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Aim: Alzheimer’s disease (AD) and ischemic stroke (IS), two major neurological
diseases, are suggested to be associated in clinical and pathophysiological
levels. Previous studies have provided some insights into the possible genetic
mechanisms behind the correlation between AD and IS, but this issue is still
not clear. We implemented transcriptomic analysis to detect common hub
genes and pathways to help promote the understanding of this issue.

Materials and methods: Four gene expression profiling datasets (GSE16561,
GSE58294, GSE63060, and GSE63061) of peripheral whole blood, which
contain 108 IS samples, 284 AD samples, and 285 matched controls, were
employed to detect differentially expressed genes (DEGs) for AD and IS,
which were further analyzed for shared biological pathways, candidate drugs,
and transcription factors. Protein-protein interaction (PPI) network and drug-
target interaction analysis were applied to identify hub genes and drug targets,
respectively. Result verification was done with other independent datasets
(GSE37587, GSE46480, and GSE140829). The difference in proportions of
various immune cells in the peripheral blood of AD and IS patients were
evaluated using CIBERSORT.

Results: We identified 74 DEGs and 18 biological processes with statistical
significance shared by AD and IS, 9 of which were immune-related pathways.
Five hub genes scored high in the topological analysis of the PPl network,
and we also found eight drug target genes and candidate drugs which were
associated with AD and IS. As for immunological changes, an increase in the
proportion of MO macrophages was found in the peripheral circulation of
both AD and IS patients, and SOD1 expression was significantly correlated
with this change.

Conclusion: Collectively, the common DEGs and shared pathways found in
this study suggest a potential shared etiology between AD and IS, behind
which immune system, particularly the MO macrophage elevation, might

01 frontiersin.org


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1008752
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1008752&domain=pdf&date_stamp=2022-11-18
https://doi.org/10.3389/fnins.2022.1008752
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1008752/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Liu et al.

10.3389/fnins.2022.1008752

have important roles. While, the shared hub genes, potential therapeutic
gene targets and drugs reported in this study provide promising treatment
strategies for AD and IS.

transcriptomic analysis, ischemic stroke, Alzheimer's disease, shared biological
dimensions, immune system

Introduction

(AD), of the
neurodegenerative diseases, is characterized by memory

Alzheimer’s  disease one foremost
loss and gradual impairment in language, praxis, and other
aspects of cognition, leading to dementia. It is acknowledged
that genetic and environmental factors interact with each other
during the onset and development of AD (Wicinski et al., 2019).
Ischemic stroke (IS) is a major public health problem with
high prevalence and disability and mortality rate (Virani et al.,
2020). The pathogenesis behind is heterogenous, including
atherosclerosis, disturbance in blood regulation, genetic
disorders, etc. In recent years, numerous studies have explored
the loci and genes associated with these two complicated
diseases (Lucke-Wold et al., 2015; Cui et al., 2018; Wang et al,,
2021). Despite the seemingly different etiopathogenesis, many
clinical studies have indicated potential association between
AD and IS at multiple levels (Zhou et al., 2015; Wang et al,,
2020, 2021; Pinho et al., 2021; Zhang et al, 2021). Firstly,
the coexistence of these two diseases is more frequent than
by chance, as a population-based study in 2013 showed that
the prevalence of IS was significantly higher in AD patients
(Tadecola, 2016). Besides, AD and IS share some common risk
factors such as old age, obesity, hypertension, and stroke is
known to advance AD development (Breijyeh and Karaman,
2020).

Furthermore, with the progress in sequencing technology,
increasing research is exploring the genetic and molecular
mechanisms behind these diseases. Studies showed that APOE
¢4, a verified allele related to AD, increased concomitance of AD
and IS, and presented a positive dose-response association with
the IS (Khan et al.,, 2013). The amyloid-beta (AB) deposition
in brain parenchyma and vessels is the pathology for AD and
cerebral amyloid angiography, respectively, while the latter is
one of the causes for young-onset and recurrent IS (Vijayan and
Reddy, 2016; Dong et al., 2018). Mutation in genes influencing
AP (e.g., PSENI, APP) formation could be the causes for both
AD and IS (Dong et al., 2018). The genome-wide association
study (GWAS) is suitable for exploring the comprehensive
effects of genetic factors behind complicated diseases. Cui et al.
(2018) summarized GWAS datasets and discovered several
shared novel functional pathways linking AD and IS, including
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immune process and signaling transduction. Wei et al. (2019)
found that SNPs previously shown to function in immune
system might underlie the common pathogenesis for AD and
IS. Our previous studies demonstrated post-IS inflammatory
reactions including the differentiation and activation of T cells
and mononuclear cells, which were also involved in sporadic AD
by previous GWASs (Liu W. et al., 2022).

Despite the above clinical and genetic evidence, it is still very
difficult to clarify the pathogenesis underlying the relationship
between IS and AD. A genome-wide transcriptome study
(GWTS) could provide new perspectives, identifying more
relevant pathways. However, few GTWSs have explored the
shared biological pathways and transcriptomic changes between
IS and AD. Therefore, we applied analyses on the following
aspect, protein-protein interaction (PPI) network, functional
pathway enrichment, drug targets, transcript factors, and
immune infiltration, based on common differentially expressed
genes (DEGs) in IS and AD patients. The sequential workflow of
our research is presented in Figure 1.

Materials and methods

Datasets employed in this study

The microarray datasets used in this study were obtained
from the GEO database.! The criteria for retrieval were:
(A) samples were from human peripheral whole blood
samples, (B) gene expression was profiled, (C) datasets
contained both patients and healthy people without a history
of stroke nor dementia, (D) all IS patients were clinically
diagnosed radiographically (with magnetic resonance imaging
or computed tomography), (E) all AD patients were diagnosed
according to the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association criteria. In
particular, all the non-IS or non-AD samples included in
the datasets were deleted.

1  http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Flowchart of the study. Microarray data from whole peripheral blood of patients with Alzheimer’s disease (AD) or ischemic stroke (IS) were
obtained and analysis for differentially expressed genes (DEGs) between patients and healthy controls was performed. Protein-protein
interactions network (PPI-Net), drug targets, functional enrichment, and immune infiltration analysis were applied to common DEGs between
AD and IS, to explore shared mechanism between these two diseases. Hub genes obtained by PPI-Net analysis and potential drug targets were

validated with test dataset of AD and IS.

To ensure the consistency and completeness of the datasets,
we manually identified relevant literature using keywords filters
and applied R programming language (version: 4.1.3) for
subsequent analysis. Finally, IS datasets [GSE16561 (Barr et al.,
2010; O’Connell et al., 2016, 2017) and GSE58294 (Stamova
et al, 2014)] and AD datasets [GSE63060 and GSE63061
(Sood et al,, 2015)] were included as training sets and were
merged, respectively, and batch effects were corrected using the
“combat” function in the SVA package (version: 3.38.0). Next,
we normalized the merged datasets and adjusted for covariates
using the “Normalizebetweenarrays” and “removeBatchEffect”
function in the limma package (version: 3.46.0). To validate hub
genes and drug targets, we downloaded GSE140829 (Cooper
et al., 2018) dataset as validation set for AD, and GSE37587
(Barr et al., 2015), GSE46480 (Issa et al., 2016) datasets for IS
which conformed to the above criteria. Table 1 summarizes the
included datasets.

Identification of differentially
expressed genes and functional
annotation

To identify differentially expressed genes (DEGs) in
peripheral blood samples from AD/IS patients and controls,
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we performed differential expression analysis using the limma
package (version: 3.46.0), controlling for age. The threshold for
screening DEGs was | logy FC (fold change)| > 0.5 and false
discovery rate (FDR) < 0.01. Common DEGs for AD and IS
were then imported to functional annotation.

Enrichment analysis of Gene Ontology (GO) and Disease
Ontology (DO) was performed on common DEGs using the
clusterprofiler package (version: 3.18.1). Kyoto Encyclopedia
of Genes and Genomes (KEGG)? and gene set enrichment
analysis (GSEA) were further carried out for common DEGs.
The threshold for significance of the above enrichment analysis
was set at FDR < 0.05. The background used for biological
functional enrichment analysis were genes expressed in any
samples of AD and IS in training process.

Identification and validation of hub
genes and drug targets

Protein function prediction is the key step in biology
research and drug discovery. In order to explore the functional
interaction between the common DEGs of AD and IS,

2 http://www.genome.jp/kegg/
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TABLE 1 All data sets used in this study contain a total of 1,273 samples, among which there were 650 cases and 623 controls.

Data sets Data Sample type References Category Phenotype GPL
(GEO ID)
Case Control
GSE16561 39 24 Peripheral blood Johnston et al., 2018; Train Ischemic stroke GPL570
Kaushal et al., 2015;
Khan et al., 2013
GSE58294 69 23 Peripheral blood Lautrup et al., 2019 Train Ischemic stroke GPL570
GSE37587 68 0 Peripheral blood Lietal., 2019 Test Ischemic stroke GPL6883
GSE46480 0 98 Peripheral blood Issa et al., 2016 Test Control GPL570
GSE63060 145 104 Peripheral blood Lee et al., 2010 Train Alzheimer’s disease* GPL6947
GSE63061 139 134 Peripheral blood Lee et al,, 2010 Train Alzheimer’s disease* GPL10558
GSE140829 190 240 Peripheral blood Cooper et al., 2018 Test Alzheimer’s disease* GPL15988

All samples were collected in the peripheral blood tissue.

*All the MCI samples included in the datasets were deleted, and the Case column only referred to AD samples.

PPI network analysis was adopted, which was provided by
the STRINGdb package (version: 2.6.5) with a confidence
score of > 0.7 [0,1]. The information of PPI network
was further imported into Cytoscape software (version:
3.9.1) for subsequent analyses. We used Cytohubba app® in
Cytoscape for network topology analysis to detect hub genes,
through which eleven circulation methods were used to score
and rank all DEGs.

Drug and Drug_link datasets (Release Version: 5.1.9) were
downloaded from the DrugBank database.* The intersection
of the common DEGs and drug target genes (DTGs) was
then used to generate genes targeted by drugs and potential
drugs that might contribute to phenotypes. Validation datasets
were further used to examine the robustness of hub genes
and drug targets.

Transcription factors analysis

The common DEGs were imported into Cytospace for
network analysis of transcription factors (TFs). RcisTarget
package was used to acquire information of TFs and gene
targets, and adjusted P-value < 0.05 was considered significant.
Subsequently, we verified the expression levels of these TFs in
validation datasets for AD and IS with ¢-test.

Immune cell infiltration evaluation
CIBERSORT tool analyzing immune system (version:

0.1.0) was used to generate immune cell profiles for
all samples by estimating relative subsets of RNA

3 https://apps.cytoscape.org/apps/cytohubba
4 https://go.drugbank.com/releases/latest
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transcripts. The CIBERSORT resulted in an expression
matrix of 22 immune cells in all samples of the training
dataset for AD and IS. We then used t-test to analyze
the differences in immune cell components between
AD/IS patients and healthy controls. Finally, Spearman’s
correlation analysis was performed between these selected
genes (hub genes and drug targets) and significantly
differentiated immune cells. The ggplot2 package (version:
3.3.3) and ggpubr package (version: 0.4.0) was used to
generate lollipop chart.

Results

Identification of separate and common
differentially expressed genes of
Alzheimer's disease and ischemic
stroke

To identify differentially expressed genes shared by
AD and IS, we initially searched the Array Express and
NCBI GEO databases for expression data from whole
peripheral blood of AD/IS patients and healthy controls.
Seven independent studies that met our inclusion criteria
were obtained (see Section “Materials and methods” and
Tables 1-3).

First, a dataset consisting of 108 IS patients and
47 matched controls was generated by merging two IS
datasets: GSE16561 and GSE58294 (Table 2). To ensure
data consistency, batch effects were controlled and the
different subsets were normalized. The evaluation results
showed that data pre-processing was effective and reliable
(Supplementary Figures 1, 2). Next, differential analysis of
gene expression was performed by controlling age, which
is significantly different between two groups (Table 2).
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Total sample, Stroke, N = 108 (69.7%), Control, N =47 (30.3%), Statistics/df P-value
N (%) N (%) N (%)
Gender (% female) 80 (51.6%) 55 (50.9%) 25 (53.2%) X2 0.0673/1 0.7953
Age, years, mean & SD 66.7 + 16.86 72.6 +12.09 58.9 £ 7.51 t—13.90302/135 <0.001
Race (% white) 126 (81.3%) 84 (77.8%) 42 (89.3%) X2 2.88932/1 0.0892
Hypertension 93 (60.0%) 70 (64.8%) 23 (48.9%) X2 3.44037/1 0.0636
Diabetes 30 (19.4%) 23 (21.3%) 7 (14.9%) X2 0.8601/1 03537
Dyslipidemia 52 (33.5%) 36 (33.3%) 16 (34.0%) X2 0.00739/1 0.9333
TABLE 3 Clinical characters of the merged AD training data sets.
Total sample, AD, N =284 (55.4%), Control, N =238 (44.6%), Statistics/df P-value
N (%) N (%) N (%)
Gender (% female) 327 (62.6%) 184 (64.8%) 143 (60.1%) X2 1.2247/1 0.2684
Age, years, mean % SD 70.3 £13.07 69.9 & 13.19 70.5 £ 12.39 t —0.678/513 0.4981
Race (% white) 516 (98.8%) 281 (98.9%) 235 (98.7%) X2 0.0475/1 0.8275
Finally, 537 DEGs for IS and 496 DEGs for AD were degranulation  (Supplementary  Figure  3).  These
identified between patients and healthy controls (see results were consistent with those in GO enrichment
Section “Materials and methods” and Figures 2A,B), analysis  considering  innate  immune  involvement.
and we found 74 common DEGs between AD and IS These results provide evidence that immune-related

(Figure 2C).

Functional enrichment analysis of
common differentially expressed genes

Gene ontology and disease ontology enrichment analysis
were performed to identify the biological pathways and diseases
associated with the shared DEGs. GO enrichment analysis
explored the biological processes, cellular components,
18

pathways achieved statistical significance, including antigen

and molecular functions. For biological processes,
processing and presentation, T cell differentiation and
activation, cell activation involved in immune responses
and mononuclear cell differentiation and so on, half of
which were noticeably associated with
While

vesicle,

immunological

changes. for cellular components, ribosome,

endocytic ficolin-1-rich  granule, mitochondrial
protein-containing complex, and vesicle membrane were
involved. The molecular function significantly associated
with DEGs of

ribosome. When performing DO Alzheimer’s

common was structural constituent
analysis,
and heart disease
More
for GO and DO enrichment analysis is presented in

Figure 3.

disease, tauopathy, atherosclerosis,

were related with common DEGs. information

the GSEA
enriched  molecular

Furthermore, results demonstrated

the
were cellular

that related to
DEGs

innate

pathways

responses to stress and stimuli,

immune system, translation, and neutrophil
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biological processes might play important roles in the
connection of AD and IS.

Identification of hub genes and drug
targets

Through the PPI and network topology analysis for
the common DEGs, we explored the hub genes that play
indispensable roles in the shared biological mechanisms of
AD and IS (Figure 4A). According to the eleven ranking
methods provided by CytoHubba app to score these genes
in the main PPI module, RPS3, RPS15, PSMB6, MRPL17,
and MRPL24 were identified as the hub genes (Figure 4B).
These hub genes can be potential biomarkers, which may
also provide new therapeutic targets. We further looked into
whether there were drugs that can mitigate the process of
gene expression differentiation (Supplementary Figure 4). By
searching for interactions across three gene sets, DEGs of
AD, DEGs of IS and DTGs, eight DEGs interacting with two
known drug targets were identified, which were ANXA1, SODI,
LDHB, CASP1, PRDX1, CD3D, NDUFB3, and TXN (Figure 5A).
The top ten drugs targeting these common DEGs were
Fostamatinib, Artenimol, Zinc, Stiripentol, NADH, Phenethyl
Isothiocyanate, Acetylsalicylic acid, Minocycline, Emricasan,
and Amcinonide (Figure 5B). We validated these hub genes
and drug targets with GSE37587, GSE46480, GSE140829
datasets, and results showed consistency (Supplementary
Figure 5).
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FIGURE 2
(A,B) Volcano plot demonstrating an overview of the differentially expressed genes in AD and IS. The threshold in the volcano plot was
-lg(adjusted P) > 2 and |log; fold change| > 0.5; red dots indicate significant differentially expressed genes. (C) Venn diagram demonstrates the
common DEGs of AD and IS. Red, purple, and pink represent significant DEGs of IS, AD, and both AD and IS, respectively.

Identification of regulatory transcript
factors

Based on the RcisTarget package, we found ten possible TFs
regulating the expression of these common DEGs (Figure 6A),
5 TFs of which were differentially expressed in the peripheral
blood of AD and IS patients (Figure 6B). Among these TFs, FOS
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expression was up-regulation, while PRDM4, HSF2, HOXB2,
and ETSI were down-regulation.

Immune changes

Given the enrichment of the common DEGs on immune-
related pathways, we applied the CIBERSORT classification
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algorithm on gene expression profiles to demonstrate changes of
the immune system in AD and IS. The proportions of M2-type
macrophages, M0-type macrophages, eosinophils, regulatory T
cells, gamma-delta T cells, and CD4" memory resting T cells,
and CD4" naive T cells were significantly different between
AD patients and healthy controls (Figure 7A). Meanwhile, the
proportions of MO-type macrophages and CD4™ naive T cells
were also significantly different in IS cohort (Figure 7B), of
which, MO-type macrophages were increased in AD and IS
patients, and CD4 " naive T cells were increased in AD patients
but decreased in IS patients.

Correlation analysis indicated a close relationship between
hub genes, DTGs and MO-type macrophages (Figure 7C).
NUPS88, CLNSIA, GTF2A2, ANXA1, SODI, PRDX1, and CD3D
were negatively correlated with MO-type macrophages in AD
patients (r < —0.3, P < 0.001), while GTF2H5, SOD1, and LDHB
were negatively correlated with MO-type macrophages in the IS
patients (r < —0.3, P < 0.001). Our analysis showed that SOD!
was associated with the change of MO-type macrophages in both
AD and IS patients.
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Discussion

Although large-scale GWASs of AD and IS have identified
a set of risk loci and pleiotropic genes with genome-wide
significance (Malik et al., 2018; Jansen et al., 2019), no shared
genetic determinants between AD and IS have been reported
(Traylor et al., 2016). Previous pathway-based association tests
using large-scale GWAS summary datasets for AD and IS have
found come common biological pathways shared by AD and IS
(Cui et al., 2018). In this study, we analyzed the peripheral blood
transcriptome of AD and IS patients using gene expression
profile datasets from GEO (training datasets for IS: GSE16561
and GSE58294, for AD: GSE63060 and GSE63061; validation
datasets for IS: GSE37587 and GSE46480, for AD: GSE140829)
to search for supportive evidence for their relevance.

Through a comprehensive analysis, we revealed a total of 74
common DEGs shared by AD and IS. To ensure the biological
meaning of the common DEGs, we randomly selected 600
genes from the expressed gene sets of AD and IS separately
and repeated for 1,000 times (Supplementary Figure 6). The
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FIGURE 4
PPI network of common DEGs shared by AD and IS. (A) The circle nodes represent DEGs and edges represent the interactions between nodes.
The PPI network has 65 nodes and 564 edges. (B) According to the 11 ranking methods provided by CytoHubba app, top 10 genes by at least 6
methods are referred as hub genes. Five hub genes were italicized and bold and the scores from all methods were labeled in table.

number of overlapped genes between AD and IS ranged from cellular components, ribosome, endocytic vesicle, ficolin-1-rich
6 to 32, obviously less than 74 (t-test, P-value < 0.001). GO granule, mitochondrial protein-containing complex, and vesicle
and DO enrichment and GSEA analysis were further conducted membrane were the top results. The structural constituent
for these common DEGs. For biological processes, the top GO of ribosome is the only GO term which was affected by
terms were associated with immune system changes, such as the common DEGs in molecular function experiment. The
T cell differentiation and activation, cell activation involved in diseases enriched by DO analysis were mainly Alzheimer’s
immune responses, and mononuclear cell differentiation. For disease, tauopathy, atherosclerosis, and heart diseases. The
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results of GSEA suggested that cellular responses to stress and
stimuli, innate immune System, translation, and neutrophil
degranulation were the most significantly enriched pathways.
Therefore, the crucial mechanisms behind the correlation
between AD and IS might focus on the immune system. As
is known to all, a wide variety of immune cells exist in the
brain and dysregulation of the innate immune system contribute
to the onset and development of many neurological diseases,
AD and IS included (Mastorakos and McGavern, 2019; Mezey
et al,, 2021). These results conform to previous studies. Cui
et al. (2018) identified immunological processes in the shared
biological pathways between AD and IS based on large-scale
GWAS summary data. Other studies have also demonstrated the
essential roles of immune system in AD and IS. Furthermore,
we used CIBERSORT classification algorithm to conduct an
immune cell enrichment analysis based on the merged datasets.
We found that MO-type macrophages were both upregulated
in AD and IS patients, however, CD4+ naive T cells were
upregulated in AD patients but down-regulated in IS patient.
Our results agree with those of Liu C. et al. (2022) and Wang
X. et al. (2022), which showed that resting CD4 T memory cells
were significantly down-regulated whereas MO macrophages
were significantly up-regulated in IS. This indicated a putative
relationship between immune system and IS. Recent studies
have elucidated that M2 macrophages, CD4 naive T cells,
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regulatory T cells, eosinophils, gamma delta T cells, resting mast
cells, MO macrophages and activated CD4 memory T cells are
closely correlated with AD, which further verified our discovery.
Correlation analyses confirmed a strong relationship between
hub genes, DTGs, and MO-type macrophages. This study
identified a common gene, SODI to be negatively correlated
with MO-type macrophages in AD and IS patients, suggesting
its potential role in the shared immune changes of AD and IS.
Further PPI network analysis was constructed to identify
the most significant clusters of DEGs and understand the
biological characteristics of the proteins. Here, we identified five
hub genes based on topological measures that might suggest
common pathogenesis behind AD and IS. Both RPS3 and
RPS15 encode a ribosomal protein, which is part of the 40S
subunit. RPS3 induces neuronal apoptosis by interacting with
the E2F1 TF and inducing the expression of pro-apoptotic
proteins BCL2L11/BIM and HRK/Dp5 (Lee et al, 2010),
while the phosphorylation of RPSI5 is related to LRRK2
neurodegeneration and neurotoxicity (Martin et al, 2014).
Wu et al. (2022) suggested that RPS3 and RPS15 may be
potential targets and treatment for early diagnosis of AIS.
PSMB6, also known as 20S proteasome subunit beta-1, codes
for the B1 core catalytic subunit of the proteasome (Vriend
and Marzban, 2017). A study showed that PSMB6 was a critical
regulator of circadian rhythm, which may also have a direct or
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indirect effect on neurodegenerative diseases (Beker and KiliC,
2020). Mitochondrial ribosomal protein large 17 (MRPL17)
and Mitochondrial ribosomal protein large 24 (MRPL24) are
one of the 82 protein components of mitochondrial ribosomes,
playing an essential role in the mitochondrial translation
process, but their relationship with neurodegenerative diseases
is currently unclear (Nottia et al., 2020). In addition, we found 10
possible TFs regulating the expression of these genes. By further
verification, we found that five TFs are differentially expressed
in AD and IS, including FOS, PRDM4, HSF2, HOXB2, and
ETS1. They coordinately participated in the regulation of two
hub genes (PSMB6, RPL17).
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We next detected the candidate drugs for AD and IS
based on the intersection across three gene sets, DEGs_AD,
DEGs_IS, and DTGs. Here, we identified eight DEGs, including
ANXAI, SODI, LDHB, CASP1, PRDX1, CD3D, NDUFB3, and
TXN. Overwhelming evidence has confirmed the protective
role of ANXAL in neuronal apoptosis during cerebral ischemia
(Zhao et al,, 2015; Li et al., 2019). Recently, Miriam Ries et al.
discovered that ANXA1 could restore cerebrovascular integrity
and reduce amyloid-f and tau. Moreover, ANXA1 has been
reported to have therapeutic potential in ischemia-reperfusion
injury (Ansari et al., 2018) and protecting against the breakdown
of the blood-brain barrier in AD (Park et al., 2017). SODI has
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(C) Correlation between hub genes and drug target genes, and MO macrophages. The red dashed lines represent +0.3 and —0.3.

previously been reported to correlate with neurodegenerative
diseases, such as amyotrophic lateral sclerosis (Renton et al.,
2014) and AD (Bader et al, 2020). Many studies have
demonstrated that CASPI may be a therapeutic target against
cognitive impairment and inflammation in AD (Kaushal et al.,
2015; Gu et al, 2021; Flores et al, 2022). In addition,
the inhibition of CASPI has proven to relieve cerebral
ischemia in a murine model by targeting the canonical
inflammasome pathway of pyroptosis that is important for
neuronal death in acute IS (Li et al, 2020). Drugs targeting
these genes include Fostamatinib, Artenimol, NADH, Phenethyl
Isothiocyanate, Acetylsalicylic acid, Minocycline, Emricasan,
and Amcinonide. The recent study has confirmed NADH
can not only improve cellular energy metabolism after IS,
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but also can inhibit oxidative stress by decomposing into
NADT™, protect mitochondrial function, and reduce cerebral
ischemia-reperfusion injury (Wang X. X. et al, 2022). As
the NAD' donor, NADH further appeared as a protective
agent for AD because of the indispensable role of NAD™
depletion and impairment of NAD'-dependent pathways in
AD pathophysiology (Lautrup et al., 2019). Acetylsalicylic acid,
also known as aspirin, an anti-inflammatory medication, has
been verified to be useful in prevention cognitive deterioration
due to its anti-thrombotic and anti-inflammatory properties.
It has shown promising performances for treating IS and AD
in multiple pre-clinical and clinical trials (Wang et al,, 2013;
Johnston et al., 2018, 2020; Weng et al., 2021). Minocycline,

an antibiotic, has been proven to have neuroprotective
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effects in AD and IS. Studies have reported that Minocycline
could not only mitigate Alzheimer’s-like pathology and improve
cognition, but also exhibit similar promise in the treatment
of IS when administered alone or in combination with
thrombolyticse (Campbell et al, 2011; Fagan et al, 2011).
Emricasan is a caspase inhibitor and is currently used for
several liver diseases in clinical trials (Shiffman et al., 2010). The
findings of Tian et al. (2018) firstly lay a basis for the use of
emricasan to treat IS.

This study has the following limitations. Firstly, this study
was conducted basing on bioinformatic and correlational
analyses, and differences in microarray platforms, blood
collection, and RNA extraction methods, statistical methods
could produce potential bias for the results. Besides, the size
of the datasets used in this study might not be large enough
to generate very powerful results. More large cohorts of AD, IS
patients are needed, and future cellular or animal experiments
are expected to provide convincing proofs for our results.
Therefore, the above findings should be taken with carefulness.
Nevertheless, this study provides new insights into the shared
pathogenesis behind AD and IS, suggesting the important role
of immune changes and several promising genes for the onset
and development of these two diseases.
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