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Background: Neuroinflammation is a response that involves di�erent

cell lineages of the central nervous system, such as neurons and glial

cells. Among the non-pharmacological interventions for neuroinflammation,

photobiomodulation (PBM) is gaining prominence because of its beneficial

e�ects found in experimental brain research. We systematically reviewed the

e�ects of PBM on laboratory animal models, specially to investigate potential

benefits of PBM as an e�cient anti-inflammatory therapy.

Methods: We conducted a systematic search on the bibliographic databases

(PubMed and ScienceDirect) with the keywords based on MeSH terms:

photobiomodulation, low-level laser therapy, brain, neuroinflammation,

inflammation, cytokine, and microglia. Data search was limited from 2009 to

June 2022. We followed the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) guideline. The initial systematic search identified

140 articles. Among them, 54 articles were removed for duplication and 59

articles by screening. Therefore, 27 studies met the inclusion criteria.

Results: The studies showed that PBM has anti-inflammatory properties

in several conditions, such as traumatic brain injury, edema formation

and hyperalgesia, ischemia, neurodegenerative conditions, aging, epilepsy,

depression, and spinal cord injury.

Conclusion: Taken together, these results indicate that transcranial PBM

therapy is a promising strategy to treat brain pathological conditions induced

by neuroinflammation.

KEYWORDS

photobiomodulation, low-level laser (light) therapy, brain, neuroinflammation,

inflammation, cytokine, microglia
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Introduction

Neuroinflammation is a response that involves cells of the

central nervous system (CNS) such as neurons, macroglia and

microglia (DiSabato et al., 2016; Schain and Kreisl, 2017; Shabab

et al., 2017). This response is mainly mediated by cytokines,

chemokines, secondary messengers, and reactive oxygen species

(ROS) (Glass et al., 2010; Park et al., 2011; DiSabato et al.,

2016; Norden et al., 2016). Neuroinflammation also can be a

pathological condition in a variety of neurodegenerative diseases

((Schain and Kreisl, 2017)). For example, the activation of

microglia, pro-inflammatory cytokines and signaling pathways

linked to inflammation such as nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) pathway can

trigger neurodegeneration (Glass et al., 2010; Harry and

Kraft, 2012; Lyman et al., 2014). The prolonged release of

pro-inflammatory mediators such as tumor necrosis factor-

alpha (TNF-α), interleukin (IL)-1α, IL-1β, and IL-6 allow

leukocytes to migrate into the brain and induce pathogenesis

in the CNS (De Vries et al., 1996; Laflamme et al., 1999).

In addition, this inflammatory reaction leads to synaptic

gene dysregulation, tissue damage, and potentially cell death

(Cunningham et al., 1996; Carson et al., 2006; DiSabato

et al., 2016). Given this scenario, new therapeutic approaches

are needed to modulate neuroinflammatory responses in

pathological conditions.

Photobiomodulation (PBM), or low-level laser/light therapy

(LLLT) (Anders et al., 2015), is a non-invasive light-driven

intervention that involves the use of red and near-infrared

(NIR) light to stimulate healing processes, reduce pain, protect

the aging brain and decrease inflammation in several tissues,

including the nervous tissue (Rojas and Gonzalez-Lima, 2011,

2013; Almeida et al., 2013; Arany, 2016; Hamblin, 2017;

Cardoso et al., 2021a,b). These effects may be mediated by

multiple mechanisms. However, cytochrome c oxidase (CCO),

the fourth enzyme complex in the electron transport chain

within mitochondria, is the main photoacceptor when cells

are irradiated with the red to NIR light used for PBM (Karu,

1999). Cellular studies have also shown that PBM promotes

ATP synthesis in mitochondria (Karu et al., 1995), and release

of mitochondrial ROS and nitric oxide (Karu et al., 2005;

Huang et al., 2009). These upstream processes contribute to

increased cellular metabolism, altered mitochondrial dynamics,

increased vasodilation, and mainly decreased inflammation

(Pastore et al., 1994; Karu et al., 2005; Muili et al., 2012; Plass

et al., 2012). In the brain in vivo, a primary PBM mechanism

has been confirmed to be photonic oxidation of mitochondrial

CCO (Wang et al., 2017a; Saucedo et al., 2021), being this

mechanism independent of heat/thermal effects induced by

light (Wang et al., 2017b). Brain PBM leads secondarily

to increased cerebrovascular oxygenation (Tian et al., 2016;

Holmes et al., 2019), the activation of metabolic pathways

(Cardoso et al., 2021c), and of intracellular signaling molecules

(Cardoso et al., 2021d), some of them relevant for inflammation

(Cardoso et al., 2021a). The mitochondrial mechanism of PBM

may provide a link between PBM and inflammation considering

that recent studies have uncovered mitochondrial molecules,

called mitochondrial alarmins, with inflammatory signaling

properties (Grazioli and Pugin, 2018).

In favor of idea, it has been noted that PBM can alter

the levels of inflammatory mediators in various animal models

(Gupta et al., 2015; Martins et al., 2016; Yoshimura et al., 2016).

For example, Gupta et al. (2015) demonstrated that 904 nm

laser PBM enhances the healing of burn wounds in rats and

attenuates inflammation by decreasing the expression of TNF-α

and NF-kB, and by up-regulated expression of VEGF, FGFR-1,

HSP-60, and HIF-1α at 4- and 7-days post-wounding. Martins

et al. (2016) administered 950 nm laser PBM therapy in an

animal model of inflammatory pain and found that the animals

exhibited a reduced pain and an improvement of antioxidant

enzymes and high levels of the anti-inflammatory cytokine

IL-10. In a mouse model of obesity and type 2 diabetes mellitus,

six sessions of 830 nm laser PBM were also able to reduce

abdominal adipose tissue inflammation (Yoshimura et al., 2016).

In recent years, promising evidence has emerged to support

the anti-inflammatory effects of the PBM therapy in various

animal models in different neurological conditions (Khuman

et al., 2012; Hamblin, 2017; Salehpour et al., 2019a,b; Cho

et al., 2020; Cardoso et al., 2021a; Yang et al., 2021a). In this

systematic review, we analyzed the neuroinflammatory effects

of PBM on animal models of brain pathological conditions, in

special to investigate potential translational benefits of PBM as

an anti-inflammatory transcranial therapy.

Materials and methods

Data sources and search strategy

The search was conducted from 2009 to June 2022.

PubMed and ScienceDirect were searched electronically with

the keywords “photobiomodulation” or “low-level laser therapy”

or “LLLT”; and “brain”; and “inflammation” or “cytokine” or

“microglia” or “neuroinflammation” (Table 1). To ensure the

clarity and transparency of the articles, we used the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines (Moher et al., 2010). Two independent

researchers screened the title, abstract, and the full text of

the articles and judged the searched materials against the

inclusion and exclusion criteria. Disagreements were resolved

by consensus.

Selection criteria

We selected all in vivo studies to obtain findings related

to neuroinflammatory effect of PBM in brain disorders
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TABLE 1 Summary of laboratory animal studies on

neuroinflammatory e�ects of the photobiomodulation.

Boolean

builder

Mesh terms

“Photobiomodulation” or “Low-Level Laser Therapy” or “LLLT”

And “Brain”

And “Inflammation” or “Cytokines” or “Microglia” or

“Neuroinflammation”

(Hamblin, 2017). The search strategy included experimental

in vivo animal studies conducting PBM. We accepted only

publications written in English. Neither in vitro approaches,

clinical original articles, conference papers, nor review articles

were included.

Data extraction and data synthesis

The included articles were divided according to pathological

conditions. For data extraction, groups were subdivided

according to the references (author and year), characteristics

of the population (animals/species, sex and age), PBM

parameters: light source/wavelength, continuous wave (CW)

or pulsing mode, output power, irradiance per session,

irradiation time, fluence per session, energy per session,

irradiation approach/site, number of treatment sessions, and

studies outcomes.

Results

The initial systematic search in PubMed and ScienceDirect

databases identified 140 articles. Among them, 54 articles

were removed for duplication and 59 articles by screening

selection criteria. Then, 27 studies met the inclusion criteria

(Figure 1).

Characteristics of the studies

Twenty seven articles reported experiments in rodents, of

which 3 were performed on albino BALB/c mice (Salehpour

et al., 2019a,b; Hosseini et al., 2022), 6 used C57BL/6 mice

(Khuman et al., 2012; Zhang et al., 2014; Gonçalves et al.,

2016; Lee et al., 2016, 2017; Duarte et al., 2018), 1 was

conducted on the 5XFAD transgenic mice (pigmented C57BL/6

background) (Cho et al., 2020), 1 was performed on the

APP/PS1 transgenic mice (Wu et al., 2021), 2 used the

TgF344 transgenic mice (Yang et al., 2021b, 2022), 6 were

performed using Wistar rats (Moreira et al., 2009; Prianti

et al., 2014; Cardoso et al., 2021a, 2022; Gerace et al.,

2021; Vogel et al., 2021), and 8 used Sprague-Dawley rats

(Lu et al., 2017; Esenaliev et al., 2018; Yang et al., 2018,

2021a; O’Brien and Austin, 2019; Di Paolo, 2021; Wang

et al., 2021; Tsai et al., 2022). In these laboratory rodent

studies, the age of animals varied from 7 weeks old to

20 months old. In order to analyze the anti-inflammatory

effects of PBM on brain, we reviewed various animal models

such as focal brain damage (Moreira et al., 2009), controlled

cortical impact (Khuman et al., 2012), peripheral inflammation

(Prianti et al., 2014), mild traumatic brain injury (Zhang

et al., 2014), spinal cord injury (Wang et al., 2021), Aβ-

treatment (Lu et al., 2017), Aβ and PS1 transgenic rodents

(Cho et al., 2020), PS1 transgenic rodents (Wu et al., 2021),

TgF344 transgenic rodents (Yang et al., 2021b, 2022), brain

ischemia (Lee et al., 2016, 2017; Gerace et al., 2021; Vogel

et al., 2021), multiple sclerosis (Gonçalves et al., 2016), natural

aging (Cardoso et al., 2021a, 2022), blast injury (Esenaliev

et al., 2018), retinal degeneration (Di Paolo, 2021), induced

aging (Hosseini et al., 2022), cuprizone-induced demyelination

(Duarte et al., 2018), photothrombotic stroke (Yang et al.,

2018), lipopolysaccharide-induced Parkinson’s disease (O’Brien

and Austin, 2019), experimental model of epilepsy (Tsai et al.,

2022), restraint stress-induced depression experimental model

(Salehpour et al., 2019a), transient global brain ischemia and

artificially aging (Salehpour et al., 2019b), and neonatal hypoxic

ischemia (Yang et al., 2021a).

The laser parameters used in the studies showed

wide divergence:

Light source/ wavelength (nm): LED and LASER, 610

to 905;

Operation mode: CW and pulsed;

Output power (W): 0.03 to 1.91;

Irradiance (mW/cm2): 0.457 to 100;

Irradiation time per session (s): 3 to 3,600;

Total fluence (J/cm2): 1.0 to 535.7;

Energy (J): 0.6 to 294;

Irradiation approach/sites: contact to the rat skin

immediately over the lesion site, transcranial, in the open

craniotomy, in the spinal cord, on the abdomen of pregnant

rats, in the cells and percutaneous.

Number of treatment sessions: 1 to 207.

The selected studies were summarized in a chronological

order shown in Table 2.

Findings and discussion

The purpose of this systematic review was to investigate

the neuroinflammatory effects of PBM therapy. Studies have

shown interesting findings on the anti-inflammatory effects

of PBM in various animal models of neurological diseases in

different neurological conditions, such as traumatic brain injury,

edema formation and hyperalgesia, ischemia, neurodegenerative

conditions, aging, and depression.
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FIGURE 1

Diagram of article selection process.

Traumatic brain injury

Studies using laboratory animals have shown that PBM

reduces the level of pro-inflammatory cytokines and the

microglia activation of TBI animal models (Moreira et al., 2009;

Khuman et al., 2012; Esenaliev et al., 2018; Yang et al., 2018).

For example, Khuman et al. (2012) demonstrated that 800 nm

laser PBM inhibited the microglia activation, accompanied

by improvement in cognitive deficits after controlled cortical

impact. Esenaliev et al. (2018) observed that one session of

808 nm nano-pulsed laser PBM therapy applied 1 h after blast

injury significantly inhibited microglia activation and reduced

the number of cortical neurons expressing activated caspase-

3 in a rat model of blast-induced neurotrauma. Also, in the

study conducted by Yang et al. (2018), 9 sessions of 808 nm

laser PBM was able to change the phenotype of microglial

polarization from the M1 pro-inflammatory phenotype to the

M2 anti-inflammatory phenotype. Since TBI is accompanied

by an increase in cytokine and chemokine levels (Woodcock

and Morganti-Kossmann, 2013; Bergold, 2016), the severity

of brain damage is linked to a higher and more prolonged

inflammatory response (Kumar and Loane, 2012; White et al.,

2013; Woodcock and Morganti-Kossmann, 2013; Lozano et al.,

2015). In animals, an increase in cerebral cortical levels of

the inflammatory cytokines IL-1β, TNFα, and IL-6 has been

shown from 3 to 9 h after injury (Bachstetter et al., 2013). In

clinical studies, levels of pro-inflammatory markers IL-6, TNFα,

IL-10, IL-8, and monocyte chemoattractant protein-1 (MCP-

1) have also been increased after 2 days of TBI (Morganti-

Kossman et al., 1997; Csuka et al., 1999; Semple et al., 2010).

In addition, the release of these cytokines was correlated with

microglial activation and axonal dysfunction, suggesting an

association between the activated immune response and brain

injury (Frugier et al., 2010). Taken together, it seems that PBM

can exert anti-inflammatory action against TBI through the

modulation of both anti- and pro-inflammatory chemokines

and cytokines.

Edema formation and hyperalgesia

In the study by Prianti et al. (2014), they showed that

660 nm laser PBM reduces COX-2 mRNA expression in animals

receiving carrageenan. This is a worthwhile result as in

inflammatory conditions COX-2 is highly expressed, increasing

the release of pro-inflammatory markers (Schuligoi et al., 2003;

Grill et al., 2006, 2008), and plays a key role in chronic pain

(Narita et al., 2008).

Brain ischemia

Ischemia can trigger an imbalance between pro- and anti-

inflammatory mediators (Yilmaz and Granger, 2008), which

play a key role in the progression and pathogenesis of ischemia

(Barone and Feuerstein, 1999; Samson et al., 2005; Chamorro

and Hallenbeck, 2006; Wang et al., 2007). For example, the

inhibition of inflammatory response in ischemic patients can

decrease the brain injury (Yilmaz and Granger, 2008). The

therapeutic effects of PBM on ischemia have been addressed

in the works by Zhang et al. (2014), Lee et al. (2016, 2017),

Salehpour et al. (2019b), Vogel et al. (2021), Yang et al.
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(2021a) and Gerace et al. (2021). Lee et al. (2016, 2017)

treated mice submitted to a focal brain ischemia experimental

model with a 610 nm laser and observed an inhibition of

Iba-1 and GFAP-labeled cells, accompanied by a regulation

of pro-inflammatory cytokines and suppression of mitogen

activated protein kinase (MAPK) (a signaling pathway linked to

inflammation and cell death) and NF-kB activation. Salehpour

et al. (2019b) showed that 14 sessions of 810 nm laser PBM

significantly decreased iNOS, TNF-α, and IL-1β levels in the

brain of transient global cerebral cortex ischemia model using

artificially agedmice. This evidence is promising since activation

of MAPKs p38, ERK and JNK regulate pro-inflammatory genes

that activate NF-kB in microglia.

Neurodegenerative conditions

Abnormal microglial activation and inflammatory response

may contribute to the pathology of several neurodegenerative

conditions (Chen et al., 2016; Swaroop et al., 2016; Shabab et al.,

2017; Voet et al., 2019). It is known that patients with multiple

sclerosis (Huang et al., 2020), Alzheimer’s disease (Licastro et al.,

2000), and Parkinson’s disease (Liu et al., 2003) exhibit elevated

levels of pro-inflammatory markers in plasma. Transcranial

PBM therapy has anti-inflammatory effects in several models

of neurodegenerative conditions (Gonçalves et al., 2016; Lu

et al., 2017; Duarte et al., 2018; O’Brien and Austin, 2019; Cho

et al., 2020; Di Paolo, 2021; Wu et al., 2021; Yang et al., 2021b,

2022). For instance, Gonçalves et al. (2016) submitted mice to

a model of multiple sclerosis to 30 sessions of either 660 nm

or 904 nm laser PBM therapy. PBM-treated mice exhibited

decreased levels of IL-1β, IL-17 and interferon-γ (IFN-γ) in

the spinal cord, when compared to the control group mice. In

addition, Duarte et al. (2018) demonstrated that 6 sessions of

808 nm laser PBMmodulate microglial and astrocytes activation

induced by cuprizone. In Aβ-treated mice, PBM treatment

also reduced microglia (Iba-1 immunoreactivity) in the cerebral

cortex (Cho et al., 2020), and attenuated the elevation of glial

activation and IL-1β, IL-6, and TNF-α levels in the hippocampal

CA1 region (Lu et al., 2017). Furthermore, O’Brien and Austin

(2019) observed that PBM protected against lipopolysaccharide-

induced dopaminergic cell death in a rat Parkinson’s disease

experimental model.

Aging

Brain aging is characterized by microglia reactivity and

an imbalance between pro- and anti-inflammatory cytokines

(Godbout and Johnson, 2009; Jurgens and Johnson, 2012).

However, a couple of recent studies involving our group have

shown that PBM can improve the inflammatory response in

the aging brain (Salehpour et al., 2019b; Cardoso et al., 2021a,

2022; Hosseini et al., 2022). For example, a protocol with 58

consecutive days of 810 nm laser PBM therapy was able to

change the inflammatory profile of the aging brain in rats.

We showed that PBM increased cerebral cortex levels of IL-

10, IL-6, and TNF-α. In addition, PBM therapy significantly

decreased cerebral cortex levels of IL-5 and hippocampal levels

of IP-10 and fractalkine (Cardoso et al., 2021a). In addition, we

reported that 10 sessions of 660 nm laser PBM Increased levels

of IL-1α and decreased levels of IL-5 in the cerebral cortex.

In the hippocampus, the laser treatment increased the levels

of IL-1α and decreased levels of IL-5, IL-18, and fractalkine

(Cardoso et al., 2022). These findings are promising, since the

expression of pro-inflammatory cytokines, oxidative stress, and

glial activation are increased during the aging (Lee et al., 2000;

Blalock et al., 2003; Godbout et al., 2005; Bishop et al., 2010).

Epilepsy

In the study conducted by Tsai et al. (2022), they showed

that 608 nm laser PBM reduced neuron-specific enolase (NSE)

and glial fibrillary acid protein (GFAP) immunoreactivity in

hippocampus in an animal model of epilepsy. These results are

promising since studies suggest inflammation as a biomarker

in epilepsy (Ravizza et al., 2008; Auvin et al., 2010; Vezzani

and Friedman, 2011; Vezzani et al., 2016). For example,

blocking IL-1β (a pro-inflammatory interleukin) prevents

generalized seizure and increases the threshold for induction of

afterdischarge (Ravizza et al., 2008; Auvin et al., 2010).

Depression

Salehpour et al. (2019a) observed that 5 sessions of 810 nm

laser PBM suppressed neuroinflammatory responses in the

neocortex and hippocampus of mice submitted to a restraint

stress-induced depression model by decreasing NF-kB, p38, and

JNK levels. In addition, PBM decreased the serum levels of

cortisol, corticosterone, TNF-α, and IL-6 induced by restraint

stress. These results are promising since evidence suggests that

these pro-inflammatory proteins are involved in the pathology

of major depressive disorder (Kubera et al., 2011; Liu et al.,

2012), as well as neurotransmission and mood regulation (Du

et al., 2008; Villanueva, 2013).

Spinal cord injury

In the study conducted byWang et al. (2021) it was observed

that microglia and astrocytes begin to be activated after spinal

cord injury, participating in secondary damage and tissue repair.

However, 810 nm laser PBM during two consecutive weeks was

able to inhibit microglia/macrophage and astrocyte activation
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TABLE 2 Summary of laboratory animal studies on neuroinflammatory e�ects of the photobiomodulation.

Author Animal/Species Model Laser Parameters Outcomes

Moreira et al.

(2009)

Fifty-one Male Wistar

rats

Focal brain damage Light source/ wavelength (nm): LED, 660 and 780

Operation mode: CW

Output power (W): 0.04

Irradiation time per session (s): 3 and 5

Energy (J): 24 and 40

Irradiation approach/sites: contact to the rat skin

immediately over the lesion site.

Number of treatment sessions: 2

Modulation of TNF-α, IL-1β and IL-6 levels

in the brain and in circulation in the first 24 h

following cryogenic brain injury.

Khuman et al.

(2012)

Two hundred and

thirty-nine Male

C57BL/6 mice (3

months old)

Controlled cortical

impact

Light source/ wavelength (nm): LASER, 800

Output power (W): 0.33, 0.65, 1.3

Irradiance (mW/cm2): 250, 500 and 1,000

Irradiation time per session (s): 120 and 420

Total fluence (J/cm2): 30, 60, 105, 120 and 210

Energy (J): 39, 78, 137, 156 and 273

Irradiation approach/sites: in the open craniotomy

and transcranial

Number of treatment sessions: 1 and 7

Reduction of microgliosis in open

craniotomy mice.

Prianti et al.

(2014)

Thirty Male

Wistar rats

Peripheral

inflammation

Light source/ wavelength (nm): LED, 660

Output power (W): 0.03

Irradiation time per session (s): 232

Total fluence (J/cm2): 7.5

Number of treatment sessions: 1

Reduced expression of COX-2 mRNA.

Zhang et al.

(2014)

Male C57BL/6 mice (8

weeks old)

Mild traumatic brain

injury

Light source/ wavelength (nm): LED, 810

Operation mode: pulsed

Irradiance (mW/cm2): 150

Irradiation time per session (s): 240

Total fluence (J/cm2): 36

Irradiation approach/sites: transcranial

Suppressed proinflammatory cytokine

expression like IL-1b and IL-6.

Lee et al.

(2016)

Eighteen Male C57BL/6J

mice

Focal cerebral

ischemia

Light source/ wavelength (nm): LED, 610

Operation mode : CW

Irradiance (mW/cm2) : 1.7

Total fluence (J/cm2): 2.0

Irradiation approach/sites: transcranial

Number of treatment sessions: 4

Inhibited Iba-1- and GFAP-labeled cells,

which was accompanied by a reduction in the

expression of inflammatory mediators and

inhibition of MAPK activation and NF-kB

translocation in the ischemic cortex.

Gonçalves

et al. (2016)

Female C57BL/6 mice

(6–10 weeks old)

Multiple sclerosis Light source/ wavelength (nm): LED/ 660 and 904

Operation mode: CW and Pulsed

Output power (W): 0.3 and 0.7

Irradiation time per session (s): 120

Total fluence (J/cm2): 3 and 10

Energy (J): 0.6

Irradiation approach/sites: in the spinal cord

Number of treatment sessions: 30

Neuroinflammation inhibition/modulation

through a reduction of inflammatory cells in

the CNS.

Lee et al.

(2017)

Male C57BL/6J mice Focal cerebral

ischemia

Light source/ wavelength (nm): LED, 610

Irradiance (mW/cm2): 1.7

Irradiation time per session (s): 1,200

Total fluence (J/cm2): 2

Irradiation approach/sites: transcranial

Number of treatment sessions: 6

Attenuation of the NLRP3 inflammasome, in

accordance with down- regulation of

pro-inflammatory cytokines IL-1β and IL-18

in the ischemic brain. In addition, suppressed

TLR-2 levels, MAPK signaling and NF-kB

activation in the mice with post-is- chemic.

(Continued)
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TABLE 2 (Continued)

Author Animal/Species Model Laser Parameters Outcomes

Lu et al. (2017) Male Sprague- Dawley

rats

Aβ-treatment Light source/ wavelength (nm): LED, 808

Operation mode : CW

Irradiance (mW/cm2) : 25

Irradiation time per session (s): 120

Total fluence (J/cm2): 15

Irradiation approach/sites: transcranial

Number of treatment sessions: 5

Attenuation of the elevation of glial

activation and proinflammatory cytokine

levels (IL-1β, IL-6 and TNF-α,) in the

hippocampal CA1 region.

Esenaliev et al.

(2018)

Fifty Male

Sprague-Dawley rats

Blast injury Light source/ wavelength (nm): LASER, 808

Operation mode: Pulsed

Irradiation time per session (s): 300

Total fluence (J/cm2): 300

Irradiation approach/sites: transcranial

Number of treatment sessions: 1

Inhibition of microglia activation and

reduction of the number of cortical neurons

expressing activated caspase-3.

Duarte et al.

(2018)

Male C57BL/6 mice (7

weeks old)

Demyelination Light source/ wavelength (nm): LED, 808

Operation mode: CW

Output power (W): 0.5

Irradiance (mW/cm2): 178

Irradiation time per session (s): 20

Total fluence (J/cm2): 36

Energy (J): 1

Irradiation approach/sites: transcranial

Number of treatment sessions: 6

Modulation in microglial and astrocytes

activation induced by cuprizone.

Yang et al.

(2018)

Male Sprague-Dawley

rats

Photothrombotic

stroke

Light source/ wavelength (nm): LASER, 808

Operation mode : CW

Irradiance (mW/cm2) : 350

Irradiation time per session (s): 120

Energy (J): 294

Irradiation approach/sites: transcranial

Number of treatment sessions: 7

Modulation of M1 microglial phenotype to

an anti-inflammatory M2 phenotype.

O’Brien and

Austin (2019)

Forty-one Male

Sprague–Dawley rats

Local inflammation

and microglial

activation

Light source/ wavelength (nm): LED, 675

Operation mode: CW

Output power (W): 0.5

Irradiance (mW/cm2): 40.84

Irradiation time per session (s): 88

Total fluence (J/cm2): 3.594

Energy (J): 35.94

Irradiation approach/sites: transcranial

Number of treatment sessions: 13

Protection against a dose of LPS sufficient to

cause 15% dopaminergic cell death.

Salehpour

et al. (2019a)

Seventy-five Male

BALB/c

mice (8–10-weeks-old)

Restraint stress Light source/ wavelength (nm): LASER, 810

Operation mode: Pulsed

Output power (W): 0.2

Irradiance (mW/cm2): 666

Irradiation time per session (s): 5

Total fluence (J/cm2): 33.3

Energy (J): 1

Irradiation approach/sites: transcranial

Number of treatment sessions: 5

Suppression of neuroinflammatory response

in the cortex and hippocampus by decreased

NF-kB, p38, and JNK levels. In addition,

decreased the serum levels of cortisol,

corticosterone, TNF-α, and IL-6 induced by

restraint stress.

(Continued)
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TABLE 2 (Continued)

Author Animal/Species Model Laser Parameters Outcomes

Salehpour

et al. (2019b)

Ninety Male BALB/c

mice (8–10- weeks old)

Transient global

brain ischemia in

artificially aged

Light source/ wavelength (nm): LASER, 810

Operation mode: Pulsed

Output power (W): 0.2

Irradiance (mW/cm2): 666

Total fluence (J/cm2): 33.3

Energy (J): 1

Irradiation approach/sites: transcranial

Number of treatment sessions: 14

Reduction of iNOS, TNF-α, and IL-1β brain

levels.

Cho et al.

(2020)

5XFAD transgenic male

mice (10 months old)

Aβ and OS1 treated Light source/ wavelength (nm): LED, 610

Irradiance (mW/cm2): 1.7

Irradiation time per session (s): 1,200

Total fluence (J/cm2): 2.0

Irradiation approach/sites: transcranial

Number of treatment sessions: 42

Reduced microglia (Iba-1 immunoreactivity)

in the cerebral cortex.

Cardoso et al.

(2021a)

Sixty-four Male Wistar

rats (4 and 20 months

old)

Aging Light source/ wavelength (nm): LED, 810

Operation mode: CW

Output power (W): 0.1

Irradiance (mW/cm2): 357

Irradiation time per session (s): 150

Total fluence (J/cm2): 535.7

Energy (J): 15

Irradiation approach/sites: transcranial

Number of treatment sessions: 58

Increased cerebral cortex levels of IL-10, IL-6,

and TNFα, and decreased IL-5. Also,

decreased hippocampal levels of IP-10 and

fractalkine.

Yang et al.

(2021a)

Thirty Male and female

Sprague- Dawley rats (11

weeks old)

Neonatal hypoxic

ischemia

Light source/ wavelength (nm): LED, 808

Irradiance (mW/cm2): 350 and 8 on neonatal brain

Irradiation time per session (s): 120

Irradiation approach/sites: on the abdomen of

pregnant rats

Number of treatment sessions: 9

Settled hypoxic-ischemic-induced

neuroinflammation, oxidative stress, and

myeloid cell/astrocyte activation.

Wu et al.

(2021)

Ninety-six APP/PS1

transgenic mice (6

months old)

OS1 treatment Light source/ wavelength (nm): LED, 635

Output power (W): 0.1

Irradiance (mW/cm2): 12.74

Irradiation time per session (s): 75, 150 and 300

Total fluence (J/cm2): 1, 2 and 4

Irradiation approach/sites: in the cells

Number of treatment sessions: 1

Expression of glial fibrillary acidic protein

(GFAP) inhibition.

Vogel et al.

(2021)

Fifty Male Wistar rats Ischemic stroke Light source/ wavelength (nm): LED, 780

Output power (W): 0.150

Irradiance (mW/cm2): 10

Irradiation time per session (s): 120

Total fluence (J/cm2): 10

Irradiation approach/sites: transcranial

Number of treatment sessions: 25

Reduced of TNF-α, IL-1β and IL-6 and

microglial activation.

Wang et al.

(2021)

Two hundred and

seventy-nine Male

Sprague- Dawley rats

Spinal cord injury Light source/ wavelength (nm): LED, 810

Operation mode: CW

Output power (W): 1.0

Irradiation time per session (s): 3600

Irradiation approach/sites: percutaneous

Number of treatment sessions: 14

Inhibition of the activation of neurotoxic

microglia, neuroinflammation alleviation.

(Continued)
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TABLE 2 (Continued)

Author Animal/Species Model Laser Parameters Outcomes

Yang et al.

(2021b)

Thirty-two Male TgF344

rats (2 months old)

A4 and PS1

treatment

Light source/ wavelength (nm): LED, 808

Operation mode: CW

Irradiance (mW/cm2): 350

Irradiation time per session (s): 120

Irradiation approach/sites: transcranial

Number of treatment sessions: 103

Neuroinflammation and oxidative stress

decrease.

Di Paolo

(2021)

Male Sprague- Dawley

rats

Retinal Degeneration Light source/ wavelength (nm): LED, 670

Irradiation time per session (s): 180

Total fluence (J/cm2): 4.5

Irradiation approach/sites: transcranial

Number of treatment sessions: 7

Mitigation of the microglial activation.

Gerace et al.

(2021)

Male and female Wistar

rats (7–9 days old)

Cerebral

Hypoxia/Ischemia

Light source/ wavelength (nm): LED, 808 and 905

Operation mode: CW and pulsed

Output power (W): 1.91

Irradiance (mW/cm2): 620

Irradiation time per session (s): 6, 12 e 24

Total fluence (J/cm2): 3.71, 7.42 and 14.84

Irradiation approach/sites: in the cells

Number of treatment sessions: 1

Attenuation of inflammatory mechanisms.

Hosseini et al.

(2022)

Fifty Male BALB/c mice Aging Light source/ wavelength (nm): LED, 810

Output power (W): 0.2

Irradiance (mW/cm2): 0.457

Irradiation time per session (s): 5, 10 and 20

Total fluence (J/cm2): 8, 16 and 32

Irradiation approach/sites: transcranial

Number of treatment sessions: 24

Decrease of TNF-α and IL-6;

down-regulation of GAP-43 and SYN

inhibition.

Cardoso et al.

(2022)

Ten Male Wistar rats (20

months old)

Aging Light source/ wavelength (nm): LED, 660

Operation mode: CW

Output power (W): 0.1

Irradiance (mW/cm2): 357

Irradiation time per session (s): 150

Total fluence (J/cm2): 535.7

Energy (J): 15

Irradiation approach/sites: transcranial

Number of treatment sessions: 10

Increased levels of IL-1α and decreased levels

of IL-5 in the cerebral cortex. In the

hippocampus, the laser treatment increased

the levels of IL-1α and decreased levels of

IL-5, IL-18, and fractalkine.

Tsai et al.

(2022)

Male Sprague- Dawley

rats

Epilepsy Light source/ wavelength (nm): LED, 808

Operation mode: CW

Output power (W): 0.11

Irradiance (mW/cm2): 133.3

Irradiation time per session (s): 100

Total fluence (J/cm2): 133.3

Energy (J): 11

Irradiation approach/sites: transcranial

Number of treatment sessions: 1

Reduced NSE immunoreactivity in CA3,

GFAP immunoreactivity in CA1, and Iba-1

immunoreactivity in CA3.

Yang et al.

(2022)

Sixty-four Male TgF344

rats (2 months old)

A4 and PS1

treatment

Light source/ wavelength (nm): LED, 808

Operation mode: CW

Irradiance (mW/cm2): 350

Irradiation time per session (s): 120

Total fluence (J/cm2): 42

Irradiation approach/sites: transcranial

Number of treatment sessions: 207

Regulation of glial cell polarization and

inhibition of neuroinflammation.
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after spinal cord injury. In this regard, PBM may be a useful

tool for the treatment of spinal cord injury, in association to

antibody-based approaches to interrupt endothelial-monocyte

interactions, reducing macrophage activation at the injured

spinal cord and also to pharmacological therapies focusing on

immunomodulation and promotion of reparative glia activity

(Orr and Gensel, 2018).

Limitations

Our review presents limitations. The researches highlighted

in this review describe several brain conditions and

methodologies, and the lack of some details about the

PBM parameters used in each work make it difficult to replicate

these approaches. Standardization of the protocols for each

condition would facilitate comparison between the findings of

the studies and could improve the translational application of

PBM therapy.

Conclusion

Neuroinflammation is a pathological condition in a variety

of brain insults and neurodegenerative conditions. Despite

using very different protocols, the reviewed studies showed that

the therapeutic effects of transcranial PBM therapy in animal

models of neurological and psychiatric diseases are related to

the capacity to reduce levels of pro-inflammatory mediators and

increase levels of anti-inflammatory mediators. In addition, no

adverse effects of PBM on the brain were found. Therefore, PBM

could safely fit in to complement current treatments for the

conditions listed above. These results mean that for the current

use of PBM, controlled human studies are needed as a next-

step of research to build on these animal studies. Despite not

excluding human studies as a keyword, no controlled human

studies were discovered in the present review, and all the

included studies were animal studies. Human studies could

bring new perspectives on the anti-inflammatory property of

PBM in brain disorders. The reviewed animal studies together

with consistent human studies of PBM in the treatment of

neuroinflammation can suggest that transcranial PBM is a

promising strategy for the treatment of neuroinflammation-

induced brain diseases.
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