFlow software (Translational MRI, LLC, Los Angeles, CA,
United States) was used to process the eASL data according to the
following steps (van der Thiel et al., 2018): (1) The eASL raw data
and CBF data were converted into parametric cerebral perfusion
maps to obtain mCBF and ATT. (2) The parametric cerebral
perfusion maps were normalized into the standard brain space

of the Montreal Neurological Institute (MNI), resampled after
normalization, and spatially smoothed. (3) The atlas of arterial
blood supply territories, ASPECTS brain atlas, and the automated
anatomical labeling atlas were overlaid. (4) The mean perfusion
values of each territory volume were obtained.

The perfusion regions of interest (ROIs) of the anterior
circulation included the frontal lobe, parietal lobe, and insula,
while the perfusion ROIs of the posterior circulation included
the occipital lobe and cerebellum. Because the temporal lobe is
supplied by both the anterior and posterior circulations, it was
excluded from the measurements to avoid confusion.

CT Angiography Examination
A Gemstone Spectral Imaging CT scanner (Discovery CT750 HD,
GE Healthcare, United States) was used to perform CTA of the
head and neck. A 50-ml dose of non-ionic contrast agent was
injected into the median cubital vein in the forearm of the patient
using a high-pressure syringe at a rate of 4 ml/s. The scanning was
performed in the caudocranial direction, from the aortic arch to
the top of the skull.

Carotid Doppler Ultrasound Examination
A GE Logic E9 ultrasound machine (GE Healthcare,
United States) with a 9L linear array probe at a frequency
of 8–9 MHz was used for the CDU examinations. Bilateral
common carotid, internal carotid, external carotid, and vertebral
and subclavian arteries were measured conventionally by one
experienced doctor who was blind to the clinical status of the
subjects. The measurements of extracranial artery flow velocity
were performed at the same location for each subject. The inner
diameter, peak systolic velocity (PSV), end diastolic velocity
(EDV), and vascular resistive index of the extracranial internal
carotid and vertebral arteries were measured twice and average
values were recorded.

Evaluation of Intracranial Perfusion
The raw eASL data were post-processed using CereFlow software
to generate ATT and mCBF maps of the whole brain. Based
on a vessel territory atlas, the ATT and mCBF maps of the
bilateral frontal lobes, parietal lobes, insula, occipital lobes, and
cerebellum were generated automatically for statistical analysis.

Statistical Analysis
Statistical analysis was performed using SPSS 25.0 software.
A p-value < 0.05 was considered statistically significant. The
continuous variables in this study followed a normal distribution
and homogeneity of variance. The independent samples t-test
was used to analyze and compare the mCBF and ATT of the
anterior circulation (bilateral frontal lobes, parietal lobes, and
insula) and posterior circulation (occipital lobes and cerebellum)
between the patient and control groups. Pearson correlation
analysis was used to evaluate the relationship between ATT
and mCBF in the two groups. Differences in the blood flow
velocity of the extracranial internal carotid/vertebral arteries
between the two groups were compared using independent
samples t-tests. Using PSV, EDV, and ATT as independent

Frontiers in Neuroscience | www.frontiersin.org 3 February 2022 | Volume 15 | Article 823876

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-823876 February 12, 2022 Time: 16:51 # 4

Yu et al. eASL and CDU in Patient With ICAS

factors, multiple linear regression analysis was then applied to
analyze the factors affecting the mCBF of the ROIs in the
two groups. Because the posterior circulation is supplied by
the basilar artery formed by the confluence of the bilateral
vertebral arteries, the bilateral PSV, EDV, ATT, and mCBF values
of the occipital lobes and cerebellum were averaged for the
regression analysis.

RESULTS

Comparison of Cerebral Perfusion
Parameters Between the Study and
Control Groups
Compared with those in the control group, the mCBF
measurements in the anterior circulation (bilateral frontal lobes,
parietal lobes, and insula) and posterior circulation (bilateral
occipital lobes and cerebellum) were all significantly lower in
the patient group. The ATTs of the ROIs were significantly
longer in the patient group than in the control group (Table 1
and Figures 1–3). There were also statistically significant
differences in the blood flow velocity of the extracranial internal
carotid/vertebral arteries between the control and patient groups
(p < 0.05) (Table 2).

Correlation of Arterial Transit Time and
Mean Cerebral Blood Flow
Taking the bilateral perfusion data as a whole, significant negative
correlations between ATT and mCBF were found in the frontal
lobes, parietal lobes, insula, occipital lobes, and cerebellum in the
patient group (r = −0.386, p = 0.002; r = −0.386, p = 0.002;
r = −0.267, p = 0.033; r = −0.573, p < 0.001; r = −0.489,
p < 0.001, respectively).

Significant correlations between ATT and mCBF were also
demonstrated in the control group, except for the insula, where
the correlation did not quite reach significance (r = −0.239,
p = 0.057).

Results of the Multiple Linear Regression
Analysis
There was a relationship between ATT and mCBF in the ROIs
of the frontal lobes and parietal lobes in the controls, and
a significant but weak effect of PSV on mCBF in the insula
(β = 0.093, p = 0.013), but no effect of extracranial flow
velocity was observed in the posterior circulation (Table 3). No
significant correlations with factors that could possibly affect
mCBF in the ROIs of the anterior circulation (frontal lobes,
parietal lobes, and insula) were found in the patients with ICAS
(p > 0.05) (Table 4). For the posterior circulation, the mean PSV
of the vertebral arteries and ATT of the cerebellum showed a
relationship with mCBF of the cerebellum (β = 0.397, p = 0.042;
β = −0.528, p = 0.002, respectively). In addition, the mCBF of
the occipital lobes correlated with ATT and mean PSV of the
vertebral arteries (β = 0.468, p = 0.014; β = −0.632, p < 0.001,
respectively) (Table 4).

TABLE 1 | Comparison of the mCBF and ATT of all parts between the study
and control groups.

Variables Study group
(n = 32)

Control group
(n = 32)

p-value

Left frontal lobe mCBF
(ml/100 g/min)

29.7775 ± 8.2272 40.2331 ± 5.6562 <0.001

Right frontal lobe mCBF
(ml/100 g/min)

29.8481 ± 7.6619 39.0094 ± 5.6092 <0.001

Left parietal lobe mCBF
(ml/100 g/min)

27.9381 ± 9.1233 39.7225 ± 5.8357 <0.001

Right parietal lobe mCBF
(ml/100 g/min)

27.3203 ± 7.7837 37.7647 ± 5.8109 <0.001

Left insula mCBF
(ml/100 g/min)

31.6787 ± 9.9949 39.2906 ± 4.9793 <0.001

Right insula mCBF
(ml/100 g/min)

30.8713 ± 8.9645 39.9406 ± 5.8151 <0.001

Left occipital lobe mCBF
(ml/100 g/min)

29.2641 ± 10.1001 39.9081 ± 7.8628 <0.001

Right occipital lobe mCBF
(ml/100 g/min)

27.9938 ± 8.5938 39.0856 ± 6.5587 <0.001

Left cerebellum mCBF
(ml/100 g/min)

27.4838 ± 8.8289 36.3209 ± 7.9350 <0.001

Right cerebellum mCBF
(ml/100 g/min)

27.2756 ± 8.8254 36.2350 ± 7.4646 <0.001

Left frontal lobe ATT (s) 1.7400 ± 0.1471 1.6328 ± 0.0927 <0.001

Right frontal lobe ATT (s) 1.7747 ± 0.1438 1.6247 ± 0.1080 <0.001

Left parietal lobe ATT (s) 1.8112 ± 0.1596 1.6731 ± 0.1068 <0.001

Right parietal lobe ATT (s) 1.8000 ± 0.1717 1.6763 ± 0.1318 <0.001

Left insula ATT (s) 1.6700 ± 0.1204 1.5906 ± 0.1016 <0.001

Right insula ATT (s) 1.6650 ± 0.1429 1.5794 ± 0.0583 <0.001

Left occipital lobe ATT (s) 1.8569 ± 0.1391 1.6850 ± 0.1529 <0.001

Right occipital lobe ATT (s) 1.8509 ± 0.1477 1.6888 ± 0.1311 <0.001

Left cerebellum ATT (s) 1.7966 ± 0.1311 1.6591 ± 0.1471 <0.001

Right cerebellum ATT (s) 1.8278 ± 0.1267 1.6906 ± 0.1325 <0.001

ATT, arterial transit time; mCBF, mean cerebral blood flow; s, seconds.

DISCUSSION

In this study, we used eASL imaging technology to analyze
the perfusion state of the anterior and posterior circulations
in patients with ICAS and healthy people, and investigated the
relationship between ATT and mCBF in the subjects. We found
that in patients with ICAS, the mCBF values of both the anterior
circulation and posterior circulation were significantly lower than
those of normal healthy people. Furthermore, the ATTs of the
patients with ICAS were longer than those of healthy people,
which is consistent with the results of previous research (Li
et al., 2016; Xu et al., 2016). Stenosis of cerebral arteries caused
by ICAS can result in extensive changes in cerebral blood flow
distribution, which are closely related to the structure of vessel
walls and the hemodynamics across the stenosis (Sangha et al.,
2017; Kleindorfer et al., 2021).

We showed significant correlations between ATT and mCBF
in ROIs placed in the anterior and posterior circulations in
patients with ICAS, as well as in controls. As the mCBF value
decreased, the ATT increased. The ATT is a measure of the
time taken for the labeled spins to reach the brain tissue of an
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FIGURE 1 | Normal magnetic resonance angiography (MRA) (A), mean cerebral blood flow (mCBF) (B), and arterial transit time (ATT) (C) maps of a 65-year-old
woman in the control group.

FIGURE 2 | (A) Magnetic resonance angiography (MRA) of a 68-year-old woman shows moderate stenosis of bilateral middle cerebral arteries. (B) Mean cerebral
blood flow (mCBF) demonstrates decreased blood perfusion in bilateral temporal and parietal lobes. (C) Prolongation of arterial transit time (ATT) is demonstrated at
the same anatomical regions on the ATT map.

FIGURE 3 | (A) Magnetic resonance angiography (MRA) of a 70-year-old man shows severe stenosis of the basilar artery. (B) Maps of mean cerebral blood flow
(mCBF) demonstrate markedly decreased blood flow in the bilateral occipital lobes and cerebellum. (C) Arterial transit time (ATT) maps shows increased signal at the
same anatomical regions.

ROI, and therefore reflects both the arterial flow and intracranial
arteriole flow. Because blood flow in the large arteries is very
fast and takes little time to flow into the brain, most of the
ATT can be attributed to the intracranial arteriole component.
Some studies demonstrated the agreement of ATT and MTT in
patients with vascular stenosis (Wang et al., 2003; Xu et al., 2021),
and previous research suggested a feedback mechanism between

the transit time and CBF to maintain stable cerebral perfusion
(Haller et al., 2016; Mutsaerts et al., 2017; Cohen et al., 2020). The
relationship between ATT and CBF in patients with ICAS is of
great importance, especially in the posterior circulation (Jia et al.,
2017; Sparaco et al., 2019). Compared with that in the arteries
of the anterior circulation, the blood flow velocity in the vessels
of the posterior circulation is lower, producing abnormal wall
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TABLE 2 | Comparison of the blood flow velocity of the extracranial internal
carotid and vertebral arteries between the study and control groups.

Variables Study group (n = 32) Control group (n = 32) p-value

PSV-LICA (cm/s) 61.5625 ± 16.2360 75.5938 ± 18.1745 0.002

EDV-LICA (cm/s) 25.1562 ± 9.2007 30.2500 ± 9.1087 0.030

PSV-RICA (cm/s) 67.7500 ± 21.6661 82.8750 ± 19.4932 0.005

EDV-RICA (cm/s) 23.6250 ± 7.4042 31.0312 ± 9.6067 < 0.001

mPSV-VA (cm/s) 45.9531 ± 8.8976 50.9062 ± 8.5388 0.027

mEDV-VA (cm/s) 14.5625 ± 3.6781 16.7656 ± 4.2445 0.030

PSV, peak systolic velocity; EDV, end-diastolic velocity; mPSV, mean peak systolic
velocity; mEDV, mean end-diastolic velocity; LICA, left lateral internal carotid artery;
RICA, right lateral internal carotid artery; VA, vertebral artery.

TABLE 3 | Results from multiple linear regression of the extracranial artery flow
velocity, ATT on CBF in the anterior and posterior circulations of the control group.

Dependent
variable

Independent
variable

B coefficient p-value

Frontal lobe mCBF PSV-ICA 0.065 (−0.012, 0.142) 0.095

EDV-ICA −0.074 (−0.083, 0.232) 0.348

Frontal lobe ATT −14.371 (−27.736, −1.005) 0.036

Parietal lobe mCBF PSV-ICA 0.025 (−0.058, 0.107) 0.555

EDV-ICA 0.105 (−0.061, 0.271) 0.21

Parietal lobe ATT −14.230 (−26.347, −2.112) 0.022

Insula mCBF PSV-ICA 0.093 (0.020, 0.166) 0.013

EDV-ICA 0.055 (−0.098, 0.208) 0.476

Insula ATT −9.059 (−25.012, 6.894) 0.261

Occipital lobe
mCBF

mPSA-VA 0.029 (−0.279, 0.337) 0.85

mEDV-VA 0.686 (−0.079, 1.452) 0.077

Occipital lobe
mATT

−15.104 (−32.847, 2.640) 0.092

Cerebellum mCBF mPSV-VA 0.001 (−0.344, 0.346) 0.995

mEDV-VA 0.733 (−0.103, 1.569) 0.083

Cerebellum mATT −16.496 (−36.053, 3.061) 0.095

ATT, arterial transit time; mPSV, mean peak systolic velocity; mEDV, mean end-
diastolic velocity; mCBF, mean cerebral blood flow; PSV, peak systolic velocity;
EDV, end-diastolic velocity; VA, vertebral artery; ICA, internal carotid artery.

shear stress, which is a risk factor for thrombosis (Caplan, 2000;
Eker et al., 2019). At the same time, atherosclerosis can lead to
artery stenosis and occlusion, which slows down blood flow and
results in a low perfusion state (Ya et al., 2020). In this situation,
compensatory elongation of ATT will help to maintain local
perfusion in a steady state. The adjustment of ATT may reflect
slow collateral flow compensating for a disrupted blood supply
through one of the proximal arteries (van Osch et al., 2018).

In addition to eASL, we used color Doppler ultrasound to
examine the extracranial carotid/vertebral arteries and measure
their blood flow velocity. Although our patients had no
severe stenosis or occlusion of the extracranial carotid and
vertebral arteries, there were significant differences in the
blood flow velocity of the extracranial carotid and vertebral
arteries between the controls and patients. In the patients with
ICAS, the mean PSV of the vertebral arteries and local ATT
demonstrated a significant association on the mCBF of the

TABLE 4 | Results from multiple linear regression of the extracranial artery flow
velocity, ATT on CBF in the anterior and posterior circulations of the study group.

Dependent
variable

Independent
variable

B coefficient p-value

Frontal lobe mCBF PSV-ICA 0.131 (−0.017, 0.279) 0.081

EDV-ICA −0.053 (−0.485, 0.379) 0.807

Frontal lobe ATT −12.668 (−28.260, 2.924) 0.109

Parietal lobe mCBF PSV-ICA 0.130 (−0.022, 0.282) 0.092

EDV-ICA 0.097 (−0.337, 0.531) 0.656

Parietal lobe ATT −9.180 (−22.538, 4.178) 0.174

Insula mCBF PSV-ICA 0.174 (−0.010, 0.359) 0.063

EDV-ICA −0.108 (−0.638, 0.421) 0.683

Insula ATT −11.253 (−31.067, 8.560) 0.260

Occipital lobe
mCBF

mPSA-VA 0.423 (0.092, 0.754) 0.014

mEDV-VA −0.237 (−1.130, 0.657) 0.591

Occipital lobe
mATT

−42.319 (−63.169, −21.469) <0.001

Cerebellum mCBF mPSV-VA 0.334 (0.013, 0.655) 0.042

mEDV-VA −0.076 (−0.916, 0.764) 0.855

Cerebellum mATT −38.432 (−61.545, −15.318) 0.002

ATT, arterial transit time; mPSV, mean peak systolic velocity; mEDV, mean end-
diastolic velocity; mCBF, mean cerebral blood flow; PSV, peak systolic velocity;
EDV, end-diastolic velocity; VA, vertebral artery; ICA, internal carotid artery.

occipital lobes and cerebellum, but this phenomenon was not
observed in the controls. We suggest that mCBF of the posterior
circulation in patients with ICAS is sensitive to the change
in the upstream blood supply. Under normal physiological
conditions, intracranial hemodynamic mechanisms can well-
adjust to pressure and blood flow changes from the extracranial
internal carotid and vertebral arteries (McBryde et al., 2017). In
contrast, patients with ICAS seem to have a declined ability to
cope with the reduced blood inflow, suggesting a vulnerability to
the decrease in perfusion (Nixon et al., 2010). We note that the
association of the extracranial flow on the mCBF in patients with
ICAS was demonstrated exclusively in the posterior circulation.
This may be because posterior circulation vessels such as the
basilar artery have less sympathetic nerve innervation, which
leads to poor vascular regulation (Tissir and Goffinet, 2013). Our
study supports the idea that maintenance of extracranial blood
flow is of great significance in the preservation of intracranial
hemodynamics, especially those of the posterior circulation.

Previous studies mostly used arterial spin labeling technology
with a single PLD or three PLDs, but the mismatch between PLD
and ATT among individuals is the main reason for inaccurate
measurement of CBF (MacIntosh et al., 2010). In this study,
eASL based on Hadamard matrix time coding was applied, and
the total labeling time was divided into seven short labeling
time blocks, which significantly shortened the total time for
collecting multiple PLDs and allowed ATT and mCBF to be
obtained at the same time (Dai et al., 2013). This sequence also
facilitated quick measurement of ATT by low-resolution time
coding technology, and choosing of a reasonable PLD based
on this known ATT, thereby allowing a more accurate mCBF
measurement to be obtained (Teeuwisse et al., 2014; von Samson-
Himmelstjerna et al., 2016). CBF measurements using pCASL

Frontiers in Neuroscience | www.frontiersin.org 6 February 2022 | Volume 15 | Article 823876

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-823876 February 12, 2022 Time: 16:51 # 7

Yu et al. eASL and CDU in Patient With ICAS

with multiple post-label delay acquisitions correlated well with
quantitative CBF values derived from 15O-H2O PET in patients
with chronic occlusive cerebrovascular disease (Kamano et al.,
2013). The disadvantages of eASL lie in the longer scanning
time and low signal-to-noise ratio due to the short label
durations (Haller et al., 2016). Optimization of the number
of post-label delay acquisitions and excitations to reduce the
acquisition time with a sparse model-based image reconstruction
(Tsujikawa et al., 2016), and/or use of more complex but efficient
Hadamard time-encoding strategies (Amemiya et al., 2021), will
be needed to establish guidelines for routine use in future
clinical applications.

There are several limitations to this study. First, not all
brain regions were included in the analysis, because some brain
regions like the thalamus and temporal lobes are supplied by
both the anterior and posterior circulation, which may cause
confusion when analyzing the perfusion state. Second, the
relationship between the stenoses and eASL parameters was
not studied. Because some patients had extensive intracranial
atherosclerotic lesions, we could not simply classify the vessel
territories according to the stenosis of arteries. Sometimes, a
vessel territory with a relatively mild stenosis may be ischemic
because of the intracerebral steal phenomenon. Third, the
CDU examinations were conducted by only one experienced
doctor who was blind to the clinical status of the subjects,
and we therefore had no measure of the reliability of the
ultrasonographic measurements. Finally, the sample size of this
study was small, and the influences of age, blood pressure, and
vessel diameter on the blood flow of the cervical and vertebral
arteries were not analyzed.

Overall, we used eASL to demonstrate changes in ATT and
mCBF in patients with ICAS. We found that ATT correlated
with mCBF in the healthy controls, as well as in the patients.

Furthermore, we found that extracranial blood flow may
influence intracranial hemodynamics in the posterior circulation
of the patients, indicating the importance of the maintenance of
upstream blood flow.
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