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Detecting new lesions is a key aspect of the radiological follow-up of patients

with Multiple Sclerosis (MS), leading to eventual changes in their therapeutics.

This paper presents our contribution to the MSSEG-2 MICCAI 2021 challenge.

The challenge is focused on the segmentation of new MS lesions using two

consecutive Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance

Imaging (MRI). In other words, considering longitudinal data composed of

two time points as input, the aim is to segment the lesional areas, which are

present only in the follow-up scan and not in the baseline. The backbone of

our segmentation method is a 3D UNet applied patch-wise to the images, and

in which, to take into account both time points, we simply concatenate the

baseline and follow-up images along the channel axis before passing them

to the 3D UNet. Our key methodological contribution is the use of online

hard example mining to address the challenge of class imbalance. Indeed,

there are very few voxels belonging to new lesions which makes training

deep-learning models di�cult. Instead of using handcrafted priors like brain

masks or multi-stage methods, we experiment with a novel modification to

online hard example mining (OHEM), where we use an exponential moving

average (i.e., its weights are updated with momentum) of the 3D UNet to mine

hard examples. Using a moving average instead of the rawmodel should allow

smoothing of its predictions and allow it to give more consistent feedback

for OHEM.
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Introduction

Multiple Sclerosis (MS) is a chronic autoimmune

demyelinating inflammatory disease of the central nervous

system and represents the leading cause of non-traumatic

motor disability of young people in Europe and North America

(Howard et al., 2016). MS lesions, consisting of focal areas of

demyelination, edema, and auto-immune inflammation, are

visible on Magnetic Resonance Imaging (MRI), especially on

Fluid Attenuated Inversion Recovery (FLAIR) as contiguous

areas of hypersignal (Filippi et al., 2019). The decrease or

absence of new FLAIR lesion formation over time is a key

radiological endpoint in clinical trials assessing disease-

modifying therapies in MS, and the absence of such radiological

activity takes part in the “No Evidence of Disease Activity”

score, used to monitor patient’s disease control and to discuss

potential therapeutic change at the individual level (Hegen et al.,

2018). Novel lesion identification and segmentation is usually

performed manually, or using semi-automated procedures, by

radiologists or neurologists and is time-consuming and subject

to intra- and inter-rater variability (Altay et al., 2013). The aim

of the MICCAI MSSEG-2 challenge was to benchmark new

automatic methods to segment new lesions based on two FLAIR

MRIs from two longitudinal visits (baseline and follow-up)

of the same patient. Already published methods for this task

consists mostly of either non-deep learning methods (Cabezas

et al., 2016) or deep learning methods using multiple MRI

sequences (McKinley et al., 2020; Salem et al., 2020); there are

very few deep learning methods for this precise task based

uniquely on FLAIR sequences (Gessert et al., 2020). The present

paper describes our contribution to the challenge. The backbone

of our approach is a patch-wise 3D UNet (Çiçek et al., 2022).

Our key methodological contribution is to introduce online

hard example mining (Shrivastava et al., 2016) (OHEM) to

tackle class imbalance. Indeed, one important characteristic

of the dataset is that there are fewer voxels belonging to a

new lesion (positive) than not belonging to a new lesion

(negative), images comprise on average approximately 0.005%

of positive voxels. Notably, we use a moving average of our

3D UNet to perform inference for hard example mining.

Our goal is that, similar to He et al. (2020), doing so will

provide more stable predictions as training progresses. The

present paper extends that published in the proceedings of

the MICCAI MSSEG-2 2021 workshop (Commowick et al.,

2021) by providing a more extensive description of the

methodology as well as more detailed experimental results

including the testing of the algorithm on another cohort

(Bodini et al., 2016) distinct from the MICCAI MSSEG-2

testing dataset.

Methods

Preprocessing

We resampled each FLAIR image to a voxel size of 0.5mm

as it is the highest resolution of the training dataset and applied

a z-score normalization to each FLAIR individually. As the

two consecutive FLAIR images (baseline and follow-up) of a

patient have been aligned in the halfway space using a rigid

transformation by the challenge providers, our method starts by

concatenating them along the channel dimension, resulting in a

tensor of shape 2∗D∗H∗W, where D, H, andW are, respectively,

the depth, height, and width of the resampled FLAIR image.

This tensor is then subdivided into patches of shape 2∗32∗32∗32,

which are passed through a 3DUNet to obtain the segmentation.

Model

Our backbone model is a standard 3D UNet, which can be

described by the following equations:

B (n) : = 2x
{

3DConvolution (n)→Group Normalization

→ ReLU}

3D UNet : = B (16) ↓→ B (32) ↓→ B (64) →

↑ B (32) →↑ B (16) → Conv (1)

where the numbers in the parentheses are the number

of filters, ↓ indicates max pooling and ↑ indicates trilinear

upsampling. The model is trained on patches of size 32. For

inference, we split the image into a grid of patches of size 32, with

a stride of 24. This means that the patches have an overlap of 8

pixels. In these overlapping regions, we averaged all predictions

and binarized the final output with a threshold of 0.5.

Dataset

We used the MICCAI MSSEG-2 datasets (Commowick

et al., 2021) for training, validation, and the first testing set (see

Appendix). We also used a second testing set consisting of a

previously published MS cohort from our laboratory (Bodini

et al., 2016). This cohort was constituted of 19 patients with

active relapsing remitting MS (13 women, mean age 32.3 years

sd 5.6) who underwent two MRIs with FLAIR spaced from

minimum 31 days to maximum 120 days. Of those 19 patients,

only 18 had available FLAIR MRIs for each visit. As only one of

those 18 remaining patients had no new lesions at the second

visit, we focused on the 17 patients that presented new lesions
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FIGURE 1

Illustration of our training strategy. B patches are fed to a first 3D UNet and the segmentation errors are computed for each patch. The patches

are ranked according to their errors, and the topB patches are selected to perform a training step with a second 3D Unet. The weights of the first

3D UNet are momentum-updated with the weights of the second 3D Unet.

at the second visit for the second testing dataset. For these

17 patients, the new lesions at the second visit were manually

contoured in native space and verified by a senior neurologist.

After rigid co-registration to halfway space (FLIRT, http://fsl.

fmrib.ox.ac.uk/) (Jenkinson and Smith, 2001), we gave the

baseline and the follow-up FLAIR as input to our algorithm, and

the manually contoured lesion mask as ground truth to evaluate

our algorithm performances. Acquisitions for our testing cohort

were run on a 3 Tesla Siemens machine, with a 32-channel head

coil (Repetition Time: 8.88ms; Echo Time: 129ms; Inversion

Time: 2.5ms; Flip Angle: 120◦; Pixel size: 0.9× 0.9× 3 mm).

Training

As the images contain very few positive voxels, we do not

sample the patches uniformly during training. One common

strategy is to over-sample patches containing positive regions

with a constant ratio. However, this ratio must be fine-tuned

by hand. If it is too high, it can result in many false positives.

Instead, our method uses a 3D UNet with momentum weight

updates to perform hard example mining. A training iteration

consists of three steps, illustrated in Figure 1 and described by

Algorithm 1. In the first step, we select a batch of B = 128

patches, which contains 30% of positive patches and 70% of

uniformly sampled patches (i.e., mostly negatives due to the class

imbalance). We then pass this batch through a 1st 3D UNet,

denoted by UNet, to obtain a prediction for each element of

the batch and compute the segmentation errors with respect to

the ground truth. Second, we select the B = 32 patches with the

highest error and perform a training step on them with a second

Algorithm 1. The algorithm used for the training with OHEM and

momentum update.

3D UNet, denoted Unet. Last, we perform a momentum update

of the weights of the 1st 3D UNet, with the second 3D Unet. The

use of momentum ensures that the predictions given by the 1st

3D UNet do not fluctuate too much during training and provide

reliable samples for online hard example mining.

Training—OHEM vs. oversampling
comparison

We optimized each network for 3 h on one NVIDIA Tesla

P100 graphic card using Adam (Kingma and Ba, 2022). Note

that for OHEM, the duration of one iteration is roughly 2 times

longer. In the end, 3 h of training corresponds to about 30k
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iterations with OHEM and 64k without. The initial learning rate

was set to 10−3 and decayed to 10−4 and 10−5 after, respectively,

50 and 80% of the training time. We split the dataset into 30

patients for training, and 10 for validation.

We compared the learning curves using the Dice score on

the validation set for six training procedures: three with OHEM

with a momentum of, respectively, 0, 0.9, and 0.99, and three

without OHEM but with oversampling with a probability p

of, respectively, 0 (uniform), 0.1, and 0.5. This oversampling

probability meant that we sampled positive patches (i.e., with

a new lesion at a second time point) with a probability p and

other patches (that could be randomly positive or negative) with

a probability 1-p for the training.

Training—Final approach provided for the
MSSEG-2 challenge

We used the model described before, using OHEM with a

momentum of 0.9, and trained the model on the whole MICCAI

MSSEG-2 training dataset for 30k iteration. As above, the initial

learning rate is set to 10−3 and decayed to 10−4 and 10−5 after,

respectively, 50 and 80% of the training time.

Evaluation metrics for the testing dataset

The evaluation procedure was defined by the MICCAI

MSSEG-2 committee (Commowick et al., 2021). We briefly

recall this procedure in the following. The MICCAI MSSEG-

2 testing dataset of 60 patients was divided into two subsets,

according to the presence or absence of new lesions in patients:

28 patients without new lesions and 32 patients with new lesions.

Those two datasets were evaluated differently.

All new lesions from the ground truth and our algorithm

prediction were individualized by computing the connected

components, and all lesions smaller than 3 mm3 were removed

(Commowick et al., 2018). The detection was defined at the

lesion level using the algorithm described by Commowick et al.

(2018) with the parameters α = 10%, β = 65%, and γ = 70%,

which were set by the MICCAI MSSEG-2 committee.

For the 28 patients without new lesions, the following

metrics are reported: the lesion volume prediction per patient

in mm3, and the new lesion detection rate per patient.

For the 32 patients with new lesions, the evaluation aimed at

assessing both the quality of the detection and the segmentation.

For evaluating the segmentation, the (voxel-level) Dice score per

patient was reported. For evaluating the detection, the following

metrics were used: the mean sensitivity Sens (=recall) at the

lesion level per patient for detecting new lesions, and the mean

positive predictive value PPV (=precision) at the lesion level per

patient for detecting new lesions and the F1 score at the lesion

level (which combines lesion-level Sens and PPV) per patient

(Commowick et al., 2018).

The calculation of those metrics is described below. True

positives with respect to the ground truth TPgt were defined

as the number of new lesions from the ground truth that were

correctly detected by our algorithm. True positives with respect

to our prediction TPpred correspond to the number of new

lesions predicted by our algorithm that were correctly detected

by the ground truth.

• Dice =
2 |PRED∩GT|
|PRED|+|GT| , where PRED is the network

prediction and GT the ground truth segmentation,

|PRED ∩ GT| is the number of overlapping voxels between

the prediction and the ground truth, |PRED| is the number

of voxels in the prediction and |GT| the number of voxels

in the ground truth.

• Sens =
TPgt

nnew lesionsgt
where TPgt and nnew lesions_gt are,

respectively, the true positives with respect to the ground

truth and the number of new lesions in the ground truth.

• PPV =
TPpred

nnew lesionspred
where TPpred and nnew lesions_pred

are, respectively, the true positives with respect to our

prediction and the number of new lesions in our prediction.

• F1 = 2∗Sens∗PPV
Sens+PPV where Sens and PPV are, respectively, the

previously defined sensitivity and Positive Predictive Value.

All of those metrics were compared to zero for patients

without new lesion, and to the ground truth segmentation of

patients with new lesion, which is the consensual segmentation

from four expert annotators (Commowick et al., 2021).

All results are presented as mean, Standard Error to the

Mean (SEM), and rank among other challenge pipelines

when available.

For the second testing dataset, constituted by the 17 patients

with new lesions in our cohort, we used exactly the same

evaluation procedure that we described above for the patients

with new lesions from the MICCAI MSSEG-2 testing dataset.

Implementation details

Our algorithmswere implemented on PyTorch (Paszke et al.,

2017) and written using TorchIO library (Pérez-García et al.,

2021). The implementation was based on that of Wolny et al.

(2020). Training was performed on an NVIDIA Tesla P100

graphic card.

Results

Results on the validation set: Impact of
the OHEM procedure

The comparison of the learning curves for the proposed

OHEM procedure and the forced oversampling procedure is
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FIGURE 2

Evolution of the Dice score as a function of training time for the OHEM and the forced oversampling procedure (denoted as “Uniform”). For

OHEM, µ is the momentum. For “Uniform”, patches were sampled with respective probabilities, p for those with new lesions, and 1-p for the rest

(not necessarily without new lesions). One can observe that the “Uniform” procedure with p > 0 ended up performing best and that, when using

OHEM, choosing µ > 0 seems to be beneficial.

shown in Figure 2. One can observe that, on this task, the

OHEM procedure, even with increasing the momentum to

0.99, did not give better results in terms of training speed nor

plateau of the Dice score. However, we observed that using

OHEM gives a positive momentum that helped to reach a higher

plateau of the Dice score on the validation set compared to a

null one.

Results on the testing set

Results on the first testing set from MICCAI MSSEG-2 are

shown in Table 1. In the 32 patients with new lesions, our

network achieved a mean lesion-level F1 score per patient of

0.446 (SEM 0.057), ranking 13th over 29 approaches for this

metric. Themean Dice per patient was 0.400 (SEM 0.051), which

ranked 18/29. Our mean sensitivity at the lesion level per patient

was 0.616 (SEM 0.069) and our mean positive predictive value at

the lesion level per patient was 0.383 (SEM 0.054). Concerning

the 28 patients without new lesions, for whom any prediction is a

pure false positive, on average, 0.75 (SEM 0.32) new lesions were

predicted per patient (ranking our approach 15/29), with a mean

lesion volume per patient among those 28 patients without new

lesion of 31.2 mm3 (SEM 13.0), which corresponded to a rank

of 20/29.

On our second testing set from our laboratory, on the 17

patients with new lesions, the mean Dice per patient was 0.465

(SEM 0.046). At the lesion level, our network achieved a mean

sensitivity per patient of 0.901 (SEM 0.043) and a mean positive

predictive value per patient of 0.239 (SEM 0.030), resulting in a

mean lesion-level F1 score per patient of 0.365 (SEM 0.038).

Figure 3 shows an example of inference on a follow-up MRI

from this second testing set from our laboratory.

Discussion

The main contribution of this work was the introduction

of online hard example mining (OHEM) to deal with class

imbalance. The rest of the approach is constituted of a

standard 3D UNet. We first showed that the use of a non-

negative momentum helped the training procedure. However,

overall, OHEM did not perform better than a predefined

fixed oversampling and especially performed worse when

an oversampling probability of p = 0.1 was used for

fixed oversampling.

On the MICCAI MSSEG-2 testing set, our approach

ranked in the mid-class of the challenge (Dice score of 0.400,

corresponding rank 18/29; lesion-level F1 score of 0.446,

rank 13/29). Interestingly, compared to other pipelines of the

challenge, our worst performances were on the subset of patients
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TABLE 1 Results on the testing set using MICCAI MSSEG-2 evaluation metrics, with the specific evaluation metrics from MICCAI MSSEG-2 testing

dataset for the 32 patients with new lesions (a) as well as for the 28 patients without new lesions (b), and the 17 patients with new lesions from our

second testing dataset (c).

(a) MICCAI MSSEG-2 testing dataset: patients with new lesions (n = 32)

Lesion-level F1 score per patient,

mean (SEM); rank

Dice score per patient,

mean (SEM); rank

Sens at lesion level per patient,

mean (SEM)

PPV at lesion level

per patient,

mean (SEM)

0.446 (0.057); 13th/29 0.400 (0.051); 18th/29 0.616 (0.069) 0.383 (0.054)

(b) MICCAI MSSEG-2 testing dataset: patients without new lesion (n = 28)

Number of new lesions predicted per patient, Lesion volume predicted in mm3 per patient,

mean (SEM); rank mean (SEM); rank

0.750 (0.320); 15th/29 31.2 (13.0); 20th/29

(c) Second testing dataset: patients with new lesions (n = 17)

Lesion-level F1 score per patient,

mean (SEM)

Dice score per patient, mean

(SEM)

Sens at lesion level per patient,

mean (SEM)

PPV at lesion level

per patient, mean (SEM)

0.365 (0.038) 0.465 (0.046) 0.901 (0.043) 0.239 (0.030)

without new lesions, where any prediction is a false positive.

Together with the relatively high sensitivity but relatively low

PPV, this could be explained by a bias in the OHEM training

toward a high detection rate, resulting in a greater false positive

rate. This trend was even stronger when we evaluated the

algorithm performances on our second testing dataset, with a

higher Dice score of 0.465, a higher sensitivity of 0.901 but a

lower PPV of 0.239.

When compared to other pipelines of the challenge, the

best pipeline in the subset of patients without new lesions,

consisting of a 3D UNet with pre-activation block, also used

an oversampling strategy for Regions of Interest with new

lesions, but was also ranked in the mid-class of the challenge

for the Dice score on the patients with new lesions (with a

Dice score of 0.409). The most accurate pipeline in terms of

Dice score (even better than several annotators), which did

not use any oversampling strategy, was ranked in the mid-

class of the challenge for the subset of patients without new

lesions for the score of new lesions detection rate. This is

consistent with the idea that dealing with the oversampling

of positive examples is a key problem in the balance between

false positive and false negative predictions in this new lesion

segmentation task. We believe, given the medical utility of

this task at the individual level for patient follow-up, that a

compromise between sensitivity and PPV favoring sensitivity is

clinically relevant if the algorithm is considered as an auxiliary to

the neurologist or radiologist. Indeed, the interrater variability

in manual new lesions detection is mainly explained by false

negative rate (Altay et al., 2013), i.e., new lesions that were not

detected by the rater. We believe that sensitive algorithms could

help neurologists or radiologists to detect those overlooked

new lesions. The clinicians could subsequently easily remove

false positive predictions of the algorithm after visual checking.

However, there is still a long way to go for clinical applications

of algorithms for new lesion segmentation. This will require

not only algorithm improvement but also prospective validation

studies on larger and very diverse datasets.

There was only one pipeline in the challenge that did

not use deep learning. Even if they outperformed four deep

learning teams on average, their rankingwas low on theMICCAI

MSSEG-2 testing dataset, with a mean Dice of 0.309 for patients

with new lesions, and a mean volume of new lesions detected of

177.9 mm3 for patients without new lesions. This does not mean

that non-deep-learning methods are not potentially useful for

this task but this would require additional comparisons which

are outside of the scope of the present work. To our knowledge,

most of the previously published deep learning algorithms

(McKinley et al., 2020; Salem et al., 2020) or recent non deep

learning based on deformation field (Cabezas et al., 2016) used

to segment new lesions on MS MRIs are based on multiple MRI

sequences and not only on a single sequence. It is the same when

looking at previously published deep learning algorithms used to

segment the lesion load transversally (Valverde et al., 2019; Zeng

et al., 2020). So, even if clinically relevant (Hegen et al., 2018), the

challenge task allows neural network to learn less information

for prediction than in most of the state of art methods, and

it can partly explain the difficulty of the task. The previous

work from Gessert et al. (2020) based on attention gated two
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FIGURE 3

Example of prediction on one patient from our second testing dataset (Bodini et al., 2016).

paths convolutional neural networks was to our knowledge the

most relevant deep learning work published on the task of

segmenting MS new lesion based only on two follow up FLAIR

sequences. They did not require an oversampling procedure to

deal with class imbalance and had very good lesion-wise true

positive rate and lesion-wise false positive rate. However, we

could not compare methods since their proposed evaluation

metrics differed from the ones provided by MICCAI MSSEG-2

(Commowick et al., 2018).

This work has several limitations. First, concerning the

OHEM training methodology (Shrivastava et al., 2016), it did

not improve the training procedure on this task and did not

outperform significantly other competing 3D UNets across the

challenge. Despite being an interesting methodology to deal

with class imbalance, we have to keep in mind that it has been

developed for detection in 2D natural images (Shrivastava et al.,

2016) using fast R-CNN (Wang et al., 2016). Even though it has

shown promising results in Bian et al. (2022) work on heartMRI,

unveiling its full potential for 3D medical image segmentation

may require further adaptations and developments. Second, we

chose to compare OHEM and fixed oversampling as a function

of training time and not as a function of epochs. Training time

could be influenced by many parameters like machine heat

and GPU availability. However, we believe it was the fairest
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way to compare methods. Indeed, the unit cost of each epoch

(or iteration) has no reason to be the same for the different

techniques. Even worse, it can vary across epochs due to the

nature of the OHEM method. Another limitation is that we

used a single split into training and validation rather than a

cross-validation strategy. Thus, we did not use all samples for

testing and we did not assess their variability when varying

the training set. We made this choice because we had to

provide one single result for the challenge. We did not use data

augmentation in our training strategy to be able to compare

different oversampling strategies and momentum, but OHEM

comportment should be explored with data augmentation in

future work. Due to the short delay between baseline and follow-

up MRIs in the MICCAI MSSEG-2 dataset (from 1 to 3 years)

as well as in our second testing dataset (maximum 120 days),

we could not explore the influence of severe atrophy in this

task. An adjacent and clinically useful task for longitudinal

follow-up of MS patients, that we could not assess here due to

challenge constraints focusing on new lesions, is the detection

of shrinking and enlarging lesions. Furthermore, it is likely

that the use of multicontrast MRI could improve the results

over the use of FLAIR alone. The aim of the MICCAI 2021

MSSEG-2 challenge was to develop an algorithm only based

on two longitudinal FLAIRs. Thus, our present work only uses

FLAIR as input and a comparison with a multicontrast input

is left for future work. Another important aspect that remains

to be studied is generalizability to other acquisition settings.

In the MICCAI MSSEG-2 challenge, there was quite a variety

of different MRI machines. Furthermore, it is interesting to

note that the General Electric machines present in the MICCAI

MSSEG-2 dataset were not present in the training dataset.

However, further experiments, which could not be performed

within the challenge setting, would be required to demonstrate

generalizability across acquisition settings. Future work will

be to go further into dealing with class imbalance during

training with a fixed oversampling strategy, as it gave interesting

results on the validation set and in other pipelines of the

challenge. The difficulty with a fixed oversampling strategy is the

arbitrary choice of the oversampling factor. Perhaps inserting

neurological priors to guide the oversampling factors and

adapting them to the anatomical region could be a promising

idea, allowing to take into account the complexity of prediction

in some brain areas and the variability of the lesion load over

brain regions in MS to tune locally the probability of patches

from those regions to be oversampled.

Conclusion

In this paper, we described our contribution to the

MICCAI MSSEG-2 challenge (Commowick et al., 2021).

The main new methodological component was the use

of online hard example mining (OHEM) for handling

class imbalance. Overall, on the challenge testing set,

our pipeline ranked at the mid-class, with an average

Dice of 0.400 and an average F1 score of 0.446. For

this specific application, on the validation set, OHEM

did not provide any improvement over a standard fixed

oversampling strategy. Nevertheless, such a strategy may

deserve further investigation for medical imaging problems

with class imbalance.
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Appendix

We used the MICCAI MSSEG-2 dataset (Commowick et al.,

2021), consisting in 100 MS patients with two longitudinal

FLAIR MRI spaced from 1 to 3 years, acquired with 6 Philips

scanners (Ingenia 1.5T, 2 Ingenia 3T, 1 Achieva dStream

3T, 1 Achieva 1.5T, 1 Achieva 3T), 6 Siemens scanners (1

Aera 1.5T, 1 Skyra 3T, 1 Verio 3T, 1 Prisma 3T, 2 Avanto

1.5T), and 3 General Electrics (GE) scanners (Optima MR450w

1.5T, SIGNA HDx 3T, SIGNA HDxt 1.5T), with different

voxel sizes (from 0.5 to 1.2 mm3). Ground truth, consisting

in new lesions on second time point, were delineated by 4

neuroradiologists from different centersmanually on ITK-SNAP

(http://www.itksnap.org/pmwiki/pmwiki.php), and consensus

was obtained with the majority voting for each voxel. The

whole dataset was divided by MSSEG-2 training committee

into 40 patients available to challengers for training and

validation, and 60 patients, not available to the challengers,

for testing. All MRIs acquired with GE were only in the

testing dataset.
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