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Different neuroimaging methods can yield different views of task-

dependent neural engagement. Studies examining the relationship between

electromagnetic and hemodynamic measures have revealed correlated

patterns across brain regions but the role of the applied stimulation or

experimental tasks in these correlation patterns is still poorly understood.

Here, we evaluated the across-tasks variability of MEG-fMRI relationship using

data recorded during three distinct naming tasks (naming objects and actions

from action images, and objects from object images), from the same set of

participants. Our results demonstrate that the MEG-fMRI correlation pattern

varies according to the performed task, and that this variability shows distinct

spectral profiles across brain regions. Notably, analysis of the MEG data

alone did not reveal modulations across the examined tasks in the time-

frequency windows emerging from the MEG-fMRI correlation analysis. Our

results suggest that the electromagnetic-hemodynamic correlation could

serve as a more sensitive proxy for task-dependent neural engagement in

cognitive tasks than isolated within-modality measures.
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Introduction

Functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG) are widely used non-invasive
neuroimaging methods that both have their own strengths.
FMRI measures hemodynamic modulations resulting from
multiple neural and vascular phenomena, and yields an accurate
three-dimensional map of brain activity with a good spatial
resolution. However, its temporal precision is modest due
to the sluggishness of the hemodynamic response. MEG
measures the magnetic field elicited by electric activity, and
possesses a temporal resolution in the millisecond scale.
The distribution of cortical activity yielded by MEG is
relatively smooth.

Thus, depending on the importance of the spatial and
temporal aspects of brain activity to the research question
at hand, either method may be the preferred option. It has
also been proposed that combining MEG and fMRI would
allow one to obtain accurate spatiotemporal maps of brain
activity (Dale et al., 2000; Henson et al., 2010). Such approaches
have, for example, utilized fMRI to spatially constrain the
MEG source-level estimates, either explicitly (Matchin et al.,
2019) or in a probabilistic manner (Cottereau et al., 2015;
Wang and Holland, 2022). Another principle that has been
applied to combine electrophysiological and hemodynamic
signals is to use the MEG or electroencephalography (EEG)
based individual measures of neural activity to model the fMRI
response instead of common regressors across subjects, leading
to increased statistical power (Renvall et al., 2012a; Iannaccone
et al., 2015). In this effort, various kinds of computational
analyses have been applied to obtain more comprehensive
spatiotemporal accounts than can be afforded by MEG or
fMRI data alone. In some instances, machine-learning based
classification analyses have been conducted separately for MEG
and fMRI data to obtain maximally accurate temporal and
spatial accounts of neural phenomena (Brandman and Peelen,
2017). Computational models have been applied to identify
electrophysiological correlates of behavioral processes which,
in turn, have been used to model the trial-level variability
within fMRI signals (Pisauro et al., 2017). Some studies have
further utilized representational similarity analyses across MEG
and fMRI data to accomplish spatially and temporally detailed
characterization of neuronal activity (Cichy et al., 2014, 2016;
Leonardelli and Fairhall, 2022). Generative models have also
been utilized to capture the state transitions in both fMRI
and MEG resting-state networks (Jiang et al., 2022). In a
clinical setting, fusion of distinct neuroimaging measures, such
as MEG and fMRI, is increasingly being used to improve
the ability to distinguish between patient groups and control
participants (Calhoun and Sui, 2016). Together, these reports
demonstrate the versatile ways that MEG and fMRI can be
merged to obtain spatiotemporally detailed accounts of neural-
level processing.

In order to use electrophysiological and hemodynamic
measures together in a principled manner, it is important
to understand the relationship between the different types
of measures. Numerous neuroimaging studies have therefore
attempted to deepen this understanding. Initially, the emphasis
was on how electrophysiological and hemodynamic techniques
would allow the identification and localization of neural
responses to the same types of stimuli (Sanders et al.,
1996; Stippich et al., 1998). Subsequently, the focus has
been more on identifying electrophysiological phenomena
that correlate with the blood-oxygen-level dependent (BOLD)
fMRI signal. In general, such studies have revealed robust
and spectrally systematic correlation patterns between neural
and hemodynamic activity (Logothetis et al., 2001; Mukamel
et al., 2005; Scheeringa et al., 2011). However, it has also
been shown that the correlation between electrophysiological
measures and the BOLD signal varies across brain regions
(Conner et al., 2011; Kujala et al., 2014). Moreover, comparisons
between large-scale networks derived from MEG and fMRI have
indicated a complex frequency-specific relationship between
fMRI and the electrophysiological connectivity (Hipp and
Siegel, 2015; Liljeström et al., 2015b). Furthermore, studies
examining the MEG and fMRI signals in identical experimental
settings from the same subjects have revealed systematic
functional differences between the electrophysiological and
BOLD responses (Liljeström et al., 2009; Vartiainen et al., 2011).
Accordingly, it is commonly accepted that when integrating the
temporally and spatially accurate views of neural processing
from MEG and fMRI, it is crucial to consider the complex nature
of the origins of hemodynamic fluctuations (Logothetis, 2008;
Ekstrom, 2010; Lauritzen et al., 2012; Whitman et al., 2013).

One aspect that has received less attention in combining
MEG and fMRI measures both for obtaining detailed
spatiotemporal accounts as well as investigating neurovascular
coupling has been the role of the applied stimulation or
experimental tasks themselves. Naturally, a broad range of
stimuli from different sensory modalities as well as various
kinds of cognitive experiments have been applied. However, the
main goal in those explorations has been to induce detectable
signals in different neural systems across the cortex and to
develop approaches that maximize the association between
the two signal types (Lankinen et al., 2018), not to examine
how the different stimuli and tasks might influence the joint
modulation of electrophysiological and hemodynamic signals.
Yet, it has been shown that the local neural and hemodynamic
signals can be partially decoupled (O’Herron et al., 2016),
and that the relationship between electrophysiological and
hemodynamic signals depends on the correlation between
the local inputs (Butler et al., 2017), effects that could cause
variability in the MEG-fMRI correlations across stimuli and
tasks. In the present study, we sought to explicitly utilize the
inherently complex relationship between BOLD fluctuations
and modulations of electrophysiological brain activity as well

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1019572
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1019572 October 28, 2022 Time: 15:30 # 3

Mononen et al. 10.3389/fnins.2022.1019572

as the possible task-induced variability in this relationship to
track and dissociate the neural engagement of different brain
regions across distinct cognitive tasks. We asked whether any
differences in neural processing related to distinct picture
naming tasks could be highlighted through MEG-fMRI fusion
as compared to isolated within-modality measures. Specifically,
we investigated the variability of MEG-fMRI correlation
patterns across three naming tasks (naming objects and actions
from action images, and objects from object images) using a
dataset where MEG and fMRI data were recorded from the same
participants in identical experiments (Liljeström et al., 2009).
The correlation patterns were obtained by first computing the
MEG-fMRI correlation separately for each brain region, time
window and frequency band, and by then applying variance
minimizing hierarchical clustering to find clusters of similarly
correlated brain areas. The approach allows the grouping of
both task-invariant and task-dependent correlation patterns
across brain regions regardless of their spatial adjacency.
We predicted that our approach would reveal both types of
correlation patterns and, critically, facilitate identification
of neural engagement that could not be detected using one
imaging modality alone.

Materials and methods

Subjects

Magnetoencephalography and fMRI data were collected
from 10 healthy (nine right-handed, one ambidextrous), native
Finnish-speaking subjects (four females, six males; ages 20–
33 years). Informed consent was obtained from all subjects, in
agreement with a prior approval of the Local Ethics Committee
(Hospital District of Helsinki and Uusimaa). The subjects did
not report any neurological disorders, and all had normal or
corrected-to-normal vision. All methods were conducted in
accordance with the guidelines of the Finnish National Board
on Research Integrity.

Experimental design

The task was to silently name pictures of objects or actions
presented as simple black line art on a gray background. There
were two categories of drawings. In the first category, an
action performed with an object was depicted, whereas in the
second category, a single object was shown. To achieve the
same visual complexity as in action images the object images
were constructed from the action images by dissolving the
action figures into non-meaningful lines in the background.
The experiment consisted of three different cognitive tasks:
Object naming from object images (100 trials), action naming

from action images (100 trials), and object naming from action
images (100 trials). The experiment had a blocked design
with 10 stimuli of the same task presented within each 30-
s block. Each image was shown for 300 ms at 1.8–4.2 s
intervals. Each block started with an instruction indicating
the task for the block. The task blocks were separated by
21-s rest blocks. The experiment was divided into two runs,
with different sets of stimuli in the two runs (150 images per
run, 50 per task). The experimental design was identical in
MEG and fMRI leading to two matched runs per subject. The
order of the three naming conditions was randomized in both
runs and silent naming was used to avoid muscular artifacts.
A complete description of the experiment can be found in
Liljeström et al. (2009). The design permits identification of
effects that are related to the naming task (comparing action
naming to both object naming conditions) and to the picture
type (comparing object-only images to both action image
conditions). Behaviorally, (overt) object naming from action
images leads to longer reaction times than for naming objects
from object images or actions from action images (Liljeström
et al., 2015a), indicating that increased effort or additional
processing is required when naming objects from action images
compared to the two other tasks. It is therefore of interest also to
compare the object naming from action image condition to the
other tasks.

Functional magnetic resonance
imaging data collection

The MRI data were collected at the Advanced Magnetic
Imaging Centre (Aalto University) with a Signa VH/i 3.0 T MRI
scanner (GE Healthcare, Chalfont St Giles, UK). Anatomical
MRIs were acquired using a T1-weighted 3D spoiled gradient-
echo sequence. Functional MRI data were collected using a
single-shot gradient-echo planar imaging sequence (TR 3 s,
TE = 32 ms, FA = 90, slice thickness 3 mm, in-plane resolution
either 3 mm × 3 mm, or 3.4 mm × 3.4 mm). The first five
functional volumes were discarded from the analysis.

Magnetoencephalography data
collection

Magnetoencephalography data recordings were conducted
using a 306-channel whole-head device (Elekta Oy, Helsinki,
Finland) in a magnetically shielded room. The data were
bandpass filtered to 0.03–200 Hz and sampled at 600 Hz. The
temporal extension of the Signal Space Separation method
(Taulu and Simola, 2006) was applied in order to suppress
contributions from external artifacts. Eye movements were
monitored with electro-oculogram (EOG).
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Functional magnetic resonance
imaging and
magnetoencephalography data
analysis

The overview of the analysis pipeline including key formulae
for the conducted computations is presented in Figure 1.
First, to facilitate the across-subjects evaluation of MEG-fMRI
correlation, the data of each subject were transformed to
an average brain via a surface-based transformation (Fischl
et al., 1999) using Freesurfer 5.3 (Fischl, 2012). Before the
transformation, the individual fMRI data were realigned to the
first volume and susceptibility artifacts caused by movements
were corrected for using SPM8 (Wellcome Department of
Cognitive Neurology, London, UK). The mean image of the
functional series was used for co-registering the fMRI data with
the individual anatomical images. For each vertex in the average
brain, the fMRI values of a spatially matching voxels were then
taken to represent the fMRI activity at the cortical surface level.

The vertex-level data were averaged within 188 parcels
covering the entire cortical surface (see e.g., Figure 3). This
parcellation was based on the automatic anatomic parcellation
of the human cortical gyri and sulci consisting of 144 parcels
(Destrieux et al., 2010) that was subsequently computationally
modified to form a parcellation that would be more suitable for
the analysis of MEG data. Specifically, the parcellation scheme
was obtained by applying a PCA algorithm implemented in
MNE-python (Gramfort et al., 2013) for splitting parcels defined
by the automatic anatomical labeling scheme of the cortical
surface (Destrieux et al., 2010). The splitting yields parcels that
are relatively symmetrical and small enough to be relatively
homogeneous with respect to local activations. Notably, the
splitting was based solely on the anatomical information without
utilizing functional data, leading to a parcellation that is less
optimized (Thirion et al., 2014) but more generalizable to
multiple datasets. While the exclusively anatomical parcellation
obtained via splitting the original parcels using spatial PCA
does not ensure an exact alignment between MEG and fMRI
responses and the parcels, it allows better separation of
responses that are spatially distinct than when using the original
Destrieux atlas. From the entire parcellation consisting of 188
parcels, regions that are prone to artifacts or signal loss in
either of the imaging methods (anterior parts of the frontal lobe,
deepest parts of the medial surface, and inferior parts of the
temporal lobe) were omitted. The set of parcels used in the final
analysis consisted of 70 parcels per hemisphere.

In the fMRI analysis the goal was to determine, for each
fMRI run and experimental condition, the BOLD signal change
with respect to rest within each parcel. This was accomplished
by first high-pass filtering the parcel-level representation of
the fMRI data in SPM8 with a cut-off frequency of 1/510 Hz.
Baseline effects were removed using a rest block (6 volumes)
that preceded each stimulus block (11 volumes), thus removing

slow drifts taking place during the scanning runs. For each fMRI
block and parcel, the data were averaged across the collected
11 volumes. The data were then normalized by subtracting the
mean activity across all blocks and tasks from the block and
task specific values, and by dividing these values by the standard
deviation of the whole run’s data. The normalization was done
separately for each subject to remove inter-subject differences in
signal scales and means. Subsequently, within each run, blocks
of each task were averaged per participant. For the correlation
analysis, we thus obtained a total of 20 fMRI values per task (10
participants, 2 runs).

Magnetoencephalography data estimates were obtained for
the same parcels in six different frequency bands: Theta (4–
7 Hz), alpha (8–13 Hz), low beta (15–21 Hz), high beta (23–
29 Hz), low gamma (36–46 Hz), and high gamma (54–90 Hz),
from 100 to 800 ms with respect to stimulus presentation.
The gamma-band analyses were conducted in two separate
bands to avoid including 50 Hz line noise into the estimates.
The estimation was done using event-related Dynamic Imaging
of Coherent Sources (Laaksonen et al., 2008), a beamforming
technique in the time-frequency domain. Here, only data from
the 204 gradiometers were used. In the estimation, a surface-
based grid consisting of 5,122 points was first created in the
average brain with MNE (Gramfort et al., 2014) and transformed
to each individual’s anatomy using Freesurfer 5.3 (Fischl, 2012).
Brain activity estimates for each task and block were then
computed for each grid point in the six different frequency
bands, in 22 partially overlapping 200-ms time-windows (33-
ms time difference between two successive time-windows). The
200-ms window length was chosen as it was the shortest length
that allowed the accurate estimation of data covariance and
thus brain activity given the signal-to-noise ratio (SNR) and
number of trials across experimental tasks within the present
dataset (see, e.g., Brookes et al., 2008). This window length is
likely to be sufficiently short for exploring the sustained neural
phenomena in higher-order cortical regions but could be sub-
optimal for determining the temporally intricate early processes
within the visual hierarchy. A baseline value was computed
from the prestimulus interval −200 to 0 ms, separately for each
block and grid point. Trials in which the amplitude of either the
vertical or the horizontal EOG exceeded 150 µV were rejected.
The parcel-level values were obtained by calculating, in each
grid point, the difference between the post-stimulus values and
the corresponding baseline values (divided by the same baseline
values) and computing the average across all these baseline
relative changes within each parcel. The parcel values were
normalized separately for each subject, run and frequency band.
This was done similarly as for the fMRI data, by subtracting the
average activity across all blocks and tasks from the block and
task specific values, and by dividing these values by the standard
deviation of the data from the entire run. The run-level data
were then obtained by averaging the block-specific data within
each run. Similarly to the fMRI data, we thus obtained a total
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FIGURE 1

An outline of MEG and fMRI analysis pipelines, displaying the most important steps and their order. Gray boxes show essential normalizations
that aim to equalize the measures obtained with the two modalities.

of 20 MEG values per task (10 participants, 2 runs) for the
correlation analysis.

Correlation analysis and clustering

We computed a vector of MEG-fMRI correlation estimates
for each parcel using Spearman’s rank correlation (see Figure 2).
Within a parcel, separate correlations were computed for all

tasks, time intervals and frequency bands (3 tasks, 22 time-
windows, 6 frequency bands: in total 396 MEG-fMRI correlation
estimates per parcel). Each of these estimates was computed
based on 20 MEG and 20 fMRI observations (10 subjects and
2 runs). We applied an agglomerative (merging) hierarchical
clustering algorithm on our Spearman’s rho value vectors to
find clusters of similarly correlated regions. For this, we used
the Ward minimum variance method (Ward, 1963) that aims
to minimize the within-cluster variance, leading to a clustering
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where correlation patterns inside a cluster are as similar as
possible [function linkage(. . .,“ward”) in Matlab]. Information
about hemispheres was not passed to the clustering algorithm.
Ward’s method measures Euclidean distances between cluster
centroids during its merging steps. The clustering algorithm
produces a hierarchical cluster tree structure that describes the
merging process. The leaves of the tree can be reordered without
changing the structure itself. The optimal leaf order is such
that the similarities of adjacent leaves are maximized [function
optimalleaforder() in Matlab]. The final clustering allows for
visual comparison of the correlation patterns across the three
tasks and different frequency bands.

To evaluate the possible differences in correlations across
the tasks, we estimated the 99% confidence limits for each
task across the identified clusters, separately for left and right-
hemisphere parcels, using bootstrapping (Efron, 1979). The
bootstrapping was conducted by re-sampling the data 10,000
times, by computing the new MEG-fMRI correlation values for
each sample, and by estimating the 99% confidence limits for

each task from the obtained distribution. In the re-sampling,
80% of the data were randomly selected at each round. In this
evaluation, we only considered those clusters and frequency
bands in which at least one of the three tasks showed significant
MEG-fMRI correlation (p < 0.05, Bonferroni-corrected over
time points).

To compare a joint analysis approach and a more
conventional approach utilizing a single brain imaging method
alone, we also evaluated the differences in the MEG activity
patterns between the tasks with paired t-tests (p < 0.05,
Bonferroni-corrected over time points) for the identified
clusters. This analysis was performed with the same temporal
and spectral resolution as the MEG-fMRI correlation analysis
and was, thus, only applicable to MEG; fMRI lacks the temporal
resolution that would be needed for comparison of fMRI activity
and MEG-fMRI correlation modulations. The comparison was
therefore restricted to MEG activity and MEG-fMRI correlation
patterns. Potential differences in the temporal-spectral aspects
of the findings between the two approaches would reveal

FIGURE 2

Matrix of correlations between MEG and fMRI for the three experimental conditions (separated with thick white vertical lines). Each
condition-related submatrix is divided into six frequency bands: Theta, alpha, low beta, high beta, low gamma, and high gamma, from left to
right (columns separated by thin vertical gray lines). Each frequency band consists of a sequence of 22 time points (sub-columns). All 140 brain
regions (70 per hemisphere) are displayed on the y-axis, ordered with respect to the optimal leaf order of a cluster tree. This leads to a solution
where distances between similarly behaving brain regions are minimized. The brain regions (rows) are divided into 17 clusters (C1–C17,
separated by horizontal thin gray lines; see Figure 3 for visualization of the areas on MRI). The clustering is the same for all three conditions. The
color indicates the MEG-fMRI correlation strength (–1. . .+1), see scale on the right.
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unique results that can be achieved only with one of the
approaches, but not both.

Results

Clustering of correlation patterns

For clustering purposes, a matrix was constructed (see
Figure 2), where each row lists the MEG-fMRI correlation
values across the different frequency bands, time points and
tasks. The clustering algorithm enables identification of clusters
in which all three tasks behave similarly, but also clusters
in which the tasks behave differently. In Figure 2, the rows
are reordered according to a full cluster tree so that similar
rows are close to each other. The ordering reveals salient
MEG-fMRI correlation patterns, with consistent negative and
positive correlation patterns across brain regions. The selected
clustering consists of 17 clusters (Figure 3), chosen based on
an appropriate level of spatial separation across parcels. With
a smaller number of clusters, functionally distinct brain regions
remain in larger shared clusters, whereas with a larger number
of clusters single parcels start to form clusters by themselves.

Accordingly, with a smaller set of clusters, regions with
functionally distinct activity profiles would be merged together,
whereas with a larger set of clusters individual parcels with
very similar activity profiles would be segregated into distinct
clusters. In general, the clusters were spatially concentrated,
indicating that close-by regions show more similar MEG-fMRI
correlation patterns than regions that are further apart. The
clustering (Figure 3) agreed well with the known functional
division of cortical processing related to picture naming,
revealing, e.g., components representing both lower (C8) and
higher-order (C16) visual, speech related motor/premotor (C5
and C7), and perisylvian language related processing (C9).
In particular, lower-order regions involved in the basic visual
processing formed clusters (C8, C11, C16, and C17) that did
not include any higher-order cortical areas, whereas the clusters
containing higher-order regions generally represented distinct
neural functions associated with different cortical lobes and also
with more fine-grained differences (e.g., separation of inferior
vs. superior frontal cortices and lateral vs. medial cortical
structures). Many of the identified clusters (C1, C4, C8, C9,
C11, C12, C15, and C17) showed marked symmetry across
the hemispheres, but temporal, central and inferior frontal
cortical areas (e.g., C2, C5–C7, and C13–C14) critically involved

FIGURE 3

Clustering of brain regions. Level 17 of a clustering tree (used in the analyses). The deep medial and anterior frontal areas plotted in light gray
were omitted from the analysis. Clusters are ordered according to the optimal leaf order and marked with labels C1–C17 (cf. Figure 2).
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in picture naming tended form clusters exclusively within
individual hemispheres.

Magnetoencephalography-functional
magnetic resonance imaging
correlation differences between tasks

For the clusters, we determined significant differences
in MEG-fMRI correlation spectra between experimental
conditions, across multiple frequency bands and time-windows
(see Table 1 and Figure 4). We focused on identifying effects
where one of the conditions differed from the other two
conditions: (i) naming actions differed from both object naming
conditions (different tasks; Figure 4, rectangles with solid
orange line), (ii) naming objects from object pictures differed
from naming objects or actions from action pictures (different
images; Figure 4, rectangles with dotted black line), and (iii)
naming objects from action pictures differed from both naming
objects from object pictures and naming actions from action
pictures (different reaction times; Figure 4, rectangles with solid
gray line). Correlations were examined separately for parcels
within each hemisphere.

Modulations of MEG-fMRI correlation across-tasks were
detected predominantly in the left hemisphere. Different picture
types elicited distinct correlation patterns in the occipital and
parietal cortex, within the alpha and gamma frequency bands
(left-hemisphere clusters C1, C3, and C13; see Figure 5A
and Table 1). Between different naming tasks, correlations
differed along the central sulcus and the posterior temporo-
parietal cortex, mainly in the left hemisphere (left-hemisphere
clusters C5, C6, and C10 and right-hemisphere cluster C2),
particularly in the gamma-range. Distinct correlation patterns
for the condition in which the participants named objects from
action images as compared to the other two categories were
observed exclusively in the left hemisphere and included brain
regions within the posterior temporo-parietal cortex (cluster
C10) as well as within the occipital cortex (clusters C11 and
C17), with contributions from the theta band as well as low and
high gamma-bands.

Task-invariant
magnetoencephalography-functional
magnetic resonance imaging
correlation patterns

Figures 5B Shows the correlation patterns for two clusters
within the occipital cortex (clusters C16 and C17). Parcels in
the left-hemisphere cluster C17, covering the middle occipital
cortex, and those in the right-hemisphere cluster C16, covering
the medial and lateral parts of the occipital cortex, showed a

significant negative MEG-fMRI correlation at low frequencies,
but not in the gamma-range.

Magnetoencephalography activation
vs.
magnetoencephalography-functional
magnetic resonance imaging
correlation

Across the 17 identified clusters, the time-frequency
windows in which MEG-fMRI correlation showed task-
dependent modulation were highly distinct from the time-
frequency windows in which MEG activity was modulated
(Figure 6). Modulation of correlation was observed mainly
in early time-windows (<500 ms), whereas modulations of
activity (with band-limited power as measure) were exclusively
detected more than 500 ms after stimulus onset. In the frequency
domain, the MEG activity modulations were concentrated to
the theta, alpha and (low and high) beta bands, whereas
the MEG-fMRI correlation effects also showed a prominent
contribution of gamma-band neural activity. No significant
MEG-fMRI correlation effects were detected in the high beta
band. Significant differences in activation were detected between
object naming from object vs. action images, as well as for
object naming from object images vs. action naming from
action images; however, no differences were observed between
object vs. action naming from action images (Figure 7). These
effects were particularly prominent within the left hemisphere,
predominantly in clusters with parcels in the parietal lobe. No
significant effects of MEG signal changes were detected between
object and action naming from identical images, in contrast to
the MEG-fMRI correlation analysis which identified several left-
hemisphere clusters in which action naming differed from the
other two conditions (C2, C5, C10, and C13, Figure 5).

Discussion

We have shown that correlation between MEG and fMRI
contains information that distinguishes between the three
naming tasks. This finding aligns with observations that have
demonstrated trial and stimulus dependent variability in the
relationship between electrophysiological and hemodynamic
activity within the visual cortex (O’Herron et al., 2016; Butler
et al., 2017). Furthermore, our results demonstrate that the
time-frequency windows in which the MEG-fMRI correlation
patterns differ between the tasks are distinct from the windows
showing task effects in a separate MEG-based analysis of
modulation of neural activity. Interestingly, the differences in
the correlation patterns between tasks were typically observed
in markedly transient time-windows, highlighting the dynamic
nature of the neural phenomena dissociating the different
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TABLE 1 Significant effects detected with the given clusters, frequency bands, and significant time intervals.

Cluster Hemisphere and primary location Frequency band Time (ms) Confidence interval

Correlation patterns specific to object images

C1 Left, superior parietal cortex High gamma 300–600 99.9%

C3 Left, inferior parietal cortex and precuneus Alpha 200–430 99.9%

C13 Left, cuneus and anterior frontal cortex Alpha 100–370 99.9%

Correlation patterns specific to action naming

C2 Right, superior temporal and inferior parietal cortex Low gamma 100–300 99%

C5 Left, inferior precentral gyrus Low gamma 230–430 99.9%

C6 Left, pre- and postcentral gyrus Low gamma 300–500 99.9%

C10 Left, posterior temporo-parietal cortex Low beta 200–470 99.9%

Correlation patterns specific to naming objects from action images

C10 Left, posterior temporo-parietal cortex Low gamma 230–430 99%

C11 Left, precuneus and occipital pole High gamma 200–400 99%

High gamma 300–500 99.9%

C17 Left, middle occipital cortex Theta 330–570 99%

As significances are computed over 200-ms time-windows, it determines the lower bound for the size of significant time window. The correlation significance is Bonferroni corrected
(p = 0.05) over 22 time-windows.

FIGURE 4

Magnetoencephalography-Functional magnetic resonance imaging correlation patterns divided into clusters (row labels) and hemispheres (left
and right panels). The three rows in each cluster show correlation between fMRI and MEG for the three experimental conditions: from top to
bottom, object naming from object images, action naming from action images and object naming from action images, over time in the different
frequency bands (column labels). Significant correlations (p = 0.05, Bonferroni-corrected over the 22 time points) are marked as thicker parts of
stripes. Rectangles indicate areas where the 99% confidence intervals of one condition do not overlap those of the other two conditions.
A salient difference between naming tasks (naming actions vs. objects) is denoted by an orange rectangle, a difference between two picture
types (action vs. object stimulus) is indicated by a dotted black rectangle, and a difference specific to naming objects from action images vs. the
other two tasks with a gray rectangle. A rectangle is shown only when there is also a significant MEG–fMRI correlation inside the rectangle.
Clusters C3, C5-C7, and C10 have parcels only in the left hemisphere (blank gray bars in the right-hemisphere).
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FIGURE 5

Magnetoencephalography-functional magnetic resonance imaging correlation as a function of time. For each cluster, the top row shows the
correlation spectra for all tasks (naming object from action pictures in gray; naming actions in orange; and naming objects from object pictures
in dotted black), and the bottom row the 99% confidence intervals for the three tasks (correspondingly gray, orange and a striped black pattern).
In the correlation spectra, the colored squares indicate time instances at which the correlation is significant (p = 0.05, Bonferroni-corrected over
time). (A) Task-dependent instances: One task shows significant correlation and differs from the other two tasks (non-overlapping confidence
bounds) at a given time. White areas between the confidence intervals of experimental conditions indicate time instances of significantly
different MEG-fMRI correlation between two or more conditions (p = 0.01, uncorrected). (B) Task-invariant instances: Clusters 16 and 17
suggest consistent negative correlation between MEG and fMRI at lower frequencies, among all experimental conditions, in the occipital cortex.
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FIGURE 6

Temporo-spectral uniqueness and overlap in modulation of rhythmic activity and MEG-fMRI correlation. Timing with respect to picture
presentation is plotted on the x-axis, and the different frequency bands on the y-axis. Time-frequency windows that showed differences
between the conditions only for MEG band-limited power (light gray), only for MEG-fMRI correlation (dark gray) or both (black). Values averaged
across all contrasts.

picture naming conditions also at the level of MEG-fMRI
correlations. Notably, such correlation differences were not
specific to any frequency bands but extended to a wide
range of distinct oscillations (theta, alpha, beta, and gamma).
On the other hand, task-invariant correlations especially in
the theta- and alpha-bands tended to be more sustained,
attesting to the distinct nature of task-dependent vs. task-
invariant correlation patterns. From amongst the 17 identified
clusters, nine showed significant differences between the three
experimental conditions whereas no differences were observed
in the other clusters covering, in particular, more anterior lateral
frontal areas and primary visual cortices. Significant differences
were observed for all contrasts in the parietal cortex, with more
superior effects for different images and more inferior effects
for different tasks and conditions with different reaction times.
Differences in the MEG-fMRI correlation patterns were also
observed for different images in the anterior medial frontal
cortex and for different tasks in the post- and precentral gyri.
Notably, the involvement of the parietal cortex was detected
also in the analyses focusing on the MEG and fMRI activity,

whereas the role of the anterior medial frontal cortex and the
post- and precentral gyri in dissociating the different naming
conditions was not observed in these studies (Liljeström et al.,
2008, 2009). Our results thus illustrate that the multimodal
correlations yield novel information about the task-dependent
neural engagement that cannot be detected using one imaging
method alone.

Detection of neural engagement using
multiple neuroimaging methods

Task-dependent processing in neural circuits is a complex
phenomenon that is supported by a wide range of mechanisms
involving, e.g., electric, metabolic, and neurotransmitter activity
(Singh, 2012). Measuring any of these processes yields one
particular view of the full activity of the circuit. As it is not
feasible to simultaneously record all possible processes related
to the engagement of a circuit, its full activity remains a variable
that may be estimated using specific proxies. As individual
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FIGURE 7

Significant results in the MEG activation analysis for each cluster. For each cluster the number of significant time-frequency bins are indicated as
the percentage of all possible time-frequency bins (in total 132 bins from 6 frequency bands and 22 time-windows). The bars are color-coded
according to the lobe to which the majority of the parcels belong to. The clusters are ordered according to the total percentage of significant
time-frequency bins in all tasks (left and right- hemispheres separately). Note that there were no significant differences between neural activity
during Object naming from action images and action naming, whereas for the other two contrasts where the stimulus contents were different
multiple clusters showed significant differences.

proxies are noisy and give incomplete information, it may not
be possible to accurately estimate the full brain activity in
a region. Thus, the observed activation patterns determined
by an individual proxy may not reveal any observable brain
activity even if the neural circuit, in reality, participates in
task-dependent processing. The same holds when the goal is
to determine differences between levels of neural engagement
between different experimental conditions.

It has been proposed that the complexity of the human brain
coupled with the incomplete measurements make multimodal
data fusion critical for identifying detailed, individual-level
properties of brain anatomy and function (Calhoun and Sui,
2016). Multimodal data-fusion based approaches have proven
particularly useful for combining genetic mapping with other
measures in the study of brain disorders (Purcell et al., 2009;
Pearlson et al., 2015) as well as for evaluating the variability of
brain anatomy and function in healthy subjects (Hardoon et al.,
2009; Le Floch et al., 2012; Renvall et al., 2012b; Salmela et al.,
2016) and predicting the subjects’ age (Engemann et al., 2020).
So far, fusion of different neuroimaging data-types has been
applied for identifying (in individual brain regions), e.g., the
neural underpinnings of the BOLD response (Scheeringa et al.,

2011; Kujala et al., 2014), also at the laminar level (Scheeringa
et al., 2016; Warbrick, 2022), the effects of anatomical properties
on functional data (Sepulcre et al., 2009; Schwarzkopf et al.,
2012), or the effects of GABAergic inhibition on fMRI and
MEG responses (Muthukumaraswamy et al., 2009; Kujala et al.,
2015). While it has been proposed that by combining the
temporally/spectrally and spatially sensitive measures of neural
engagement provided by MEG and fMRI one could obtain a
spatiotemporally accurate picture of brain activity (Dale et al.,
2000), such data fusion has rarely been applied. Moreover,
this type of combination has typically been used only in the
primary sensory and motor neural systems (Schulz et al., 2004;
Whittingstall et al., 2007; Stevenson et al., 2012; Renvall et al.,
2012a; Cichy et al., 2014). Recently, similarity-based fusion
methods combining MEG and fMRI have proven useful in
learning relationships between visual objects and how they are
represented within the visual system (Cichy et al., 2016) as well
as within the semantic system (Leonardelli and Fairhall, 2022).
In cognitive tasks, the improvement of SNR through group-level
analysis (increased amount of data) may be limited by notable
inter-subject variability, leading to a failure to detect the true
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engagement of neural circuits, even when multiple proxies are
combined.

In the present study, we aimed to develop and apply a
data-fusion based approach that would explicitly utilize the
inter-subject and inter-block variability in combining different
measurements (MEG and fMRI) to build a more sensitive
and accurate picture of the neural engagement. Specifically,
we used the correlation between MEG estimates of induced
activity in different time-frequency windows and BOLD-fMRI
estimates of hemodynamic activity to determine the neural
circuits that are engaged in a distinct manner in three picture
naming tasks. The MEG and fMRI proxies of neural activity
can occasionally show salient negative or positive correlation
when the brain activity is strong enough to be detected. In
areas where one imaging method yields only noise and the
other a good signal, task-wise correlations cannot be significant.
To detect activity in a neural circuit, our approach requires
that there is a causal connection between the engagement of
the circuit and the two proxies (MEG and fMRI). Notably,
unlike in typical neuroimaging studies, the sensitivity of the
approach to detect neural engagement is in fact increased
if the subjects or the blocks show considerable variability,
given that the assumption of causality is met. In general,
our approach as well as other approaches that profit from
such variability are likely to be beneficial in cases where the
SNR is low and where there is large individual variance in
elicited neural processes. Hence, this type of approaches should
prove useful in detecting neural engagement particularly in
cognitive tasks.

Multimodal correlation as a spatially,
temporally and spectrally unique view
on neural engagement during picture
naming

In the present study, we applied the developed MEG-
fMRI correlation based method to a picture naming data set
that had been previously analyzed separately using traditional
MEG (evoked responses) and fMRI group-level statistical
approaches for identification of neural activity related to
different naming tasks (action vs. object naming) (Liljeström
et al., 2009) as well as identification of task-relevant functional
networks (Liljeström et al., 2015a). Several studies have shown
a negative correlation between MEG and fMRI at lower alpha
and beta frequencies, and a positive correlation within the
gamma frequency range, especially in low-level sensory cortices
(Logothetis et al., 2001; Mukamel et al., 2005; Scheeringa et al.,
2011). In higher-level cortical regions and in cognitive tasks
this relationship is more variable (Conner et al., 2011; Kujala
et al., 2014). Moreover, analysis of functional networks has
indicated a complex frequency-dependent relationship between
MEG- and fMRI-derived networks that varies across-tasks

(Liljeström et al., 2015b). In the present study, we observed task-
invariant negative correlations between MEG and fMRI within
the alpha and beta frequency bands in occipital and parietal
regions, in line with previous studies (Logothetis et al., 2001;
Scheeringa et al., 2011).

Our main goal was, however, to utilize the variability
in the relationship between MEG and fMRI and identify
clusters that manifested a task-varying relationship in MEG
and fMRI correlation. This correlation-based approach revealed
significant differences between the conditions in which the
activation based analysis had not done so. Within the left
parieto-temporal junction, along the central sulcus, and the
inferior frontal cortex, the correlation pattern was different
between the action naming condition and the two object
naming conditions. In contrast, MEG activation analysis either
with induced responses in the present study, or previously
with evoked responses (Liljeström et al., 2009), did not reveal
significant differences between action and object naming from
identical images. These effects demonstrate that the correlation-
based analysis can reveal neural engagement in functionally
relevant circuits that are not detected in conventional activation-
based analyses.

The most notable new insights revealed by the present
approach were the spectral and temporal patterns of
electrophysiological activity. For example, the correlation
patterns differed in the parieto-occipital cortex for the
conditions where the stimulus content was different. In the
present analysis of the modulation of induced activity, effects
were detected in late time-windows (>500 ms), whereas
the correlation patterns revealed differences primarily in
notably earlier intervals (200–400 ms). These findings suggest
that the modulation of alpha/beta activity is distinct for
different stimulus contents, a finding that could not be inferred
from traditional analysis of MEG activation; the results also
demonstrate that these early differences are linked with the
BOLD activity that is measured in those cortical regions.
Secondly, the correlation-based analysis revealed, in contrast
to analysis of MEG induced activity, prominent effects in the
gamma-band. This suggest that the present multimodal analysis
may help reveal the role of high-frequency neural activity
in cognitive processing that is often difficult to detect with
non-invasive techniques.

Detection of cortical activity using
clustering of
magnetoencephalography-functional
magnetic resonance imaging
correlation patterns

In the present study, we computed the correlation between
individual-level, run-wise MEG and fMRI recordings of the
same experimental conditions from the same subjects. The goal
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was to develop an approach that would utilize the correlation
between the two distinct proxies (MEG and fMRI) of brain
activity to enhance the sensitivity of detecting the engagement of
neural circuits in cognitive processing. The approach thus aims
to capture effects related to the stimulus- and state-dependent
input correlations and differences in the propagation of vascular
dilation between neural columns (O’Herron et al., 2016; Butler
et al., 2017) that would manifest as differences in the MEG-
fMRI correlation patterns across experimental tasks. It should,
however, be noted that our approach does not directly tell
whether the circuit is more or less engaged during a task; the
correlation-based measure can only reveal that the relationship
between the applied proxies has changed. For example, our
two proxies (MEG and fMRI) can be negatively or positively
correlated, without indicating whether the amount of activity
in the circuit has increased or decreased compared to the
other conditions. In areas where one imaging method reveals
only noise and the other detectable cortical activation, the
task-wise correlations should not be significant. Our clustering
approach corresponds to a conditioning which enforces the
method to consider only those correlations that are related to
the performed cognitive tasks. In the optimal situation, both
proxies would have similar temporal granularity but, due to the
highly integrative nature of the fMRI signal, precise temporal
information was present only in the MEG signals. Nonetheless,
we can track and utilize the temporal information in the MEG
signals to dissociate even subtle effects in the integrative fMRI
signals and, thereby, discover also small differences between
cognitive tasks.

Spatially, our clustering-based analysis was designed to
identify robust, large-scale effects in the correlation patterns
that were specific to the given three naming tasks. Thus,
the clustering results may not necessarily obey conventional
knowledge about the locations of task-relevant functional brain
regions. The reason is that the clustering is constructed using
a very limited set of tasks. If these tasks do not distinguish
between certain brain regions, then those regions will fall into
the same cluster. Moreover, if the spatial extent of a cluster
is too large, even a relatively strong signal may be masked by
other contradicting signals or noise originating from the same
cluster. If a cluster is too small, weak but significant signals may
disappear as the region of activation has been split into parts.
Some of the clusters are necessarily non-informative because
none of the brain regions—including inactive regions—are left
out in a clustering process.

In our study, we let the method cluster both hemispheres
together. Thus, it is also possible that in some cases weaker,
interesting signals might have been masked by stronger signals
from the other hemisphere. Such a scenario could be avoided
by conducting separate clustering for each hemisphere; however,
this might hide some of the inter-hemispheric effects that were
detected with the present approach.

Conclusion

We introduced a correlation-based data-fusion analysis
pipeline that utilizes two proxies of brain activity to enhance
sensitivity for detecting the engagement of neural circuits
in cognitive processing. Our results demonstrate that the
approach discovers spatially, spectrally, and temporally
unique task-specific information on cortical processing during
picture naming. Multimodal data fusion based on correlations
between electromagnetic and hemodynamic activity can thus
reveal task-dependent neural engagement that may not be
detected using the proxies of brain activity offered by one
imaging method alone.
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