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Longitudinal magnetic resonance imaging (MRI) has an important role in

multiple sclerosis (MS) diagnosis and follow-up. Specifically, the presence of

new lesions on brain MRI scans is considered a robust predictive biomarker for

the disease progression. New lesions are a high-impact prognostic factor to

predict evolution to MS or risk of disability accumulation over time. However,

the detection of this disease activity is performed visually by comparing

the follow-up and baseline scans. Due to the presence of small lesions,

misregistration, and high inter-/intra-observer variability, this detection of new

lesions is prone to errors. In this direction, one of the last Medical Image

Computing and Computer Assisted Intervention (MICCAI) challenges was

dealing with this automatic new lesion quantification. The MSSEG-2: MS new

lesions segmentation challenge o�ers an evaluation framework for this new

lesion segmentation task with a large database (100 patients, each with two-

time points) compiled from the OFSEP (Observatoire français de la sclérose en

plaques) cohort, the French MS registry, including 3D T2-w fluid-attenuated

inversion recovery (T2-FLAIR) images from di�erent centers and scanners.

Apart from a change in centers, MRI scanners, and acquisition protocols, there

are more challenges that hinder the automated detection process of new

lesions such as the need for large annotated datasets, which may be not

easily available, or the fact that new lesions are small areas producing a class

imbalance problem that could bias trainedmodels toward the non-lesion class.

In this article, we present a novel automated method for new lesion detection

of MS patient images. Our approach is based on a cascade of two 3D patch-

wise fully convolutional neural networks (FCNNs). The first FCNN is trained to

be more sensitive revealing possible candidate new lesion voxels, while the

second FCNN is trained to reduce the number of misclassified voxels coming

from the first network. 3D T2-FLAIR images from the two-time points were

pre-processed and linearly co-registered. Afterward, a fully CNN, where its

inputs were only the baseline and follow-up images, was trained to detect

new MS lesions. Our approach obtained a mean segmentation dice similarity
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coe�cient of 0.42 with a detection F1-score of 0.5. Compared to the challenge

participants, we obtained one of the highest precision scores (PPVL = 0.52), the

best PPVL rate (0.53), and a lesion detection sensitivity (SensL of 0.53).

KEYWORDS

brain, MRI, multiple sclerosis, automatic new lesion detection, deep learning,

learning-based registration, cascaded training

1. Introduction

Multiple sclerosis (MS) is an inflammatory disease of the
central nervous system and spinal cord, with its etiology remains
elusive. The progression of the disease starts almost in all cases
with an inflammatory syndrome in the CNS, demyelination,
and axonal loss when the immune system mistakenly starts to
attack the protective myelin sheath in the brain. Due to the
nature of the MS disease, no drugs offer neuroprotection when
progression is observed (Ther et al., 2022), although they help
to decrease the myelin loss ratio. MRI imaging techniques are
one of the first choices to be used in clinical practice as reported
in the 2017 revision of the McDonald criteria (McDonald et al.,
2001; Thompson et al., 2018), because of their ability to detect
the early stages of the disease. MS is detected in patients who
have not developed clinically apparent neurological disabilities
5–10 times more frequently on conventional MRI than in the
clinical assessment of relapses (Sahraian and Eshaghi, 2010).
MS Lesion count and volume are very important indicators
for MS diagnosis and progression and have been associated
with the long-term outcome of the disease (Goodin et al.,
2012; Uher et al., 2017; Ouellette et al., 2018). According to
Rovira et al. (2015), patients with clinical and radiological MS
findings that have not been diagnosed as patients with MS must
undergo a follow-up brain MRI. On longitudinal analysis, new
lesions are considered a high-impact prognostic factor for MS
evolution prediction and risk of disability accumulation over
time (Tintore et al., 2015). Furthermore, there is a need for
a lesion quantification approach for the computation of the
volumetric changes in each segmented lesion between two-time
points for the MS lesion evolution (Köhler et al., 2019). Manual
delineation of lesion load in brain volume should be the first
choice during diagnosis, but a large number of MRI slices and
different scanning modalities prevent it, due to being a time-
consuming procedure with large intra- and inter-rater variability
(Altay et al., 2013; Egger et al., 2017). Therefore, there is an
increase in the demand for automatic methods to provide fast,
more robust, and reliable results, specially for the computation
of lesion volumetric changes between two-time points (Köhler
et al., 2019)

Many methods were proposed to automatically detect the
lesion load in MRI scans (Valverde et al., 2017b; Zhang et al.,

2019) and even to review the improvements in the cross-
sectional field (Lladó et al., 2012; Zeng et al., 2020; Shoeibi
et al., 2021). Detecting changes in longitudinal analysis for new
or enlarging lesions in the follow-up scan compared to the
baseline was done initially with traditional image pre-processing
tools. Based on the intensity subtraction between successive
time points, Sweeney et al. (2013) used logistic regression
coefficients to automatically model changes over time. Also,
the work of Elliott et al. (2013) incorporated both spatial and
temporal information in a two-stage classifier starting with
the extraction of relevant features and brain tissues and used
this information to finally segment lesions. In Battaglini et al.
(2014) and Ganiler et al. (2014) authors relied on thresholding
the subtraction of follow-up and baseline images. By taking
the changes in surrounding tissue in mind and not depending
only on the intensity change, deformation field-based methods
were proposed to detect lesion change (Cabezas et al., 2016;
Salem et al., 2018). Relying on segmenting both time points
independently, Schmidt et al. (2019) extended their work on
cross-sectional (Schmidt et al., 2012) in a new pipeline to provide
lesion evolution patterns. Moreover, Jain et al. (2016), based
on a joint expectation-maximization (EM) framework, used the
subtraction of the two-time points and cross-sectional masks of
follow-up and baseline to get the longitudinal changes. Krüger
et al. (2020) used a shared encoder based on a 3D CNN to
process both baseline and follow-up images. The outputs of the
encoders were concatenated and passed to the decoder to detect
the new or enlarged lesions that appear in the follow-up images.
Most traditional methods depend on the manual threshold or
mask subtraction which is affected by the required registration
process and could not provide results comparable to those of
human raters.

The recent advance in processing methods and shift made
by artificial intelligence and deep learning methods, specially
convolution neural networks (CNNs) and its ability to extract
features, have made them one of the first choices to implement
novel approaches. For instance, the first use of CNN in MS
longitudinal data was proposed by Birenbaum and Greenspan
(2016) to reduce false positives after candidate selection,
obtaining segmentation accuracies near to a human rater.
Inspired by the work of Balakrishnan et al. (2019) to compute
the deformation field (DF), Salem et al. (2020) developed a new
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approach to simultaneously learn the nonlinear DF between
follow-up and baseline and from the learned DF and input
images learn the segmentation mask. Denner et al. (2021) used
the same shared encoder and different decoders to learn the
tasks of segmentation and non-rigid registration. To improve
the lesion map segmentation, Gessert et al. (2020) extended
the 4D context by adding a temporal history and adding
convGRU to aggregate the 3D representations from encoders to
be passed to the decoder for the final prediction map. Despite
the increased demand for new lines in longitudinal studies,
work was still hindered by no reference benchmark for proposed
methods. Most methods mentioned previously were trained and
evaluated on in-house data or no public code was available for
comparisons among methods. To overcome this limitation, the
MICCAI Multiple Sclerosis new lesion segmentation (MSSEG-2)

challenge was proposed, offering a new opportunity to progress
within this research and a public performance benchmark
dataset.

In this article, we present a new pipeline for automated
new lesion detection of MS patient images based on a cascade
of two fully convolutional neural networks (FCNNs). The first
FCNN, a filter for misclassified voxels, is used to discard the
vast majority of negative voxels, while the second one is used to
deal with more challenging voxels that were misclassified from
the first FCNN and with the high unbalancing lesion voxels
compared with background, specially hard in longitudinal data
due to the few change in follow-up images (i.e., few lesions).
The proposed architecture builds on an initial prototype that we
presented at the MSSEG-2 challenge (Commowick et al., 2021).
Other works exist either in other domains as coronary calcium
segmentation (Wolterink et al., 2016), liver lesions in CT scans
(Christ et al., 2016), or even based on CNN models in the MS
domain such as the work of Valverde et al. (2017a), which used a
cascaded CNN in cross-sectional lesion detection. The proposed
pipeline was trained and tested with the MSSEG-2 challenge
dataset. The results were obtained using the Anima1 toolbox.
The same measures for the challenge (detection/segmentation)
are reported and compared with the rest of the participants.

2. Methods

The main basic block in our segmentation pipeline is the
U-Net (Ronneberger et al., 2015; Çiçek et al., 2016), which
proved its performance in segmentation tasks, especially in the
medical area. One of the advantages the U-Net has provided to
the medical community is the ability to use a small sample to
create highly detailed segmentation maps, adopted in different
medical applications and obtaining the best performance in
medical challenges (Siddique et al., 2021). Due to its context-
based learning in the two-path architecture of contracting and

1 https://anima.irisa.fr/

expansion paths, the network training is faster and provides
more accurate results than other segmentation models. In this
article, 3D patches were chosen to benefit from the spatial
contextual information in 3DMRI and let the network deal with
input of any size without the need to re-sample or resize images,
which can suffer from information loss, or lesion deformation,
especially in the smaller ones.

2.1. Cascade-based training

In general, training amodel for the detection of small lesions,
where the number of lesion voxels is much less than non-lesion
voxels, makes the model biased to the non-lesion class. However,
the problem is even more challenging in the new lesion change
detection scenario, where the few changes in the follow-up
images may be insufficient to train the model.

To tackle this class imbalance problem, we propose to
perform the following patch extraction strategy around the
lesion voxels (see Figure 1A):

1. Extract all lesion voxels in the training images,
2. Patches of size 32×32×32 are extracted around every selected

voxel in both baseline and follow-up images and stacked
for the T2-w fluid-attenuated inversion recovery (T2-FLAIR)
modality provided in the MSSEG-2 challenge.

3. FCNN1 is trained with the selected patches (details of the
model available in Section 2.2).

4. Overlapped patches are extracted and tested using the trained
FCNN1 to get the probability Y1. The probability threshold
(>0.5) is used to calculate the lesion map. Also, small lesions
(<3 mm3) are removed.

5. Based on the calculated lesionmap, new patches are extracted
with 32 × 32 × 32 size and step 8 × 8 × 8 around the lesion
area and the misclassified lesion by FCNN1.

6. The second network (FCNN2) is trained from scratch with
the newly extracted patches.

7. The output probability from the trained FCNN1 (Y1) is
averaged with the output of the trained FCNN2 (Y2) to
get the final lesion probability mask. To obtain the final
segmentation mask, we threshold the voxel probability > 0.5
and remove the small lesions (< 3mm3).

2.2. Network architecture

The FCNN used in our work for both FCNN1 and FCNN2

is shown in Figure 1B. It follows the most recent proposed
architecture by Salem et al. (2020). The network is a fully CNN
that takes the T2-FLAIR image modality in both baseline and
follow-up as inputs and outputs of the new lesion segmentation
mask. The network consists of two parts as shown in Figure 1C.
The first part is a U-Net block that automatically learns the DF
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A

B

C

FIGURE 1

Proposed pipeline for new MS lesion detection. (A) Cascade-based pipeline, where the output of the first FCNN is used to select the input

features of the second FCNN. (B) The proposed network consists of a 3D registration block and a 3D segmentation block. The inputs are

baseline/follow-up images of the T2-FLAIR modality. The 3D registration block learns the deformation field (DF) and non-linearly registers the

baseline image to the follow-up image. Afterward, the learned DF and the baseline and follow-up images are fed to the segmentation block,

which performs the final detection and segmentation of the new lesions. The network is trained end-to-end using a combined loss function. (C)

The 3D registration and segmentation architectures (see Salem et al., 2020 for more details).

that non-linearly registers the T2-FLAIR baseline image to the
follow-up space. The learned DF and the baseline and follow-up
images are then fed to a second part of the network, another U-
Net that performs the detection and segments of the new lesions.
The network is trained end-to-end with gradient descent and
simultaneously learns both DF and new lesion segmentation.
This model was updated for the MSSEG-2 challenge dataset and
sent to the challenge (referred to as Vicorob).

3D registration architecture: A 3D registration block is
built for the T2-FLAIR modality following the architecture
explained in Salem et al. (2020). This block is inspired by
VoxelMorph, a learning framework for deformable medical
image registration (Balakrishnan et al., 2019). The registration
block learns the DF that non-linearly registers the T2-
FLAIR baseline image to the follow-up space. It is a fully
convolutional network that follows a U-shaped architecture
(Ronneberger et al., 2015). The U-Net architecture consists of
four downsample (the contracting path) and upsample steps
(the expansive path). The core element (CE) block is a two

3D convolution layer (kernel size = 3 and stride = 1) with K
channels. Each convolution is followed by a LeakyReLU layer.
The number of channels, K, of CE blocks is (64, 128, 256,
and 512) and (512, 256, 128, and 64) for the contracting path
and expansive path, respectively. The spatial transformation
(Jaderberg et al., 2015; Balakrishnan et al., 2019) warps the
baseline image to the follow-up image using the learned DF
and enabling end-to-end training. The LeakyReLU activations
are used instead of ReLU so that the learned DFs can have
both positive and negative values (see Salem et al., 2020 for
more details).

3D segmentation architecture: A 3D segmentation CNN
is also used for segmenting the new lesions. It is a two-branch
network where each branch is a U-Net following the architecture
explained in Salem et al. (2020). The U-Net architecture is
exactly the same as the U-Net used in the registration block,
but uses a ReLU activation layer instead of the LeakyReLU
layer. The inputs of the first branch are the T2-FLAIR image
modality in both baseline and follow-up, while the second
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branch input is the DF learned from the first registration block.
The outputs of the two branches are concatenated before the
classification step.

2.3. Loss functions

The loss function used in this work consists of the
summation of an unsupervised and a supervised loss functions.
The unsupervised loss function controls the registration part
of the network (Balakrishnan et al., 2019). It consists of two
components: a similarity part that penalizes differences in
appearance between the moved baseline and follow-up images
combined with a regularization part that enforces a spatially
smooth deformation and often ismodeled as a linear operator on
the spatial gradients of DF, as stated in Balakrishnan et al. (2019).
The supervised function, LCrossEntropy (CrossEntropy), controls
the segmentation part of the network and penalizes differences
between the segmentation and ground truth. Therefore, the total
loss function LTotal is:

LTotal = LCrossEntropy(Seg,GT)
︸ ︷︷ ︸

Segmentation loss function

+
∑

m∈Modalities

(

Similarity part
︷ ︸︸ ︷

1

N

N
∑

i=1

(Fmi − Bm(DFm)i)
2 +

Regularization part
︷ ︸︸ ︷
∑

p∈DF

‖ ▽DFm(p) ‖
2

)

︸ ︷︷ ︸

Registration loss function

(1)

where Fm, Bm(DFm), and DFm are follow-up image, baseline
image warped by DF (moved baseline), and DF for a modality
m, respectively. Seg and GT are the automatic segmentation and
the ground truth, respectively.

2.4. Model training

To adjust the weights of the cascaded pipeline, each network
is trained individually. For FCNN1 to be more sensitive with
lesion voxels candidate, patches of size 32×32×32 are extracted
around lesion voxels. For FCNN2, the model is trained with
more challenging voxels, which were wrongly classified with
FCNN1. Patches of size 32×32×32 and step size 8×8×8 are
extracted in the area of lesion voxels and incorrectly predicted
lesions from FCNN1.

For training the pipeline, patches are extracted from the
challenge’s 40 patient volumes (the training set), with 25% of
the selected patches used to validate the model after each epoch
and to adjust the hyper-parameters. To adjust the pipeline
weights, training is held for 100 epochs, with early stopping

when no decrease was detected in the model validation loss
after 10 epochs.

2.5. Model testing

When the pipeline training is completed, the weights can be
used with the unseen data. The overlapped extracted patches
from the T2-FLAIR modality in the baseline and follow-up
images and the weights of FCNN1 were used to get the
probability P1, then the same extracted patches are fed to
FCNN2 to get P2. The average of the two probabilities is
computed and threshold by > 0.5 to get a binary mask.
The final binary mask is obtained after removing the isolated
voxels (region volume < 3mm3). Figure 2 shows the cascade
architecture for the testing procedure.

2.6. Implementation details

The proposed method has been implemented in Python2,
using Keras3 with the TensorFlow4 backend (Abadi et al., 2015).
All experiments have been run on a GNU/Linux machine box
running Ubuntu 18.04, with 128 GB RAM. The training was
carried out on a single TITAN X GPU (NVIDIA Corp, United
States) with 12 GB RAM. To promote the reproducibility and
usability of our research, the proposed cascade new MS lesion
detection pipeline will be available for downloading at our
research website.

3. Experimental setup

3.1. Dataset

3.1.1. MSSEG-2

The database used in this article is the MSSEG-2 challenge
dataset. A total of 100 patients with MS were gathered. Only
a 3D T2-FLAIR sequence at the first timepoint and a 3D T2-
FLAIR sequence at a second timepoint (from 1 to 3 years
after the first one) are available. A total of 15 different MRI
scanners are represented (nine scans from three GE scanners
with field strength 1.5T and 3T, 63 scans from six Philips
scanners with field strength 1.5T and 3T, and 28 scans from six
Siemens scanners with field strength 1.5T and 3T). The image
characteristics vary with different resolutions and different voxel
sizes (from 0.5 mm3 to 1.2 mm3). The gathered data are
separated according to 40 scans (11 scans with no new lesions
detected in the second timepoint) for training and 60 (28 scans

2 https://www.python.org

3 https://keras.io

4 https://www.tensorflow.org/
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FIGURE 2

Proposed testing process. The cascade architecture of the trained network is used to segment the unseen data. Patches of size 32×32×32 are

extracted from input modalities (baseline and follow-up) with step size 8×8×8 and fed to both FCNN1 and FCNN2. The average probability mask

from both networks is thresholded with a minimum connected component (<3 mm3) to get the final lesion mask.

with no new lesions detected in the second timepoint) for
testing. All data from GE scanners have been excluded from the
training set.

3.1.2. Pre-processing

The MSSEG-2 challenge dataset is available with a
rigid registration already performed to bring the two-time
points of each patient to a common middle point. For each
patient, the same pre-processing steps were performed
on both baseline and follow-up images. First, a brain
mask was identified and delineated using the ROBEX
Tool (Iglesias et al., 2011). Second, the T2-FLAIR images
underwent a bias field correction step using the N4 algorithm
from the ITK library. Finally, the baseline and follow-up
intensity values from all the training sets were normalized
using a histogram-matching approach based on Nyúl et al.
(2000).

3.2. Evaluation

The MSSEG-2 challenge performance evaluation consists of
two levels as follows:

• New lesion detection: how many individual new lesions in
the ground truth were detected by the evaluated method,
independently of the precision of their contours. F1-score
was chosen for this criteria.

• New lesion segmentation: how well are the lesions in
the ground truth overlapping with those of the evaluated
method. Dice measure has been selected as a score in
these criteria.

The Anima5 toolbox, used by the challenge organizers
for evaluation, is also used in all our evaluations

5 https://anima.irisa.fr/
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(animaSegPerfAnalyzer). Similar to the challenge, the evaluation
of lesion detection and segmentation metrics were calculated
using only 32 patients from the 60 scans provided for evaluation
(only patients with at least one new lesion in the follow-up).
The main metric for evaluating the detection of the new lesions
is the F1-score, but we also computed the precision and recall,
computed as follows:

F1-score =
2 · TP

FN + FP + 2 · TP

PPVL =
TP

TP + FP

SensL =
TP

TP + FN

where PPVL denotes the model precision (the fraction of real
lesions among the predicted ones) and SensL denotes model
sensitivity or recall (the fraction of real lesions that were
predicted). To evaluate the model performance in the cases with
no new lesions detected at the follow-up image, the average
volume (inmm3) of incorrectly predicted lesions is added to the
VolTestedmeasure.

The main metric to evaluate the segmentation is the dice
score (DSC), which is the equivalent of the F1-score on a voxel
level, and is computed as follows:

DSC =
2 · TPs

FNs + FPs + 2 · TPs

In segmentation, TPs and FPs denote the number of voxels
correctly and incorrectly predicted as lesions, respectively, and
FNs represents the number of voxels incorrectly predicted as
non-lesion.

To evaluate the significance of the obtained results, we used
paired t-tests at a 5% level of confidence.

The following models were analyzed, aiming to show the
benefits of the registration step:

• VicorobCascade: This is our main cascade-based model in
which the registration block and segmentation block are
trained simultaneously end-to-end using the loss function
explained in Section 2.3. The T2-FLAIR image modality in
both baseline and follow-up combined with the learned DF
is fed to the segmentation block as first and second inputs,
respectively.

• DemonsDFCascade (a.k.a. the proposed cascade-based
network using the DF obtained from Demons Thirion,
1998): This model does not use the registration blocks
of the proposed network shown in Figure 1B. It uses
only the segmentation block with the T2-FLAIR image
modality in both baseline and follow-up as the first
input. The second input of the segmentation block is

the DF directly computed by registering the baseline to
the follow-up space for the T2-FLAIR modality using the
multi-resolution Demons registration approach from ITK
(Thirion, 1998). This model was used for comparison
with the VicorobCascade model to highlight the impact of
learned-based DF with end-to-end training over the DF
from Demons.

• NoDFCascade (a.k.a. the proposed cascade-based network
without DF): This model does not use the registration
block of the proposed network shown in Figure 1B. It uses
only the segmentation block with just the T2-FLAIR image
modality in both baseline and follow-up as input. This
model is used for comparison with the other two models to
highlight the impact of the addition of the DF in increasing
the detection of new lesions.

In addition to the above models, the non-cascade version
of the three models was added to compare the normal 3D
patch-based training with our proposed cascade-based training
pipeline discussed in Section 2.1. Note that our original
submission to the challenge is referred to here as Vicorob.

4. Results

Table 1 shows the F1-score, DSC, PPVL, and SensL of
the proposed pipeline (VicorobCascade), the two variants
(DemonsDFCascade, NoDfCascade), and the non-cascade
version of each model. Results show the improvement
achieved in evaluation metrics by using the cascaded-based
pipeline over normal (no-cascade-based) training one. In
addition, the results show the benefits of using DF and
also the superiority of our cascade VicorobCascade model,
where deformation fields are learned simultaneously with new
lesion detection.

Figures 3, 4 show visual examples of the improvement of
the VicorobCascade model with respect to the other evaluated
models. In the figures, each column corresponds to the
baseline T2-FLAIR image, the follow-up T2-FLAIR image,
the NoDF, NoDFCascade, DemonsDF, DemonsDFCascade,
Vicorob, and VicorobCascade prediction masks, and the
ground truth mask. Figure 3 shows improvement in the
sensitivity of the model, while Figure 4 shows improvement
in precision.

Analyzing the results per patient, Figure 5 shows
a box plot summarizing the performance of the
VicorobCascade, the two variants (DemonsDFCascade,
NoDFCascade), and the no-cascade-based version of the
three models on the four metrics used in the evaluation
(F1-score, DSC, PPVL, and SensL). The results show
again the superiority of the VicorobCascade over the
other methods.
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TABLE 1 Lesion detection and segmentation results on the MSSEG-2 challenge test set: Comparison between the di�erent models evaluated.

Method F1-score Dice PPVL SensL

Vicorob 36.88± 29.21 35.83± 30.53 34.28± 30.22 49.80± 39.49

VicorobCascade 49.97± 36.75 41.97± 31.51 51.86± 39.31 52.74± 39.62

DemonsDF 31.21± 34.68 29.08± 29.16 35.20± 39.07 36.92± 38.58

DemonsDFCascade 45.59± 35.65 41.84± 30.98 46.51± 38.55 55.70± 37.82

NoDF 23.97± 30.54 25.75± 28.58 34.12± 41.95 27.84± 34.81

NoDfCascade 43.30± 34.24 39.86± 29.19 46.12± 38.55 52.43± 40.58

The results represent the mean F1-score, DSC, PPVL, and SensL computed by the segmentation performance analyzer tool available in Anima (animaSegPerfAnalyzer). Best values are
depicted in bold.

FIGURE 3

Examples of new lesion detection sensitivity improvement in axial slices. Columns correspond to baseline T2-FLAIR, follow-up T2-FLAIR and the

predicted segmentation masks over follow-up T2-FLAIR for NoDF, NoDFCascade, DemonsDF, DemonsDFCascade, Vicorob, and

VicorobCascade, respectively, along with the consensus ground truth (GT) mask, overlaid in green. For the predicted segmentation masks,

green, red, and blue represent true positives, false positives, and false negatives, respectively.

Challenge results

The model previously submitted to the challenge under
Vicorob team (referred to Vicorob) and our new cascade-based

pipelines (VicorobCascade) are compared with the other
challenge participants (29 pipelines for 24 teams submitted to
the challenge). Figures 6, 7 show the boxplot summarizing the
performance F1-score and PPVL per patient, respectively.
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FIGURE 4

Examples of new lesion detection precision improvement in axial slices. Columns correspond to baseline T2-FLAIR, follow-up T2-FLAIR, and the

predicted segmentation masks over follow-up T2-FLAIR for NoDF, NoDFCascade, DemonsDF, DemonsDFCascade, Vicorob, and

VicorobCascade, respectively, along with the consensus ground truth (GT) mask, overlaid in green. For the predicted segmentation masks,

green, red, and blue represent true positives, false positives, and false negatives, respectively.

5. Discussion and future work

In this article, we have proposed a novel automated new
lesions detection approach in longitudinal brainMR images. The
proposed patch-wise pipeline relies on a cascade of two identical
FCNNs, where the first network is trained to be more sensitive
revealing possible candidate lesion voxels, while the second
network is trained to reduce the number of misclassified voxels
coming from the first network output. As mentioned in Salem
et al. (2020), themodel is trained end-to-end and simultaneously
learns both the DF and the appearance of new lesions. As the DF
is learned inside the network and not computed separately using
classic non-rigid registration methods, the execution time of the
network on a testing image is reduced compared to the time
required by the state-of-the-art methods (Cabezas et al., 2016;
Salem et al., 2018) from 2 to 11 min according to the test image
resolution.

Regarding the end-to-end training, we trained the
proposed model (VicorobCascade), two other variants
(DemonsDFCascade and NoDFCascade), and the no-cascade-
based version of the three models. Regarding the results without

cascading, in terms of F1-score, DSC, and SensL, the Vicorob
model was significantly better than all the other methods
(p < 0.05). The F1-score improved by 5.67% compared to the
DemonsDF and by 12.91% with respect to the NoDF model.
In terms of PPVL, however, the performance of the Vicorob
model was similar to that of the DemonsDF, although both
models provided better results than the NoDF model. Notice
that the model trained without any DF (NoDF) detected new
lesions with a sensitivity of 27.84% and an F1-score of 23.97%.
This result shows, as previously discussed in Salem et al. (2020),
that the addition of DF helps to increase the detection of new
lesions. However, the results also show that training the model
end-to-end, simultaneously learning both the DF and the new
lesions (Vicorob pipeline), performs better than using DF
computed by classic deformable registration methods such as
Demons (Thirion, 1998).

Regarding the cascade-based training, the proposed pipeline
using two FCNN outperforms the results obtained with the
baseline (no-cascade-based) approaches. The reported results
show that the cascaded proposed pipeline outperformed
the baseline (no-cascade-based) pipeline in all the proposed
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FIGURE 5

Box plot summarizing the per-patient performance of the VicorobCascade, the two variants (DemonsDFCascade, NoDFCascade), and the

no-cascade-based version of the three models on the four metrics used in the evaluation (F1-score, DSC, PPVL, and SensL).

Vicorob, DemonsDF, and NoDFmodels for all the segmentation
and detection metrics and showed also the superiority of
our VicorobCascade model. The F1-score was significantly
improved by 13.9%, 14.38%, and 20.85% for the Vicorob,
DemonsDF, and NoDF models (p < 0.05), respectively.
Moreover, Figure 3 shows a sensitivity improvement in the
evaluated models. Notice that there is an increase in the
number of true positive voxels (green ones) and decreasing
in the number of false negative voxels (blue ones) between
the non-cascaded and the cascaded-based models. Figure 4
shows a precision improvement for the VicorobCascade model.
Notice also that there is a decrease in the number of false
positive lesions compared to the other models. Regarding
the cases with no new lesions, VolTested decreased from
88.40 mm3 for the Vicorob model to 11.56 mm3 for the
VicorobCascade model.

Regarding the challenge results and compared to the
challenge participants, our model (VicorobCascade) obtains
one of the highest precision scores (PPVL = 0.52), the best
PPVL rate (0.53), and a lesion detection sensitivity (SensL of
0.53) being superior to that of one of the challenge’s human
raters. Analyzing the results per scanner, the VicorobCascade
model provided an F1-score of 0.22, 0.54, and 0.51 for GE,
Philips, and Siemens scanners, respectively. Notice that the
lower results for the GE scanner are due to the fact that
data from this particular scanner were not available in the
MSSEG-2 training set. Within this analysis, we also observed
that the cascade-based approach obtained better results than
the no-cascade one for the three scanners. Notice that there
is a limitation in dealing with different image domains when
data are not available. Furthermore, a clinical correlation with
disability measurements could enrich the clinical evaluation
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FIGURE 6

F1-score per-patient analysis. F1-score for the MSSEG-2 challenge experts, challenge teams’ results, and our cascade-based pipeline

(VicorobCascade).

FIGURE 7

PPVL per-patient analysis. PPVL for the MSSEG-2 challenge experts, challenge teams’ results, and our cascade-based pipeline (VicorobCascade).

The VicorobCascade model got one of the best PPVL values between teams after the Empenn team.

of the automated segmentation results. Unfortunately, the

MSSEG-2 challenge dataset does not include these clinical

disability metrics. This will be taken into account in our future

research work.
In conclusion, we have presented a novel approach for

longitudinal analysis in patients with MS based on a cascade

of two FCNNs, where the first one is able to find the potential

candidates and the second one is optimized to detect new
lesions and reduce the number of false positives. The obtained

results indicate that the proposed end-to-end training model

of the deformation fields along with the detection of new

lesions combined within the cascade-based training pipeline

increases the accuracy of the pipeline. Given the sensitivity

and limited number of false positives, we strongly believe that

the proposed method has the potential to be used in clinical

studies in order to monitor the progression of the disease. We

plan to release the proposed method for downloading at our
research website.
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