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Muscles are the actuators of all human actions, from daily work and life to

communication and expression of emotions. Myography records the signals

from muscle activities as an interface between machine hardware and human

wetware, granting direct and natural control of our electronic peripherals.

Regardless of the significant progression as of late, the conventional

myographic sensors are still incapable of achieving the desired high-

resolution and non-invasive recording. This paper presents a critical review

of state-of-the-art wearable sensing technologies that measure deeper

muscle activity with high spatial resolution, so-called super-resolution. This

paper classifies these myographic sensors according to the different signal

types (i.e., biomechanical, biochemical, and bioelectrical) they record during

measuring muscle activity. By describing the characteristics and current

developments with advantages and limitations of each myographic sensor,

their capabilities are investigated as a super-resolution myography technique,

including: (i) non-invasive and high-density designs of the sensing units and

their vulnerability to interferences, (ii) limit-of-detection to register the activity

of deep muscles. Finally, this paper concludes with new opportunities in

this fast-growing super-resolution myography field and proposes promising

future research directions. These advances will enable next-generation

muscle-machine interfaces to meet the practical design needs in real-

life for healthcare technologies, assistive/rehabilitation robotics, and human

augmentation with extended reality.

KEYWORDS

electrical impedance tomography, electromyography, forcemyography,
human-computer interface, magnetomyography, muscle-machine interface,
super-resolution, wearable sensors

Introduction

Myography measures muscle activity, which has become essential to modern
healthcare, assistive/rehabilitation, and human augmentation technologies (Chowdhury
et al., 2013; Mukhopadhyay, 2015; Cheok et al., 2019; Simao et al., 2019;

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1020546
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1020546&domain=pdf&date_stamp=2022-11-17
https://doi.org/10.3389/fnins.2022.1020546
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1020546/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1020546 November 15, 2022 Time: 10:17 # 2

Wang et al. 10.3389/fnins.2022.1020546

Xiao and Menon, 2019; Mahmud et al., 2020; Zong et al., 2020;
Nsugbe, 2021b). Conventional myography techniques include
recording the force, known as forcemyography (FMG), or
electrical potential, known as electromyography (EMG). These
myographic sensors are primarily laboratory-based and entail
placing an extensive electrode/wire set up on the skin for the
duration of a measurement. In recent years, the development
of wearable devices has opened a realm of opportunities
for recording muscle signals on a long-term basis without
limiting individual physical activities. Additionally, modern
CMOS technologies enable the compact and micro-scale design
and fabrication of sensors in a mass and low-cost way with
many sensing units integrated into a small area, allowing
higher signal resolution. Such developments facilitate various
muscle–machine interface (MMI) applications, including
health monitoring of neuromuscular disorders, control for
assistive/rehabilitation robotics, and human augmentation for
extended/virtual reality, as conceptualized in Figure 1 (Barry
et al., 1990; Xiao and Menon, 2014; Sadikoglu et al., 2017;
Sushkova et al., 2018; Grushko et al., 2020).

The market for wearable myography-based MMI
applications is experiencing dramatic growth. There is an
estimated market of $7.24 billion by 2026 for MMI devices
concerning different applications such as extended reality,
healthcare, and education (Mordor Intelligence, 2022). Apple
Watch’s newest feature, Assistive Touch, can detect muscle
activity through an optical device that allows users to perform
basic select, swipe, and confirm operations without touching
the screen. Alphabet Inc. (previously Google) and Meta
Platforms, Inc. (previously Facebook) have invested in muscle-
based technologies and acquired well-known myoelectric
startups North. Inc (formerly Thalmic Labs) and CTRL-Labs,
respectively.

Muscle machine interface technology has been a trending
topic in the last 5 years, with more than 3,000 papers
published yearly, by searching keywords on the Web of Science.
There are several excellent review articles in the literature
that have studied and discussed the hardware implementation
and algorithms for different MMI-based applications in
hand gesture recognition (Cheok et al., 2019; Simao et al.,

Abbreviations: ADC, analog-digital converter; CNN,
convolutional neural network; DOF, degrees of freedom; EEG,
electroencephalography; EIT, electrical impedance tomography;
EMG, electromyography; FEM, finite element method; FES, functional
electrical stimulation; FMG, forcemyography; FSR, force sensing resistor;
GMR, giant magnetoresistance; HD-FMG, high-density FMG; HIST,
histogram; IR, infrared; iEMG, invasive EMG; KNN, k-nearest neighbors;
LDD, longitudinal double differentiating; MeMG, mechanomyography;
MMG, magnetomyography; MUAP, motor unit action potential; MUAPTs,
motor unit action potential trains; MMI, muscle machine interface; NIRS,
near-infrared spectroscopy; OMG, optomyography; OPM, optically
pumped magnetometers; PCA, principal component analysis; PMG,
phonomyography; PPG, photoplethysmography; RF, random forest;
RMS, root-mean-square; RPTF, resistive polymer-thick-film; sEMG,
surface EMG; SMG, sonomyography; SNR, signal-to-noise ratio; SQUID,
superconducting quantum interference device; SVM, support vector
machines; TMR, tunnel magnetoresistive.

2019; Grushko et al., 2020), prosthetic control (Grushko
et al., 2020; Nsugbe, 2021b), facial movement recognition
(Chowdhury et al., 2013; Khoshmanesh et al., 2021), biomedical
image (Zong et al., 2020; Lin et al., 2022), and healthcare
(Chowdhury et al., 2013; Wang Y. et al., 2019; Khoshmanesh
et al., 2021). Summarized from the literature, the trend behind
MMI development is to have better signal qualities and features
for applications, which requires allocating signals to muscles
with higher accuracy. The high channel density of a sensor
system has been proven to improve the overall accuracy in
applications due to higher spatial resolution and the ability to
differentiate proximal features (Radmand et al., 2016; Grushko
et al., 2020; Lei et al., 2021). However, the spatial resolution does
not remain consistent in terms of depth because MMI sensing
technologies have different capabilities to detect deep muscles
(Grushko et al., 2020; Nsugbe, 2021b). The potential of wearable
MMI for sensing deep muscle with high resolution, considered
super-resolution, was never reported in previous reviews.

Compared to the reviews mentioned above, which focus
more on specific applications of MMI sensors, this review
discusses conventional and novel myography sensing methods
from the view of muscle signal form. Considering the
signal forms different MMI sensors detect, it is possible
to estimate whether this technology is suitable for high-
resolution measurement with a deep detection range, referred
to as super-resolution in this paper. This paper summarized
the state-of-the-art of these myography techniques in each
modality and explored their possibility for a super-resolution.
The aim here is to provide a better understanding of the
practical significance and implications of these myography
methods and why some modalities can achieve super-resolution.
The rest of this paper is structured into six sections as
follows. Section “Muscle–machine interfaces” presents various
signal forms during muscle contraction, and how they
are measured. Sections “Biomechanical sensing interfaces,”
“Biochemical sensing interfaces, ” and “Bioelectrical sensing
interfaces” introduce different myography sensing technologies,
respectively. Section “Discussion and outlook” compares these

FIGURE 1

Schematic illustration of wearable super-resolution myography
and its applications.
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sensing technologies in terms of vulnerability and detectability
as the super-resolution myography, and the future directions
and possible research topics are discussed. Section “Conclusion”
concludes the advantages and disadvantages of different
myographic sensors for super-resolution MMI.

Muscle–machine interfaces

Muscles are natural amplifiers of the neural drive (Ruff et al.,
2010). Thus, with advanced signal analysis methods, e.g., motor
unit decomposition and machine learning, muscle signals can
be used as a control source in various MMIs, e.g., prostheses
(Naeem et al., 2012; Bergmeister et al., 2017), wheelchairs (Jang
et al., 2016), exoskeleton (Singh et al., 2012; Kawase et al., 2017;
Lyu et al., 2019), and human–robot collaboration (Melcer et al.,
2018), Compared with the brain–machine interfaces (Grush,
2016), an MMI can obtain cleaner motor and intention-related
signals in terms of signal-to-noise ratio (SNR) (Grush, 2016).

Muscle contraction generates detectable biomechanical,
biochemical, and bioelectrical signals, as illustrated in Figure 2.
The muscle contraction is triggered by forming a cross-bridge
between actin and the myosin heads (Figure 2A), resulting
in a mechanical change in the muscle. These biomechanical
changes bring a tension variation on the skin surface, pushing
vessels around the muscle and changing muscle shapes.
These mechanical variations enable forcemyography (FMG),
phonomyography (PMG), photoplethysmography (PPG),
mechanomyography (MeMG, acoustic myography, sound
myography, vibromyography), sonomyography (SMG), and
electrical impedance tomography (EIT) to interpret muscle
activities. In addition, the energy consumption of the muscle
fibers during the contraction alters the chemical properties of
some biomolecules in blood and muscle. The hemoglobin and
myoglobin have different absorption spectra when they carry
and lose oxygen, as shown in Figure 2B, which can be detected
using the optical method like near-infrared spectroscopy
(NIRS). Bioelectrical signals arise in the polarization of a
muscle fiber membrane by the neurotransmitter from the
nerve-muscle junction, containing action potentials and local
currents propagating on the muscle fiber, as illustrated in
Figure 2C. Thus, muscle activities can be recorded electrically
(EMG) by the sum of these potentials along the muscle fibers
(Ahmad, 2012), and magnetically (Magnetomyography, MMG)
by the magnetic field generated from the local current (Broser
et al., 2018; Zuo et al., 2020a,c). The scale of these myography
signal sources lies from macroscale to microscale, resulting
in diverse sensing protocols, as demonstrated in Figure 3.
Macroscale sensing protocol includes technologies like PPG,
FMG, EIT, and SMG, which measure the effects generated by
muscle deformation. Signals in macroscale have a large SNR
compared to other protocols due to their pronounced variation
in spatial scale. However, this prevents them from having a
higher temporal resolution, as large-scale spatial variations

introduce a certain time delay. Locating deep signal sources
from a macroscale sensing protocol like FMG is difficult because
the superimposition of superficial and deep muscle deformation
is indistinguishable. Although microscale signals might be
noisier and harder to detect due to their faint magnitude, they
have a larger potential to allocate myography signals with higher
spatial resolution since their signal source is more dispersed in
the muscle. NIRS uses an optical method to detect microscale
signals from vessels inside the muscle in terms of spectrum
(Barstow, 2019). Microscale signal measurement for action
potentials and magnetic fields that propagate along the muscle
fibers are the most promising methods for high temporal and
spatial resolution for wearable applications, because they are
easy to fabricate with a standard CMOS process (Heidari et al.,
2015; Zuo et al., 2019; Zhang et al., 2021). PMG detects the
muscle fiber vibration on the microscale, which is adopted
in medical diagnosis and as an assistance method for EMG
(Orizio et al., 1996; Guo et al., 2017a; Ding et al., 2018).
State-of-the-art for these sensing technologies for MMI will be
introduced in the following sections regarding different muscle
signal forms.

Biomechanical sensing interfaces

Muscle contraction by the deformation of the muscle fibers
will directly bring some mechanical changes, including muscle
fiber length, cross-sectional muscle area, muscle shape, surface
tension, blood flow velocity, and the positions of vessels around
the muscle. Biomechanical sensing interfaces are classified as
sensors that interpret muscle information by detecting these
mechanical changes. This section investigates and methodically
compares the FMG, PMG, SMG, and EIT sensors.

Forcemyographic sensor

Forcemyography is a technology that deciphers the limbs’
movement by sensing the changes in muscle stiffness or the
tension formed on the skin surface due to the volumetric
changes caused by muscle contraction (Delva et al., 2020). FMG
signal acquisition can be achieved through different sensor
designs, with some examples given in Figure 4. The common
ones are piezo-resistance or resistive polymer-thick-film-based
(RPTF-based) sensor (Dordević et al., 2011; Xiao and Menon,
2014; Radmand et al., 2016; Dwivedi et al., 2019; Liang et al.,
2019a,b; Barioul et al., 2020; Prakash et al., 2020, 2021; Lei et al.,
2021), capacitance-based sensor (Meyer et al., 2006; Truong
et al., 2018), piezoelectric-based sensor (Han and Kim, 2013;
Farooq and Sazonov, 2017), optical-fiber based sensor (Fujiwara
et al., 2018), wide range stretch sensor/conductive rubber (Amft
et al., 2006; Bifulco et al., 2017). RPTF-based FMG sensor
accounts for more than half of the literature because this kind
of sensor has a relatively simple read-out circuit: the core design
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FIGURE 2

Three changes during the muscle contraction. (A) The biomechanical changes. Reproduced under terms of the CC-BY license (OpenStax,
2022). Copyright 2022, OpenStax College, published by Rice University. (B) Biochemical changes. (C) Bioelectrical changes. Reproduced under
terms of the CC-BY license (Ch. 10 Introduction – Anatomy and Physiology | OpenStax). Copyright 2022, OpenStax College, published by Rice
University.

includes a voltage divider with a buffer, which facilitates its
application as a low-cost, high-density array configuration (Xiao
and Menon, 2019).

Because FMG senses the volumetric changes of muscle,
a relatively low sampling rate is enough. Most researchers
set the sampling frequency to 100 Hz, but a study by Lei
et al. (2021) shows that 5 Hz is enough for static finger
movements. A low sampling rate might mean that FMG might
have a limitation in classification latency. Researchers have also
shown that increasing the number of FMG recording channels

can significantly increase the accuracy of gesture classification
(Radmand et al., 2016; Lei et al., 2021). The Force sensing
resistor (FSR, Interlink Electronics, Inc, Camarillo, CA, USA)
is the most wide-use commercial product of RPTF.

Forcemyography is one of the most readily collected muscle
signals, because of its high SNR compared to other muscle
signals. Recently, on a low-cost FMG wearable device composed
of a pair of FSRs, researchers have achieved an overall success
rate in two different gesture recognition sets with six gestures in
each group more than 95% (Prakash et al., 2020). A two-layer
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FIGURE 3

Examples of myography sensing technologies from macroscale
to microscale.

array with 14 capacitive sensors was also explored for recording
FMG, which achieved 95% classification in an experiment with
20 participants and 15 gesture classification accuracy (Truong
et al., 2018). Benefiting from their array design, they also verified
the algorithm for determining the relative position of the
wristband on the arm and found out that the loss of classification
performance caused by different wearing positions of the sensor
array could be eliminated through such an algorithm. Finally,
they achieved an accuracy of 92.4–99.5% in eight location
divisions. A High-density FMG (HD-FMG) has been developed
for prosthetic control (Radmand et al., 2016). They used an array
with 126 recording positions placed on the forearm to acquire
the pressure map of the entire arm, which was then classified
into eight motions. It achieved an error rate of 0.33%. They also
found that the accuracy of classification can be improved by
selecting the appropriate location of the FMG sensor array to
reduce the influence of external pressure.

Although FMG has a high SNR, it still faces many problems.
If a small number of sensors are used, the spatial resolution
is low, resulting in being more susceptible to adjacent muscle
crosstalk and fatigue (Grushko et al., 2020). At the same time,
RPTF, which occupies the leading market position of FMG,
has undeniable non-linear characteristics, so its sensor readings
cannot be directly correlated with muscle stiffness, which
makes precise normalization within an RPTF-based sensor array
difficult (Xiao and Menon, 2019). Therefore, it is urgent to
develop a more linear and stable sensor that records the pressure
signal more consistently to eliminate the effects of differences
between users and application scenarios. Another point is that
FMG is easily affected by external forces. Even if only a small
force is applied, the accuracy of FMG in the classification test
will be drastically reduced (Radmand et al., 2016).

Phonomyographic sensor

Phonomyography (PMG, mechanomyography, MeMG,
acoustic myography, sound myography, vibromyography)

records low-frequency small vibrations of muscle fibers
generated during contractions. The history of modern
development and applications of PMG technology began in the
1980s, summarized by Stokes and Blythe (Orizio, 1993; Stokes
and Blythe, 2001). Phonomyography and FMG are often easy to
confuse. FMG is a more static signal independent of frequency,
while PMG signal is wide in the frequency spectrum. One
example of the experiment setup for PMG is shown in Figure
5A1 (Guo et al., 2017a).

Many reports have proven that PMG can quantitatively and
non-invasively reflect muscle activity (Cochrane-Snyman et al.,
2016; Lozano-García et al., 2018; Keller et al., 2019; Mialland
et al., 2021). The muscle vibrations first reach a peak due to
the profound changes in muscle shape, producing a series of
lateral resonances in the muscle fibers (Orizio, 1993). These
vibrations with frequencies ranging from 5 to 100 Hz and
a displacement amplitude of about 500 nm can be obtained
through contact transducers such as microphones, piezoelectric
sensors or an accelerometer placed on the skin over the belly
of the muscle (Wilson and Vaidyanathan, 2017; Esposito et al.,
2018; Keller et al., 2019). The structure of the PMG sensor using
a microphone is shown in Figure 5A2. To properly acquire the
PMG signal, the sampling frequency should be set to higher than
200 Hz, according to the Nyquist–Shannon sampling theorem.

Phonomyography possesses several advantages over other
muscle sensors as a control input source for active powered
prostheses. PMG is relatively easy to set up. Because of their
contactless measurement, it is less susceptible to changes in
skin conditions (such as skin quality and sweating). However,
artifacts caused by the movement of the sensor and the noise
of the surrounding environment bring significant challenges to
its accuracy (Silva et al., 2005; Wilson and Vaidyanathan, 2017).
Actually, using a PMG sensor alone is not enough to control a
dexterous robotic arm, considering its relatively low accuracy.
Still, when combined with EMG, higher overall accuracy can
be achieved because EMG and PMG do not interfere with each
other. A hybrid EMG-PMG system is illustrated in Figure 5A3.
This hybrid method works as a multimodal input source that
can provide supplementary information about muscle activity
(Silva et al., 2005; Guo et al., 2017a; Grushko et al., 2020).
The SNR can also be improved using a pair of accelerometer-
microphone sensors (Silva and Chau, 2003). In summary, using
PMG alone as an MMI is not feasible at this stage and requires
the combination of PMG with other MMI sensors to achieve an
effective level of control. In sensor fusion, PMG is used more as a
secondary technology to enhance the accuracy of other sensors.

Sonomyographic sensor

Sonomyography is a relatively recent technique in studying
muscle anatomy and physiology that utilizes ultrasonic
transducers to measure muscle activity. The method as a whole
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FIGURE 4

Different types of FMG sensors. (A) RPTF-based sensor. Reproduced with permission (Prakash et al., 2021). Copyright 2020, Elsevier; (B) high
density piezo-resistance sensor array. Reproduced with permission (Radmand et al., 2016). (C) Capacitance-based sensor (Truong et al., 2018).
(D) Piezoelectric-based sensor. Reproduced with permission (Han and Kim, 2013). Copyright 2013, Elsevier. (E) Optical fiber-based sensor
(Fujiwara et al., 2018). (F) Wide range stretch sensor. Adapted from Bifulco et al. (2017). Copyright 2017, IEEE.

is quite simple since it utilizes the principles of ultrasound, the
pulse-echo phenomenon, and the piezoelectric effect to create
an ultrasonic wavefront that travels from the transducer to the
muscle, which is then reflected, sensed and further processed
by the same device. The critical elements of any transducer
or ultrasonic sensor are its backing, piezoelectric material, and
acoustic matching layer, as demonstrated in Figure 6A.

Sonomyography was first presented in Zheng et al. (2006)
where the main objective was to replace EMG-controlled
prostheses with SMG-controlled ones, which is shown in
Figure 6B. An ultrasound image of this type of experimental

setup is also presented in Figure 6C. Within this study, some
of the main challenges of using EMG were highlighted, such
as the fact that it is sometimes an invasive technique, mainly
when using needle electrodes, its inadequacy at the time
of distinguishing the distinct movements of different muscle
groups and its inability to gather signals from deep-in-the-body
muscles. This is where the authors hypothesized SMG could be
an alternative.

Within the last decade, more research has been conducted
on SMG for various applications, and it has been shown to
have great potential in studying muscle structure and function.
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FIGURE 5

(A) The PMG system: (A1) The placement of a hybrid EMG-PMG sensor on an amputee. Adapted from Guo et al. (2017a). Copyright 2017, IEEE;
(A2) An illustration of PMG sensor; (A3) An illustration of PMG sensor working with surface electromyography (hybrid EMG-PMG). (B) The EIT
system: (B1) wrist-band setup for EIT system; (B2) the illustration of two-terminal configuration measurement; (B3) the illustration of
four-terminal configuration measurement. (C) NIR system: (C1) the portable NIRS optic array developed by Everdell et al. (2013) A: light source,
B: photodiode detectors. Reproduced with permission (Everdell et al., 2013). Copyright 2013, Elsevier; (C2) Operation principle of SensIR: one
emitter is on, and all the receivers will capture the scattering light through the tissue, which is repeated for all the emitters. Adapted from
McIntosh et al. (2017). Copyright 2017, ACM; (C3) illustration of NIR sensor.

Studies have shown this technique provides robust signals with
high specificity and better penetration depth than EMG and
sub-millimeter spatial resolution, whilst still being non-invasive
(Seo et al., 2016; Yang et al., 2018; Akhlaghi et al., 2020). In
addition, research has also shown the potential of SMG as
a complementary tool to more established methods such as
surface EMG (sEMG). Studies have demonstrated its ability to
detect with significant precision structural changes within the
muscular architecture when maximal voluntary force is exerted.
Combining this information with the one obtained from other
biomedical signals/images can better assess muscle fatigue (Shi
et al., 2007a).

In recent years, SMG is becoming more widely used
within the rehabilitation engineering sector because it provides
accurate, quantitative information relating to structural changes
in the muscles. Various research groups have utilized this
technique to study the difference between electrically induced
muscle contractions versus voluntary contractions (Qiu et al.,
2017; Sheng et al., 2021). This can be used to understand better

how different muscular contractions of paralysis patients are
to those who are healthy, meaning that their rehabilitation
process could potentially be optimized to obtain more similar
contractions to those of healthy patients. Furthermore, SMG
also offers the advantage of overlooking electrical noise, unlike
EMG sensors, meaning that there would be no crosstalk
between stimulation impulses created by Functional Electrical
Stimulation (FES) and the output generated by the contractions
(Grushko et al., 2020).

The use of SMG as a muscle thickness analysis tool is
typically the most common within the biomedical imaging
sector. Notwithstanding, other parameters can be derived from
the muscle thickness, which demonstrates the ability of SMG to
provide diverse information about the muscular structure and
function. One example of a quantitative parameter could be
the wrist angle. There have been studies that have shown how
to derive the wrist angle from the changes in the thickness of
the forearm muscles (in particular, the extensor carpi radialis)
(Shi et al., 2007b; Xie et al., 2009; Guo et al., 2013). Such
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FIGURE 6

(A) Schematic of an ultrasonic transducer. Adapted from Sanchez et al. (2021). Copyright 2021, IEEE; (B) Experimental set-up by Zheng et al.
(2006). Reproduced with permission (Zheng et al., 2006). Copyright 2006, Elsevier; (C) the cross-section and ultrasound image of the forearm
muscles by Akhlaghi et al. (2016). Adapted from Akhlaghi et al. (2016). Copyright 2016, IEEE; (D) the photo of wearable ultrasonic sensor
developed by AlMohimeed and Ono (2020). Reproduced with permission (AlMohimeed and Ono, 2020). Copyright 2006, MDPI; (E) schematic
of the flexible, single-element ultrasonic transducer by AlMohimeed and Ono (2020). Reproduced with permission (AlMohimeed and Ono,
2020). Copyright 2006, MDPI.

information could be of great value since it could be used for
MMI. Studies have shown that the information obtained from
real-time SMG can go through a classification algorithm to
determine the different grips the user wants their prosthesis to
execute, resulting in an accuracy percentage of 93% over eight
trials from five test subjects each (Sikdar et al., 2014; Akhlaghi
et al., 2016; Bimbraw et al., 2020). This information can also
be applied to assistive MMI that can aid in the rehabilitation
process of patients through the creation of interactive and
engaging therapies (Akhlaghi et al., 2020; Yang et al., 2020).
A flexible and wearable ultrasonic sensor for detecting muscle
contractile that was developed by Al-Mohimeed has been shown
in Figures 6D,E.

To add to this, research groups like Wang C. et al. (2018)
have taken the ultrasonic approach and combined it with
stretchable, ultrathin materials to monitor in a non-invasive
manner central blood pressure, demonstrating the adaptability
and potential of wearable ultrasonic devices.

It is, therefore, undeniable that SMG has great potential,
not only in terms of diagnosis of myopathies and peripheral
nervous system damage but also as a complementary tool for
assistive/rehabilitation engineering, where it can aid patients
suffering from paralysis or amputation using techniques
ranging from MMI.

Electrical impedance tomography

Electrical impedance tomography measures the impedance
distribution inside the object in real time by measuring the
impedance between a set of electrodes placed on the object’s
surface. The measurement configuration and an example of
EIT are presented in Figure 5B. EIT was first proposed by
Henderson and Webster (1978). It was then widely used in
medical diagnosis because of its non-invasive, non-radiation,
and low-cost characteristics (S Holder, 2004; Ma et al., 2020).
Body movements will cause deformations of muscles, and
thus the impedance distribution inside the body will also
change. The body movements can be inferred by interpreting
the changes in EIT images. There are many measurement
methods for EIT, the most common of which are two-terminal
and four-terminal schemes, as shown in Figures 5B2,B3

(Ma et al., 2020). The Two-terminal scheme uses the Volt-
ampere method to measure impedance, and only one pair of
electrodes is required for each measurement. This method is
relatively simple, but the measurement will significantly affect
the electrode contact surface, so a larger electrode is usually used
to increase the contact area. The Four-terminal scheme uses
Kelvin Four-terminal sensing. In this method, a pair of adjacent
electrodes is used for AC excitation and current measurement
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for each measurement, and then the impedance is calculated
by measuring the voltage between the remaining electrode
pairs. The Kelvin four-wire test can make more accurate
measurements. Its key advantage is that the separated current
and voltage electrodes eliminate the impedance of wiring and
probe contact resistance, making this method less sensitive to
changes in skin conditions (Grushko et al., 2020).

The first trial to use EIT for MMI was by Zhang and
Harrison (2015). They proposed an EIT system that can be
worn on the wrist, called Tomo. The first generation of Tomo
integrates eight electrodes and uses the two-terminal scheme
measurement method, achieving 96.6% accuracy in 11 gesture
recognition tasks. Later, they upgraded Tomo by increasing
the number of electrodes and using a four-terminal scheme
measurement (Zhang et al., 2016). Wu et al. (2018) optimized
the design of the measurement system, using four-terminal
schemes so that a minimum of 6.4 Ohm impedance change can
be detected, and this system achieved 98% accuracy in 19 gesture
classification tasks. EIT can also be used for force detection.
Zheng et al. (2019) achieved continuous force measurement
through EIT and sigmoid regression with 16 electrodes. Two
EITs can be combined to form a 3D EIT system (Yang et al.,
2018). The experiment of Jiang et al. proves that the 3D EIT
system can more accurately classify certain gestures that are
difficult to distinguish by a single-layer EIT system and show
better clustering ability (Jiang et al., 2020).

One of the challenges faced by EIT is that as the number
of electrodes increases, the time required to reconstruct the
impedance distribution will also increase, which inevitably
brings a delay. Ma et al. (2020) proposed a new drive pattern that
uses fewer electrodes, which reduces the measurement time by
60% without a significant drop in accuracy. Another challenge
is that everyone’s baseline conductivity differs, and each person
needs to be tuned individually before measuring. Otherwise, it
will affect the quality of the EIT images (Zheng et al., 2019).

Another technology similar to EIT is called Capacitance
Sensing. This technology is also realized by a set of electrodes
placed on the surface of the skin. However, unlike EIT, the
electrodes of Capacitance Sensing need to be insulated. A set
of fixed emitter electrodes in the array are used to generate an
excitation signal and pass the remaining electrodes to measure
the entire signal and obtain the whole body’s capacitance
in different directions. Muscle contraction will change the
distance between the electrodes and the conductivity of the
biological tissue between the electrodes, so the capacitance
between the electrodes will also vary accordingly. Different
muscle contractions will also cause various capacitance changes
in the array. The advantage of this technique over EIT is that
Capacitance Sensing does not require a lot of computing power
to calculate the capacitance distribution of the entire body
section, so the recognition delay may be relatively low. At the
same time, Capacitance Sensing is not sensitive to the contact
between the electrode and the skin because it measures opened

gaps. However, sweat will still affect its accuracy because sweat
will change the conductivity between the electrodes (Grushko
et al., 2020).

It should be noted that the absolute value of the capacitance
will change due to the relative movement between the sensor
array and the body. Therefore, in actual research, the accuracy of
Capacitance Sensing classification is not very high. In the study
of Cheng et al. (2012, 2013), a classification accuracy of 58% was
achieved for 36 sports modes. The accuracy of capacitance may
be achieved by increasing the number of electrodes (Grushko
et al., 2020).

Biochemical sensing interfaces

Muscle contraction brings not only physical changes but
also biochemical changes: muscle activities will change the local
oxygen concentration in the blood, causing structural changes
in hemoglobin and myoglobin, and thus change the scattering
of the muscles and vessels of certain light waves. Information
on muscle activities could also be interpreted by detecting these
biochemical changes using optical methods. The most common
technology in the literature is NIRS, based on optoelectronic
devices (Bianchi et al., 1999; Chianura and Giardini, 2010;
Fukui et al., 2011; Herrmann et al., 2012; Everdell et al., 2013;
Muhammed and Raghavendra, 2015; Gong et al., 2016; Guo
et al., 2016; McIntosh et al., 2017; Paleari et al., 2017; Wang H.
et al., 2019; Nsugbe et al., 2020; Nsugbe, 2021a). Some examples
of NIRS are shown in Figure 5C. Human tissues are basically
transparent under near-infrared light from 700 to 1,000 nm,
and the main chromosomes absorbed in skeletal muscle are
hemoglobin and myoglobin (Villringer and Chance, 1997).
Depending on whether oxygen is combined, the absorption rate
at near-infrared light of hemoglobin and myoglobin differs,
commonly referred to as hemodynamics (Nsugbe, 2021a). As
shown in Figure 5C3, after the near-infrared light generated by
the emitter is scattered in the tissue, the hemodynamics could
be detected and analyzed to show different muscle activities
(Barstow, 2019).

Near-infrared spectroscopy can easily be configured as an
array. The most traditional configuration method is that each
emitter corresponds to a receiver, which means that each
receiver is only responsible for receiving the infrared light
emitted by the neighboring and matching emitter. In this
operating mode, all emitters will emit light simultaneously,
and the information recorded by each receiver will be fed into
the classification algorithm simultaneously. Gong et al. (2016)
achieved 89% recognition accuracy of eight gestures by placing
12 infrared (IR) sensors near the wrist. A cyclic scanning method
is then adopted in the research done by McIntosh et al. (2017),
using a wristband around the arm with 14 emitters and receivers,
as shown in Figure 5C2. Only one emitter emits infrared light in
each recording. The light projected and reflected in the entire
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arm is recorded by all 14 receivers simultaneously and then
circulates in all emitters. Fourteen times is a complete recording
cycle. In this way, each cycle will generate 196 data, and then
they send these data into a multilayer-perceptron classifier for
learning and classification. They obtained a 93% accuracy rate
in the classification test of 12 gestures.

Literature shows that the classification accuracy of sEMG
can be improved when combined with NIRS (Attenberger and
Buchenrieder, 2012; Guo et al., 2017b; Paleari et al., 2017; Scano
et al., 2019; Nsugbe et al., 2020). Because the distance between
the emitter and the detector will determine the depths of IR
light scattering, absorption and return to the sensor, there is
a potential capability of NIRS to remedy sEMG’s shortcoming
in deep muscle detection (Paleari et al., 2017). At the same
time, NIRS may also solve the problem of a decrease in the
classification accuracy of EMG due to adjacent muscle signal
interference and electronic interference (Guo et al., 2017b;
Paleari et al., 2017; Nsugbe et al., 2020). Using sEMG and
NIRS in combination, an accuracy rate of 92.2% was achieved
in the experiment to determine the state of the three hands,
far exceeding the accuracy rate of 73.3% when using EMG
alone (Guo et al., 2017b). Experiments on three amputees also
proved that the combination of NIRS and EMG improved the
accuracy by about 15% in the classification test of 10 gestures
compared with EMG-only. However, the tricky point is that by
changing the distance between the emitter and the sensor, one
can control the depth of detection, the most effective detection
range is still limited to the superficial muscles, limiting their
ability to interpret deep muscle information. Other biological
tissues between the sensor and the muscle may also affect NIRS
(such as skin with different pigments). At the same time, the
deformation of the muscles during contraction may also change
the light scattering (Barstow, 2019).

It is worth noting that there is another muscle interface
based on optoelectronic sensors, Photoplethysmography (PPG)
or some called Optomyography (OMG) (Muhammed and
Raghavendra, 2015; Brennan, 2020; Zhao et al., 2021). PPG uses
a different way to interpret the effects of muscle activity on
photoelectric signals. This technology does not detect changes
in chromophores in human tissues but detects the relative
displacement of blood vessels and blood flow. Especially in
terms of the muscle activity of the hand, the flexor digitorum
superficialis and flexor hallucis longus, which control the hand
activity, are located just beside the radial artery and the ulnar
artery. The muscle activity will squeeze the blood vessels,
causing vessel displacement and blood flow changes, and thus
hand movements can be reflected in PPG. PPG detects the
mechanical changes produced by muscles. We put it in this
chapter to better compare the different interfaces based on
photoelectric systems. The technology is still in its early stage,
and related research is few. Zhao et al. (2021) used two
PPG sensors combined with a series of algorithms to remove
pulsation and body movement interference and achieved an

average accuracy of 88.32% for nine postures. In addition,
researchers proposed a sensor that measures facial muscle
deformation by measuring changes in the light path (Tamee
et al., 2013). In this research, three sensors are combined and
attached to the subject’s forehead for muscle diagnosis or control
auxiliary equipment, but the system lacks relevant experiments
to prove its feasibility. Apple Inc. also uses this technology to
control its wristband system, but the experience remains to be
seen (Brennan, 2020).

One obvious advantage of NIRS/PPG is that there are many
wristband products embedded with optoelectronic sensors
on the market. Although further research is needed, these
photoelectric sensor-based devices have great potential to
become the widely used MMI. Nevertheless, ambient light easily
affects optoelectronic devices, so good contact between the
sensor and the skin is required to block external light (Grushko
et al., 2020).

Bioelectrical sensing interfaces

Neurotransmitters released from the nerve-muscle junction
depolarize the muscle fibers and trigger contraction. During this
process, the potential on both sides of the membrane of the
muscle fiber changes, while a local current is generated. In this
section, we will describe the EMG, which detects the change
in potential, and the MMG, which detects the magnetic field
generated from the local currents.

Electromyographic sensor

Electromyography is a method to record the electrical
activity of muscles (Reaz et al., 2006). The history of the EMG
signals dates back to the 1660s when researchers noticed that
the muscles of an electric ray fish could generate electricity
(Basmajian and de Luca, 1985). Researchers document the
correlation between muscle contraction and electricity in the
following 200 years. Nevertheless, it was not until 1890 that the
first recording of the electrical activity in a muscle was made
by Marey, who introduced the term electromyography (Clarys,
1994). In the 1960s, the EMG signals received more attention,
mainly due to the improvements in the recording systems, and
were adopted for clinical applications, e.g., in the diagnosis
of Huntington’s disease, myopathies and muscular dystrophies
(Merletti and Farina, 2009; Narayan et al., 2015; Sadikoglu et al.,
2017; Vomero et al., 2018; Rodríguez-Tapia et al., 2020).

Each muscle is innervated by a various number of motor
neurons, and every neuron supplies a wide range of muscle
fibers in a muscle depending on its function nature. Each motor
neuron and the muscle fibers are innervated by the axon of the
motor neuron called the motor unit. The number of muscle
fibers innervated by a motor neuron in a particular motor
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unit indicates how fine or precise the motor unit’s movement
is. The excitation signal of a motor neuron is approximately
equivalent to a digital signal, and the signal generated by
the activated muscle fibers is called a phase signal. Motor
neurons have different firing frequencies and different peak
characteristics of the signal. Thus, when muscle contracts,
multiple digital signals with different frequencies will excite the
muscle fibers to produce multiple phase signals, and when the
endogenous/exogenous noise is included, the EMG signal is
obtained. Therefore, the macroscopic EMG signal is essentially
an interfering signal containing noise.

Electromyography can be divided into surface EMG (sEMG)
and invasive EMG (iEMG). sEMG is the most widely used
EMG recording system, especially within the academic sector.
It requires adhesive or dry electrodes to be attached to the
surface of the skin to pick up the electrical activity of muscles
(Drost et al., 2006). The sEMG signal is the algebraic summation
of volume conducted MUAPTs from different muscle fibers
(Rutkove, 2007). sEMG does not require surgical implantation,
so it is easy to wear and replace, which is more acceptable for
ordinary people in daily life. So, it has received great attention
from academia and industry, and Figure 7 presents examples of
existing sEMG technologies.

There are still some problems to be solved while using
sEMG. Motion artifacts caused by accidental arm or hand
movements or external vibrations, causing extra unwanted
signals, limit the application of sEMG in more precise and
smooth control (Bi et al., 2019). Usually, chronic recording
using sEMG requires frequent calibrations to ensure recorded
data consistency. The electrolyte and bio-fluid produced by
perspiration accumulated under the recording sites will change
the skin-electrode interface’s impedance, thus influencing the
signal characteristics (Muñoz et al., 2002; Hargrove et al., 2007).
This variation might bring problems when decoding sEMG into
MUAPTs. Another significant disadvantage of sEMG is that
signals for deeper or smaller muscles are hard to detect from
the skin’s surface. That is because MUAPTs need to penetrate
different layers of the body tissues to reach the recording sites,
causing unwanted blurring effects and degradation, making it
challenging to differentiate the source of the signal generated
in a muscle. The blurring effect causes relatively poor spatial
resolution, especially for large-size electrodes (Lewis et al.,
2013; Afsharipour et al., 2019). All these drawbacks limit the
development of sEMG as a more accurate, effective, and smooth
MMI or diagnostic tool.

Recently, some dry electrodes made with materials with
modulus, thickness, and other physical properties well-matched
to the skin have also been used to record sEMG (Kim et al., 2011,
2016; Liu et al., 2016; Nawrocki et al., 2018). These devices only
need to use Van der Waals force to firmly adhere to the skin
without any mechanical fixation or glue, which can effectively
reduce the impact of motion artifacts (Park et al., 2015; Wang Y.
et al., 2018). Although such electrodes can be reused, these novel

electrodes’ long-term stability still needs to be investigated (Kim
et al., 2016).

For sEMG, works have shown that a higher overall accuracy
and less latency of the control process could be achieved by
increasing the number of electrode sites to form a high-density
sensor array (Muceli and Farina, 2012; Amma et al., 2015;
Geng et al., 2016; Tam et al., 2020; Holobar and Farina, 2021).
A smaller number of sEMG systems will be more likely to
rely on frequency or time features and thus have limitations
on the sampling frequency, processing time windows, and
consequently higher latency. By having more sEMG electrodes
to cover a larger sampling area and thus obtain the spatial
domain features, less reliance on the time or frequency domain
ultimately improves the latency of the whole system (Xu et al.,
2016; Moin et al., 2021; Tam et al., 2021).

Because the EMG signal is relatively weak and contains
much noise, the read-out circuit needs to be carefully designed.
While appropriately amplifying the EMG signal, it is necessary
to remove the noise that comes with the signal and introduce
as little noise as possible on the line. The read-out circuits for
both surface and implantable EMG systems usually consist of
amplifiers, filters, and analog-digital converters (ADCs). The
maximum amplitude of the EMG signal is around 10 mVpp,
and the minimum is only 14 uVpp (Farnsworth et al., 2008).
For most bio-signal ADCs, the resolution is a few millivolts.
Therefore, an amplifier stage is needed to properly amplify
the EMG signal to make the best use of the ADC’s output
bits so that the signal after the analog-to-digital conversion
will have less distortion. The main component of the EMG
spectrum is between 40 and 600 Hz (Ruff et al., 2010; Ng
et al., 2020). When measuring EMG signals, there will be
some other unwanted interference signals. For example, the
movement artifacts between 1 and 3 Hz and the 50 Hz Mains-
hum from the power line (Ruff et al., 2010). Therefore, there
is usually a filtering stage to filter out unwanted frequencies to
reduce the ADC jitter after amplification. For on-chip integrated
multi-channel recording systems, analog multiplexers are also
essential (Han et al., 2013). The integrated circuit of the ADC is
more complex than amplifiers and filters, so if each channel is
equipped with an ADC, it will take up much area on the chip,
and the power consumption will also increase significantly. For
a wearable EMG system that integrates the electrodes with the
read-out circuit and other devices, the design lies in designing a
signal processing circuit with a more compact size, lower noise,
and lower energy consumption (Mastinu et al., 2015; Ng et al.,
2020).

Magnetomyographic sensor

With the rapid development of micro- and nanoscale
magnetic sensors, non-invasive recording of the magnetic
manifestation of muscle activity has become a reliable and
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FIGURE 7

(A) The sEMG electrode array and its experiment setup. Adapted from Moin et al. (2021). Copyright 2021, Nature; (B) ultra-flexible high-density
EMG measurement sheet. Adapted from Fuketa et al. (2014). Copyright 2014, IEEE; (C) Microneedle-Based High-Density Electrode Array.
Reproduced with permission (Kim et al., 2018). Copyright 2018, Sensors; (D) adhesive EMG electrode matrices (GR08MM1305, OT
Bioelettronica). (E) Bipolar electrode recording setup. Reproduced with permission (Esposito et al., 2018). Copyright 2018, Sensors; (F) gesture
classification using MyoBand. Reproduced with permission (Simão et al., 2019). Copyright 2019, Elsevier.

robust approach for biomedical applications since it has great
potential to improve medical diagnosis and health monitoring,
and to develop assistive/rehabilitation robotics where the HMI
can assist the disabled with limb difference to perform essential
activities of daily living (Zuo et al., 2020a). Detecting weak
magnetic signals derived from human skeletal muscle, was first
formally proposed in 1972 and it was called MMG(Cohen and
Givler, 1972). Scientists have recorded the magnetomyogram
signal as one component of the magnetic field vector for the
time at the point of measurement, in which the magnetic fields
are by cause of currents produced from the skeletal muscle
(Cohen and Givler, 1972; Masuda et al., 1999; Wijesinghe, 2014;
Barbieri et al., 2016a,b). Compared to a well-established EMG
technique, the MMG measurement has become an effective
alternative way due to its significantly higher spatial resolution
despite the same temporal resolution as the EMG signals. In
addition, the non-invasive MMG offers vector information of
the muscle movement, long-term biocompatibility with tissue, a
higher signal-to-noise, and better positioning and fast screening
of sensors without electric contacts (Zuo et al., 2020a).

The magnitude of EMG signals is on the scale of milli-
volts. However, the MMG signal is in the range of femto
(10−15) to pico (10−12) Tesla, inversely proportional to the
distance between the measurement point and the skeletal muscle
(Garcia and Baffa, 2015). The vision of using the principles of
magnetism to overcome the challenges of recording electrical
signals from the peripheral muscle system is building up
incredible momentum. In 1972, Cohen and Givler discovered
the MMG signals using superconducting quantum interference
devices (SQUIDs) performed in a large magnetically shielded
room, as shown in Figure 8A (Cohen and Givler, 1972). Later
on, Reincke investigated the neuromuscular system in humans
using a SQUID magnetometer with a second-order gradiometer
detector, as illustrated in Figure 8B (Reincke, 1993). However,
the ultra-high cost of the devices and the complexity of the
setup, requiring a temperature-controlled environment with
the removal of the magnetic background noise, limit the
spread of this sensing technique. Multiple magnetic sensing
techniques have been widely explored over the past years as
an effective alternative pico-Tesla biosensing approach at room
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FIGURE 8

A graphical overview of the weak MMG detection from skeletal muscle. The figure shows the miniaturization pathway from bulky SQUIDs to
spintronic nanoscale sensors. (A) SQUID magnetometer. Reproduced with permission (Cohen and Givler, 1972). Copyright 1972, Elsevier (B),
Room SQUID system. Reproduced with permission (Reincke, 1993). Copyright 1993, Biomed Tech (Berlin), (C) OPM based on the zero-field
resonance of spin-polarized rubidium atoms in. Reproduced with permission (Broser et al., 2018). Copyright 2018, IEEE, (D) OPM array.
Reproduced with permission. (E) Spintronics sensor based on GMR effect. Reproduced with permission (Barbieri et al., 2016b). Copyright 2016,
Springer Nature, (F) TMR sensor array with 1102 TMR elements are connected in 38 series and 29 parallel. Reproduced with permission (Zuo
et al., 2020b). Copyright 2020, IEEE.

temperature (Zuo et al., 2020a). Recently, optically-pumped
magnetometers (OPM), from competing manufacturers, e.g.,
QuSpin Inc., FieldLine Inc. and Twinleaf with a below 100
fT/
√

Hz sensitivity (Figure 8C) (Alem et al., 2015; Boto et al.,
2017), were implemented to record evoked MMG signals to
study the innervation of the nerves in hand muscles of human
subjects (Broser et al., 2018; Elzenheimer et al., 2020). It has been

utilized to analyze the signal conduction in muscular fibers and
the spatio-temporal dynamics of the magnetic field generated
by the propagating muscle action potential. Unfortunately,
current OPM technology mandates heating the sensor, resulting
in surface temperatures of around 40◦C, and requires the
background magnetic field to be below ∼50 nT – well below
the Earth’s magnetic field and typical noise sources (line noise,
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equipment noise, elevators, cars, etc.). As shown in Figure 8D,
the recent achievement in a regular hospital examination room
was by using a portable magnetic shield that only encompasses
the arm of the subject.

Magnetic sensors based on the spintronics effect have been
widely explored over the past years as an effective alternative
pico-Tesla biosensing approach at room temperature.
Spintronics studies a fundamental property of electrons
known as their spin. Some materials exhibit spin-related
magneto-resistive properties at room temperature. That is,
their electrical resistance is a function of the magnitude and
the direction of the applied magnetic field. This phenomenon
has led to the development of a spintronic sensor that can
detect pico-Tesla level magnetic fields, appropriate for MMG
sensing. The physical size of a typical spintronic sensor
is significantly smaller than that of a SQUID or an OPM.
Recently, giant magnetoresistance (GMR) sensors were used
to record the MMG signal from the surface of a muscle in
mice (Barbieri et al., 2016b), as demonstrated in Figure 8E.
However, the sensitivity of GMR sensors is in the nano-Tesla
range, and thus averaging was required to enhance the SNR.
Recent developments in physics and materials promise a new
class of solid-state spintronic sensors based on the tunnel
magnetoresistive (TMR) effect to sense pico-Tesla/

√
Hz

magnetic field (Freitas et al., 2007, 2016), which are faster,
more reliable and of lower power than the existing spintronic
sensors. A recent study is shown that, for the first time,
identification, characterization, and quantification of the MMG
signals at room temperature through an ultra-miniaturized
and highly sensitive TMR sensor array (1,102 elements), as
shown in Figure 8F1 (Zuo et al., 2020b). An enlarged image
with a size of 100 × 100 µm per TMR element is illustrated
in Figure 8F2. The sensor array was precisely placed on the
hand skin of the abductor pollicis brevis muscle to record the
lateral component of the magnetic signal at room temperature.
Further development of this technique is highly dependent on
isolating the weak biomagnetic signals from background noise
and canceling the geomagnetic field in real-time. In addition, to
avoid the effects of movements as much as possible, implantable
MMG sensors would be more appropriate for HMIs, such as
the control of prosthetic limbs, to reduce the effect of muscle
movement.

Discussion and outlook

As reported above, various myography sensing technologies
for wearable MMIs have been developed and investigated
by interpreting different muscle signal forms during the
past decades. This creates more convenient and comfortable
applications for healthcare, assistive/rehabilitation robotics, and
human augmentation. However, there are still challenges that
need to be conquered to achieve more natural and accurate

measurements. Super-resolution provides a novel benchmark
to design the hardware of myography, opening a realm
of applications in which wearable MMI sensors can offer
advantages. The super-resolution is reflected in two aspects:
(a) a high-density sensor array for collecting clear signals
over a large area and (b) the ability to detect signals from a
certain depth or distance. In the following, we present a cross-
sectional comparison of the vulnerability and the detectability
of the mentioned wearable MMI sensors as super-resolution
myography. We then briefly investigate the continuous model
and the fusion of different sensors as the future development
with super-resolution.

Vulnerability

Stable and repeatable recording of the muscle signal plays
a key role in MMI applications. For wearable devices, noise
and interference introduce huge variations and distortion on
the path of signal from the source to the sensor, which comes
from four places: tissue, interface, device, and environment.
The scattering effects and properties altering in the biological
tissue bring distortions and changes to signal. The condition
modification and relative displacement of the interface between
the sensor and the biological tissue cause drift and inconsistency
of the signal. Noise introduced by the sensor and its readout
circuit hinder a higher sensor detection limit. The interference
from other identical sources in the environment may drown out
the weak biosignals from the muscle and introduce a large DC
component. These factors of vulnerability are summarized from
the previous sections and compared in Figure 9A.

FIGURE 9

Comparison of different myography sensor. (A) Types of
interference to which various sensors are subjected; (B) the
sensor size and detection depth for different myography
sensors. The unit “mm2,” “cm2,” and “dm2” stand for squared
millimeter (10-6 m2), squared centimeter (10-4 m2), and squared
decimeter (10-2 m2), respectively.
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In the comparison, it is noted that all devices are affected by
electronic noise, motion artifacts, and physiological alteration,
probably because these factors are on the obligatory path of all
signal forms. Physiological alteration includes muscle fatigue
and the loss or increase of muscles, fat, or any other tissue
between the sensor and the source muscle. These alterations
change the transmission properties and thus influence the
signal quality. Motion artifacts mean changes in the relative
position of the sensor and the muscle, resulting in a different
transmission path of the signal from source to sensor. The
high-density sensor array used in the super-resolution design
promises to solve this problem: by mapping a full muscle
scale signal, the shifting of any device can be monitored by
a designed algorithm, which keeps track of the shifting of a
reference pattern (Xiao and Menon, 2019). Electronic noise
includes thermal noise, flicker noise, and power line noise in
the sensor system. Electronic noise has different influences
on different MMI sensors. Sensors measuring biomechanical
signals are relatively less affected as these signals tend to be
more pronounced and thus have a relatively higher SNR.
External forces, sounds (vibrations), light, electrical potentials
from stimulation and magnetic fields from the earth and other
surrounding devices are ambient interference for FMG, PMG,
NIRS/PPG, EMG, and MMG, respectively, which largely affects
the practical applications of MMI. The contact condition also
influences sensing technologies like FMG, EIT, NIRS/PPG, and
EMG because they require direct contact with the tissue to
measure the signal. Vibration, electrical fields, and light signals
will be scattered inside the tissue and result in the blurring
of signals, which is a challenge for these sensing technologies
(SMG, EIT, NIRS/PPG, EMG) to have higher resolution in
depth.

Among all the sensors, although EMG sensors are affected
by all the interference, they are still commonly used with good
performance due to their low-cost and relatively simple setup
for a high-density array to compensate for various disturbances.
The recent advances on the remaining sensors with fewer
interference terms could offer good prospects and provide more
accurate control than EMG.

Detectability

Spatial resolution, defined as the capability of distinguishing
adjacent muscle signals, is one of the criteria for detectability
as super-resolution myography. Different muscles play different
roles during limb movement, and accurate identification of the
activity patterns of different muscles can help to understand
the antagonism between muscles. It is shown that further
miniaturizing the sensor and increasing the density and channel
number into an array form can increase the system’s spatial
resolution and overall accuracy due to more features in the
recorded signal (Tawil et al., 2011; Muceli and Farina, 2012;

Radmand et al., 2016; Reermann et al., 2019; Grushko et al.,
2020; Lei et al., 2021). The comparison is made in Figure 9B,
showing the size level of different sensing units. Sensing
technologies like EMG, MMG, and SMG that detect microscale
changes during muscle activities could achieve a smaller sensing
unit and thus might have the potential to possess higher spatial
resolution. On the one hand, the combination of algorithms
and electrode arrays can better adapt to signal variations due to
sweating, muscle strain, sensor misalignment, etc. (Amma et al.,
2015; Truong et al., 2018; Moin et al., 2021). Studies have shown
that the high-density EMG technique can effectively counteract
the problem of signals from some small muscle groups being
masked due to crosstalk (Muceli et al., 2015; Radmand et al.,
2016; Wei et al., 2019). On the other hand, the higher spatial
resolution results in more local properties picked up. If a small
number of sensing units are used to record muscle activity in a
limited area, the final measurement may be over-pronounced by
the activity locally. The high spatial selectivity might also bring
the problem that it is easily affected by motion artifacts and the
offset between the sensor and recording location (Klotz et al.,
2022).

Non-invasive deep muscle detection is another metric
for super-resolution myography, allowing more deep muscle
activity to be recorded without surgery and improving the
accuracy of interpretation (He et al., 2019; Yang et al., 2020).
The three levels of deep muscle detectability have been assigned
to every MMI sensor: shallow, deep and tomography, as shown
in Figure 9B. Due to a blurring effect and volume conduction,
EMG, PMG and FMG can only detect shallow muscles, while
NIRS/PPG could have different detection depths by changing
the distance between the emitter and the receiver. However, as
mentioned in section “Bioelectrical sensing interfaces,” the most
effective detection depth of NIRS/PPG remains on the surface
of the muscle. MMG has great potential to detect deep muscle
contractions as all body tissues are magnetically transparent, and
the magnetic fields propagate to the surface without distortion.
Nevertheless, further research needs to be carried out in this
research field, solving magnetic interference problems from the
surrounding environment. SMG and EIT could detect deep
muscles and even output the tomography of the detection
area. However, they are limited in real-time applications by a
relatively significant delay due to the complex process of raw
signals.

Table 1 summarizes the channel number, channel density,
classification performance, and power consumption for recent
sensing technologies. The channel density is acquired by
dividing the total channel numbers by the total sensing area.
So, this represents how much the number of channels in a unit
area could one sensing technology achieve. A higher spatial
resolution is expected when there is higher channel density. The
channel density of a high-density sensor array in literature is
normally larger than 0.25 cm−2 (like FMG, EMG, and EIT),
and the super-resolution sensor array is more than 10 cm−2
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TABLE 1 Recent typical works of each sensing technology and their performance.

Sensor type Work Channel
number

Channel
density

Number of
tasks

Accuracy Real-time Latency Power consumption

FMG Kahanowich and
Sintov, 2021

15 ∼0.15 cm−2 5 97.5% Yes 0.02 s Not mentioned

Ahmadizadeh et al.,
2019

16 ∼3.3 cm−2 6 88.0% No – Not mentioned

Truong et al., 2018 15 ∼0.4 cm−2 15 95% Yes 0.015s 69 µW

Radmand et al., 2016 126 ∼0.9 cm−2 8 99.7% No – Not mentioned

Dementyev and
Paradiso, 2014

15 Not known 5 80.5% Yes 1.6 s 60.7 µW

PMG Al-Timemy et al.,
2022

8 Not known 14 88% No – Not mentioned

SMG Bimbraw et al., 2020 1 – 4 93% Yes Not mentioned Not mentioned

AlMohimeed and
Ono, 2020

1 ∼5 cm−2 – – – – Not mentioned

Wang C. et al., 2018 20 ∼33 cm−2 – – – – Not mentioned

Yang et al., 2018 4 Not known 11 95.4% Yes 0.243 s 6 W

PPG Zhao et al., 2021 2 Not known 9 98% Yes 0.601 s s 310 mW

EIT Chen et al., 2021 16 Not known 11 98% Yes Not mentioned Not mentioned

Jiang et al., 2020 16 Not Known 8 99.5% No – 1.1 W

Ma et al., 2020 8 Not known 11 97.5% No – Not mentioned

Zhang and
Harrison, 2015

8 Not known 8 96.6% Not mentioned – 50 mW

NIRS Nsugbe, 2021a 14 ∼0.1 cm−2 4 56% No – Not mentioned

McIntosh et al., 2017 14 ∼0.1 cm−2 12 93.3% No – 450 mW

Guo et al., 2017b* 4 Not known 10 85% Yes 1.62 s 280 mW

EMG Godoy et al., 2022 16 Not know 6 91.66% Yes 0.00126 s Not mentioned

Moin et al., 2021 64 0.27 cm−2 21 92.87% Yes 0.1 s ∼150 mW

Wu et al., 2021 1 Not known – – – – 4.735 mW

Fuketa et al., 2014 16 ∼0.9 cm−2 – – – – 30 µW

MMG Zuo et al., 2020a 1 ∼4.2 cm−2 – – – – Sub-mW

*This work contains a hybrid of NIRS and EMG. The accuracy presented here is obtained under NIRS-only working mode. However, the power consumption is obtained in hybrid
EMG-NIRS working mode.

(like SMG and MMG). Additionally, the number of sensor
arrays depends on the number of ADC channels. There are
two standard configurations: (1) one ADC for each sensor unit,
which is simple but takes up a lot of space and is power-hungry
with the high number of channels; (2) one ADC for multiple
sensors by sharing a common reference or using a multiplexor
for switching sensors, called a line scanning structure (Lei et al.,
2021).

Table 2 compares sensors in terms of size, high-density
configuration, and non-invasive deep muscle detectability—
which are the three most important parameters of super-
resolution. PMG and PPG do not have high-density array
implementations yet, which might be due to their relatively
large sensor size. EIT is inherent with multiple electrodes. Only
three sensing technologies are reported to have deep muscle
detectability—SMG, EIT, and MMG.

Detectability is also influenced by the position in which
the sensor is worn. The location of the signal recording is also

debated for recording electrical signals. Some researchers place
the sensor near the wrist during signal recording. In this way, the
signal loss is less since the muscles’ tendon part is concentrated
here, and the biological tissue is relatively thinner (Liang et al.,
2019a; Mendez et al., 2021). Instead, other studies suggest that
the signal is smaller in the wrist and should be recorded in the
muscle belly, the most active part of the muscle (Farina et al.,
2014; He et al., 2019; Holobar and Farina, 2021).

Future of the super-resolution
myography

Super-resolution myography sensing has opened a realm of
MMI applications with enhanced vulnerability and detectability
by utilizing a high-density sensor array for the detection of
deep muscle. Future development of super-resolution sensors
will open new possibilities for the next generation of myography
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TABLE 2 General comparison between myography sensing technologies.

Sensor
type

Signal
feature

Typical sensor
size

High-density
array

Non-invasive deep
muscle detection

Portability Typical power
consumption

Typical hybrid
pair

FMG Biomechanical Small Yes No Yes Low sEMG

PMG Biomechanical Large No No Yes Medium sEMG, NIRS

SMG Biomechanical Small Yes Yes Yes High –

PPG Biomechanical Large No No Yes High –

EIT Biomechanical Large No Yes Yes High –

NIRS Biochemical Large Yes No Yes High sEMG, PMG

sEMG Bioelectrical Medium Yes No Yes Low FMG, PMG, NIRS

MMG Bioelectrical Small Yes Yes Yes Low –

and make it more practical for versatile applications. In this
section, we discuss several potential research themes which
could further revitalize super-resolution myography, including
continuous models to help in a more natural control process
and sensor fusion to help compensate for the detection between
different sensing technologies.

Continuous model
Most MMI use the pattern recognition approach to decode

motion. As a result, different MMI could be compared by the
accuracy of classification tasks. Nevertheless, the accuracy of
the classification tasks for the current MMI technology is all
relatively high (around 90% or higher) and do not offer a
significant difference from each other, as shown in Table 1.
Since human limb movements are continuous in practical
applications, involving multiple degrees of freedom (DOF) of
the joints, the parameter space describing these limb movements
is often continuous. However, the MMI control set based on
pattern classification is limited to a singular decision, and these
classifications are only rough discrete approximations of the
continuous parameter space. Such discrete approximations can
hinder multi-degree-of-freedom control contexts and can also
be detrimental to the accuracy of proportional control (Jiang
et al., 2012). Support Vector Regression can address this issue
to some extent (Ameri et al., 2014; Kadkhodayan et al., 2016).
Recently, researchers have successfully validated convolutional
neural networks to decode complex wrist movements with three
DOFs effectively (Yang et al., 2019). Besides, a study also shows
that regression provides a better user correction of control
commands than classification (Hahne et al., 2017).

One of the most critical drawbacks in the field of MMI due to
the extensive use of classification methods is the lack of real-time
evaluation and demonstration (Xu et al., 2016; Tam et al., 2021).
Studies typically report accuracy for static classification tasks,
and these metrics do not always translate well to dynamic real-
time performance (Hahne et al., 2017). We have summarized
and compared the typical classification accuracy for different
sensing technologies in Table 1 and labeled if this data is
acquired under the real-time task with its latency. As can be seen
in Table 1, FMG and EMG have good real-time performance

in terms of latency. Pattern recognition remains somewhat
questionable. An experiment with eight individuals concludes
that pattern recognition still offers irreplaceable functional
advantages and may also be more suitable for home use in an
amputee (Hargrove et al., 2017).

Although we compare the performance of different sensing
techniques on classification tasks in Table 1, it is important
to note that we should be cautious about comparing the
accuracy and general performance. When different protocols,
users, and gesture types/numbers are used, pure comparisons
of classification tasks are often suspect without proper clinical
comparison trials, which are the primary source of bias. These
metrics and comparisons can be used as a general frame of
reference but cannot be extrapolated from them.

Sensor fusion
Sensor fusion is of particular interest as they may be

paired to create synergies and compensate for each sensor’s
shortcomings. Most studies have implemented EMG as the
primary sensor to pair with other different sensors. The
typical pairs of sensor fusion are summarized in Table 2.
Recent literature shows that combining NIRS improves the
classification accuracy of sEMG (Attenberger and Buchenrieder,
2012; Paleari et al., 2017; Nsugbe et al., 2020). Because the
distance between the emitter and detector will determine the
scattering, absorption and return of IR light to the sensor at
different depths, there are potential advantages to addressing
the difficulty of sEMG to detect deep muscles (Paleari et al.,
2017). Furthermore, NIRS can potentially address the reduced
recognition rate of EMG due to muscle fatigue and adjacent
muscle signal scrambling (Nsugbe et al., 2020). Recent work has
achieved an accuracy of 92.2% in an experiment to determine
three-hand states using a combination of sEMG and NIRS,
far exceeding the 73.3% accuracy of EMG alone in their
experiments (Paleari et al., 2017). In addition, researchers have
developed a new MMI to integrate the benefits of EMG signals
and depth vision, which can automatically tag clusters of EMG
data collection using depth vision without pre-tagging the
data (Zhou et al., 2020). It has the potential for wide use
in the operation of robotics and virtual reality applications.
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Moreover, sensor fusion means that the decoding steps
become more complex since different sensors have different
signal features, representing different physical meanings in the
muscle activity. Optimizing algorithms to combine the signals
more effectively from the various sensors is a point worth
investigating. However, not all sensors can be combined and
work together with each other. When designing fusion, it is
essential to consider whether there is any interference between
the combined sensors. For example, the EIT may interfere with
the EMG or MMG, and the sound waves emitted by SMG may
distort the PMG measurements. The sensor fusion also requires
consideration of the sensor size and readout circuit integration.
Since the readout circuits of different sensors are incompatible,
integrating superabundant sensors makes the system very bulky
and energy-intensive, which is fatal for wearable applications.
The power consumption for recent works of each sensing
technology is listed in Table 1. We must be careful that
the power consumption for the presented works cannot be
compared directly to the numbers. First, different works use
different numbers of channels. And it is not easy to define a
metric to compare the power consumption of each channel
because multi-channel sensors can reduce power consumption
by sharing ADCs. Second, power consumption is reported using
different criteria: some works counted in wireless transmission
and classifiers, while others include only the sensor’s own power
consumption. So, power consumption is then compared in a
more general way in Table 2. We could find that SMG normally
consumes more power than other sensing technologies because
they use active sensors that need to generate emitting energy.
The same situation happens to PPG, EIT, and NIRS.

Conclusion

This paper provides a comprehensive review of the
state-of-the-art MMI sensors for potential super-resolution
myography, categorized into three groups: biomechanical,
biochemical, and bioelectrical, depending on the nature of signal
sources. Super-resolution myography refers to the capability
of both high-resolution and deep muscle detection, so we
analyzed and discussed different MMI sensors in terms of
their advantages and disadvantages with technical challenges
separately. Some of these sensors have been explored and
developed over many years. They have been studied in
academia, while some recent sensor technologies are still in
a proof-of-concept stage and require more investigation. We
cross-sectionally compare these MMI sensors in terms of
vulnerability and detectability that can be utilized for super-
resolution myography. Four sources of interference, including
tissue, interface, devices, and environment, are analyzed for
all MMI sensors, which need careful consideration. High-
density sensor array configuration is promising to improve
myography’s resolution and real-time performance, whereas a

more compact individual sensing unit allows more recording
channels. In our comparison, MMG has the potential to
achieve the greatest channel density, meeting super-resolution
requirements (channel density larger than 10 cm−2; able to
detect deep muscle activities). SMG can also achieve super-
resolution; however, the active sensor unit and computation
burden might bring higher power consumption and more
latency, and thus it needs to be explored more. Both
MMG and SMG are recent emerging sensors, and more
studies are needed to make them become real super-
resolution MMI. To interpret these recordings, a continuous
decode model instead of pattern classification might offer a
more natural and smoother control from MMI. However,
the training process and cognitive burden may prevent it
become more practical. Sensor fusion, which might facilitate
researchers to complement the strengths of different sensing
technologies, is also discussed for future development of super-
resolution MMI. Finally, we conclude that emerging wearable
myography with super-resolution will significantly facilitate
MMI as control inputs for various application scenarios
and yield unprecedented opportunities in neurotechnology,
neurophysiology, neuroscience, and movement science.
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