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Cortical stimulation via electrocorticography (ECoG) may be an e�ective

method for inducing artificial sensation in bi-directional brain-computer

interfaces (BD-BCIs). However, strong electrical artifacts caused by

electrostimulation may significantly degrade or obscure neural information.

A detailed understanding of stimulation artifact propagation through relevant

tissues may improve existing artifact suppression techniques or inspire the

development of novel artifact mitigation strategies. Our work thus seeks

to comprehensively characterize and model the propagation of artifacts in

subdural ECoG stimulation. To this end, we collected and analyzed data from

eloquent cortex mapping procedures of four subjects with epilepsy who

were implanted with subdural ECoG electrodes. From this data, we observed

that artifacts exhibited phase-locking and ratcheting characteristics in the

time domain across all subjects. In the frequency domain, stimulation caused

broadband power increases, as well as power bursts at the fundamental

stimulation frequency and its super-harmonics. The spatial distribution

of artifacts followed the potential distribution of an electric dipole with a

median goodness-of-fit of R2 = 0.80 across all subjects and stimulation

channels. Artifacts as large as ±1,100 µV appeared anywhere from 4.43

to 38.34 mm from the stimulation channel. These temporal, spectral and

spatial characteristics can be utilized to improve existing artifact suppression

techniques, inspire new strategies for artifact mitigation, and aid in the

development of novel cortical stimulation protocols. Taken together, these

findings deepen our understanding of cortical electrostimulation and provide

critical design specifications for future BD-BCI systems.
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1. Introduction

Electrocorticography (ECoG) is a viable signal modality

for the development of brain-computer interfaces (BCIs). For

example, ECoG-based BCIs enabled those with severe motor

deficits to communicate (Brunner et al., 2011; Krusienski

and Shih, 2011; Vansteensel et al., 2016) or operate an arm

prosthesis (Fifer et al., 2013; Wang et al., 2013b). In general,

current BCI designs primarily rely on visual feedback to achieve

closed-loop operation. However, recent studies (Hiremath et al.,

2017; Lee et al., 2018) have demonstrated that electrostimulation

via subdurally implanted ECoG grids can elicit somatosensory

percepts. They suggest that ECoG-based BCIs could carry

out both motor and sensory operations, thereby achieving

a biomimetic function restoration. Preliminary results also

indicate that such bi-directional operation can improve BCI

performance by easing the learning process and making

this technology more intuitive (Flesher et al., 2017). Finally,

subdural ECoG-based interfaces also have the potential to be

designed as fully implantable systems (Geller, 2018), which

could significantly improve the viability of ECoG-based BCIs.

Bi-directional (BD)-BCI operation requires simultaneous

stimulation and recording, which poses a significant challenge

as strong electrical artifacts will inevitably propagate from

the stimulation site to the recording site. These artifacts can

obscure physiologically relevant signals or even saturate ultra-

low-power (ULP) analog front-ends, which are necessary for

the implementation of fully-implantable BCIs (Stanslaski et al.,

2009; Rouse et al., 2011). Therefore, efficient artifact suppression

strategies must be developed and employed to mitigate this

problem.

Microelectrode-based BD-BCIs (O’Doherty et al., 2011;

Flesher et al., 2017) address this problem by temporally

interleaving stimulation and recording. However, this approach

is suboptimal since it records data intermittently, thereby

degrading the performance of BCI decoding algorithms.

Additionally, such a BD-BCI system can only provide

intermittent feedback. Motivated by these shortcomings,

several groups developed alternative approaches. For example,

Stanslaski et al. proposed to orient the ECoG stimulation

electrodes in a way that minimizes the artifact presence at

the recording site (Stanslaski et al., 2009). Subsequently, they

applied frequency-domain filtering to remove the residual

artifacts (Stanslaski et al., 2009; Rouse et al., 2011). An adaptive

filtering approach proposed by Mendrela et al. (2016) achieves

artifact suppression by estimating the artifact contributions

and then subtracting those contributions from the signal at

the front-end. Barborica et. al have utilized an alternating

polarity stimulation method that minimizes the power at the

stimulation frequency and its super-harmonics (Barborica

et al., 2022). Recording techniques like bipolar montages can

also be used to minimize common mode artifacts between

electrodes (Perrone-Bertolotti et al., 2020), though this method

is only applicable to artifacts coming from distant sources.

Our group has also recently developed an artifact suppression

method based on an auxiliary stimulator that steers artifacts

away from the recording site (Lim et al., 2019; Pu et al., 2020).

The advantage of this approach is that we suppress artifacts

before they reach the recording site. While fundamentally

different, these artifact mitigation strategies critically depend on

factors such as the relative orientation and the distance between

the stimulation and recording channels, the stimulation

parameters, and the electrical properties of the relevant tissues

and the electrode-tissue interface. A better understanding

of these factors can improve existing artifact suppression

techniques, inspire new strategies for artifact mitigation, and aid

the development of novel cortical stimulation protocols.

Despite the need, there have been very few attempts to

characterize artifacts resulting from ECoG stimulation. This

is surprising given the prevalence of clinical ECoG mapping

in epilepsy surgical evaluation (Phase II epilepsy monitoring).

Motivated by this knowledge gap, our preliminary work (Lim

et al., 2018) characterized ECoG stimulation artifacts in a single

human subject. We also hypothesized that a simple dipole

model might explain the spatial distribution of these artifacts,

as previous works suggest that conduction of neural signals

through neural tissue follows dipole volume conduction (Wood,

1982; Scherg, 1990; Boon et al., 1997; Sutherling et al., 2001;

Nunez and Srinivasan, 2006). In this article, we present the

extension of these preliminary findings to four subjects, by

performing a comprehensive analysis of ECoG stimulation

artifacts in the temporal, frequency, and spatial domains.

Additionally, we conducted a modeling study and found an

electric dipole to be an accurate model of the stimulation artifact

propagation across multiple human subjects with varying

implantation sites and ECoG electrode types. Collectively, these

findings deepen our understanding of cortical electrostimulation

and provide critical design specifications for future BD-

BCI systems.

2. Methods

2.1. Subject information and stimulation
procedure

The Institutional Review Boards of the Rancho Los

Amigos National Rehabilitation Center and the University

of California, Irvine approved this study. We conducted all

research procedures according to the Declaration of Helsinki.

Four patients undergoing Phase II epilepsy monitoring gave

written informed consent to participate in the study. Subject

1 and 3 were implanted with platinum ECoG grids (Ad-Tech,

Oak Creek, WI). Subjects 2 and 4 had platinum-iridium ECoG
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TABLE 1 Stimulation parameters and representative grid information.

Stim./grid Subject 1 Subject 2 Subject 3 Subject 4

parameters

Stimulation frequency (Hz) 50 50 50 50

Pulse width (µs) 200 250 200 250

Epoch duration (s) 3 5 2 2

Amplitude (mA) 2-8 2-10 3-12 2-12

Grid vendor Integra Ad-Tech Integra Ad-Tech

Grid type Standard Standard High Density High Density

Electrode spacing (mm) 10 10 3 4

Electrode diameter (mm) 4.75 4.00 2.00 2.00

Exposure diameter (mm) 1.5 2.3 1.0 1.0

Reference/ground LPG1/2 LTG19/20 Off-grid Off-grid

grids (Integra Life-Sciences, Plainsboro, NJ) implanted. The

placement and number of ECoG grids/strips, as well as the

choice of stimulation electrodes were solely guided by clinical

needs. We only analyzed the stimulation epochs from grids

that had all electrodes stimulated (representative grids). Other

implanted grid/strips were excluded because they had either

incomplete or no stimulation coverage.

We recorded clinical ECoG data at the bedside during

eloquent cortex mapping procedures. These procedures are

a standard part of Phase II epilepsy monitoring and entail

electrostimulation of cortical tissue across sequential channels

of the ECoG grids. A bipolar stimulation channel consisted of

a pair of adjacent electrodes connected to a Natus R©NicoletTM

Cortical Stimulator (Natus Medical Incorporated, Pleasanton,

CA). For each stimulation channel, the stimulator delivered a

biphasic square pulse train with equal-length anodic/cathodic

pulse width ranging from 200 to 250 µs over a short stimulation

epoch. The duration of stimulation epochs varied from 2 to

5 s across subjects. The stimulation amplitude also varied

from 2 to 12 mA, typically in 2 mA increments. Note that

the choice of stimulation channels and parameters was solely

guided by clinical needs. See Table 1 for a comprehensive list

of stimulation parameters and representative grid information

for each subject. We acquired ECoG data at 512 Hz using a

Natus R©QuantumTM amplifier (Natus Medical Incorporated,

Pleasanton, CA) during the entire mapping procedure and

annotated stimulation channels and epochs. This amplifier had

a± 3 dB linear range 0.01–219 Hz for 512 Hz sampling rate.

2.2. MR-CT image segmentation and
co-registration

To aid in the artifact propagation characterization, we first

determined the coordinates of the ECoG electrodes in reference

to the brain. Specifically, we used pre-implantation MRI (post-

explantation MRI for Subject 4) and post-implantation CT

images to co-register the ECoG electrodes with brain-segmented

MR images. For this purpose, we used the Elastix toolbox (Klein

et al., 2010; Shamonin et al., 2014), which performs non-rigid co-

registration of MRI and CT images. We used default parameters

and a normalized mutual information similarity metric. We

fixed the CT image to preserve the electrode coordinates,

while moving the MR image until it was transformed to the

CT coordinate space. We then segmented the transformed

MRI using the Mango (Lancaster et al., 2010, 2011, 2012)

segmentation plugin to prepare for co-registration with the

electrode coordinates segmented from the CT images.

The segmentation of the electrode coordinates from subject

post-implantation CT data followed the procedure described

in Wang et al. (2013a). First, to identify the electrode

locations, we thresholded the CT intensity data. For each

electrode location, this procedure generated an intensity point

cluster. Subsequently, we ran a clustering algorithm utilizing

DBSCAN (Ester et al., 1996) that returned the center-point

for each electrode in the array. These CT-space electrode

coordinates were then overlaid onto the transformed MRI-

segmented brain to complete the co-registration process. Finally,

we scaled the coordinates by the CT image voxel dimensions

(mm) to convert from voxels to physical space.

2.3. Time domain analysis

We collected ECoG data at the bedside during cortical

electrostimulation procedures. Each time the subject received

stimulation, we timestamped the corresponding stimulation

epoch so that these data could be subsequently identified

and segmented out for further analysis. For each subject, this

procedure generated several hours of data. We used MATLAB

(MathWorks, Natick, MA) for data processing and analysis. The

signals were first visually inspected to assess the quality of the

baseline ECoG data and confirm the presence of stimulation

artifacts. Subsequently, for each channel, we removed low-

frequency drifts by high-pass filtering at ≥1.5 Hz (zero-phase,

first-order, Butterworth filter). Note that this filter had negligible

effects on the rest of the signal (see Figure 2). We then

segmented the individual stimulation epochs from the rest of

the data using the documented timestamps. The electrodes

comprising the stimulation channel were excluded from the

analysis due to amplifier saturation. Any electrodes with signals

exceeding the clinical amplifier’s saturation limit (±8.7 mV)

were also excluded. For each remaining electrode, we identified

the responses to individual biphasic pulses. Depending on the

duration of the stimulation epoch (see Table 1), this procedure

resulted in 100–250 pulse responses per stimulation epoch.

Within each stimulation epoch and for each electrode, we then

quantified the artifact amplitude by finding the extreme value of
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each pulse response. This procedure was aided by utilizing the

known pulse train frequency (50 Hz) and MATLAB’s extrema

detection algorithm.

2.4. Frequency domain analysis

To take advantage of the periodic nature of the stimulation

signals and corresponding ECoG responses, we also analyzed

data in the frequency domain. To this end, we divided each

stimulation epoch into five equal, non-overlapping segments.

We then performed the fast Fourier Transform (FFT) on each

data segment and calculated their power spectral densities

(PSDs). We repeated the same procedure for baseline epochs,

defined as duration-matched periods immediately preceding the

corresponding stimulation epochs. To quantify the effect of the

stimulation across frequency, f , we calculated the interference

index, I(f ), as:

I(f ) =
1

2
log

σ 2
t (f )

σon(f )σoff(f )
(1)

where σon(f ) and σoff(f ) are the frequency-dependent standard

deviations of the stimulation and baseline PSDs, respectively,

and σ 2
t (f ) is the total variance calculated as Fukunaga (2013):

σ 2
t (f ) =

σ 2
on(f )+ σ 2

off(f )

2
+

[

µon(f )− µt(f )
]2

2

+

[

µoff(f )− µt(f )
]2

2
(2)

In the above equation, µon(f ) and µoff(f ) are the frequency-

dependent means of the stimulation and baseline PSDs,

respectively, and µt(f ) is the total mean calculated as: µt(f ) =
1
2 [µon(f ) + µoff(f )]. Note that Equation (1) is a variant

of the deflection coefficient (Kay, 1989) that can account

for overlapping means and unequal variances between the

stimulation-on and stimulation-off PSDs (Nenadic, 2007). We

also compared the power distribution in the stimulation-on

and stimulation-off conditions across frequencies and tested the

statistical significance of these differences by performing the

Kolmogorov-Smirnov (KS) test.

2.5. Spatial domain analysis

Based on the artifact amplitudes calculated in the time

domain analysis, we characterized each stimulation epoch by

calculating its median artifact amplitude. We repeated this

procedure for each electrode in the grid, and then interpolated

and color-coded these median values to generate artifact spatial

maps. From these maps, we defined a saturation region as the

cortical area within which artifacts were large enough to saturate

a hypothetical ULP amplifier. To this end, we first derived a

saturation limit from the specifications of an implantable bi-

directional BCI prototype (Rouse et al., 2011). Specifically, a

supply voltage of 2.2 V and a gain of 66 dB (2000×) yielded a

saturation limit of ±1,100 µV. We then marked this saturation

limit as a contour on the artifact spatial maps and defined the

contour interior as the saturation region. Finally, we quantified

the extent of the saturation region by calculating the worst-

case distance (WCD), defined as themaximum distance between

the mid-point of the stimulation channel and the saturation

contour.

2.6. Dipole model analysis

Our preliminary work suggests that the spatial distribution

of artifacts follows the voltage distribution of an electric

dipole (Lim et al., 2018). To test this hypothesis, we estimated

a dipole model from ECoG measurements and assessed its

accuracy using an R-squared value. We then used the model to

predict spatial distributions of artifacts and compared them to

distributions generated from experimental data.

The spatiotemporal distribution of potentials due to a dipole

in a homogeneous, isotropic, purely resistive medium is given

by Logothetis et al. (2007):

φ(x, y, z, t) =
I(t)

4πσ

(

1

‖r(x, y, z)− r+‖
−

1

‖r(x, y, z)− r−‖

)

(3)

where φ(x, y, z, t) is the potential field at a point (x, y, z) and time

t, generated by a pair of positive and negative, time-dependent,

point current sources with the position vectors r+ ∈ R
3 and

r− ∈ R
3, respectively. The vector r(x, y, z) ∈ R

3 defines

the position of the point (x, y, z). Note that we defined these

position vectors, r+, r−, and r, with respect to an arbitrarily

chosen origin and that the choice of origin is irrelevant due to

the homogeneity and isotropy assumptions. For the justification

of cortical tissue behaving as a homogeneous, isotropic, purely

resistive medium, we refer to Ranck (1963), Nicholson and

Freeman (1975), Okada et al. (1994), and Logothetis et al. (2007).

Finally, σ is the conductivity of the medium and I(t) is current

of the source/sink.

Taking the above considerations into account, the dipole

equation can be reformulated as:

Ve = kI

(

1

‖re − r+‖
−

1

‖re − r−‖

)

+n, e = 1, 2, · · · , Ne

(4)

where Ve is the artifact amplitude measured at electrode e, Ne

is the number recording electrodes, and I is the amplitude of

the stimulation current. The position vectors re, r+, and r−

define the positions of the electrode e, the current source, and the

current sink, respectively. We calculated these position vectors

from the CT images with respect to an arbitrary origin. The

slope parameter k accounts for the geometry of the current
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transmission path, the electrode size and material, and the

impedance of the electrode-tissue interface. Finally, the intercept

parameter n accounts for the placement of the reference

electrode, background neural activity, and environmental noise.

Note that the choice of the reference electrode was determined

clinically (see Table 1). Generally, its position was not on a zero-

potential line, defined theoretically as a line equidistant to the

dipole source and sink. This may have contributed to a non-zero

reference voltage that needs to be accounted for by n.

For a given dipole location, we measured the artifact

amplitudes, Ve, at multiple stimulation currents, I, and

estimated the parameters k and n in Equation (4) using a linear

least-squares approach. We also quantified the goodness-of-

fit using the R-squared value. Once the parameters, k̂ and n̂,

are estimated, we predicted the spatial distribution of artifacts,

V̂e, using the model Equation (4). Finally, we interpolated the

predicted artifact values and thenmapped them onto theMR-CT

co-registered images for visualization purposes.

3. Results

3.1. Co-registration

Figure 1 shows the results of the co-registration procedure

for all four subjects. Subsequently, we used these co-registration

images for visualization purposes and spatial domain analysis.

While we analyzed a single representative grid for each subject

(see Table 1), we still obtained abundant data, with 6–21 dipoles

per grid and 2–7 stimulation amplitudes per dipole. The

analyzed grid for Subject 1 was a 4×5 standard grid implanted

over the left, posterior parietal area. Subject 2 had a 4×5

standard grid implanted over the left temporal lobe. Subject 3

had a 4×8 high-density grid in the interhemispheric space over

the left motor leg area. Finally, Subject 4 had a 4×8 high-density

grid placed over the right motor arm area.

3.2. Time domain analysis

Visual inspection of the ECoG data at various time scales

revealed salient features of stimulation artifacts. Looking on

a minutes time scale, we easily identified the individual

stimulation epochs, since stimulation created significant artifacts

in the ECoG data across multiple electrodes.

On a seconds time scale, we observed large voltage

deviations in the millivolts range during the stimulation epochs,

particularly on electrodes close to the stimulating channel. These

deviations are significantly larger than typical ECoG signals,

which have an amplitude of 10’s of microvolts (Schalk and

Leuthardt, 2011; Wang et al., 2017). Despite the supposed

charge balance of the biphasic square waveform, these electrodes

accumulated a significant DC drift over the duration of the

stimulation epoch (see Figure 2). This so-called “ratcheting

effect” (Merrill et al., 2005) was prominent in the raw ECoG

data across all four subjects. The voltage drifts caused by the

ratcheting effect generally exceeded the amplitude of the pulse

responses by several fold, and occasionally drove electrodes

adjacent to the stimulation channel to the saturation voltage of

the recording system amplifier (±8.7 mV). High-pass filtering

at 1.5 Hz removed the ratcheting effect on non-saturated

electrodes. Note that the polarity of the DC drift on ratcheting

electrodes depended on their position with respect to the current

source/sink at the onset of the stimulation.

Pulse responses across electrodes exhibited phase-locking

on a milliseconds time scale, especially at higher stimulation

amplitudes. More specifically, voltage peaks/troughs on artifact-

affected electrodes occurred within 2 ms (1 sample) of

each other (see Figure 3). This behavior was consistent across

stimulation channels and grids. For all four subjects, the

frequency of the pulse responses matched the frequency of

the stimulation pulse train (50 Hz). These observations are

consistent with the assumptions of the dipole model given by

Equation (4).

3.3. Frequency domain analysis

Figure 4 shows examples of the power spectral density

(PSD) for each subject’s worst-case electrode, which are defined

as electrodes experiencing the strongest artifact for a given

stimulation channel. Other electrodes exhibited similar PSDs

as the worst-case electrode, albeit with lower overall power. By

comparing the stimulation-on and stimulation-off PSDs, it is

evident that the stimulation induced a significant broadband

power increase. Additionally, there were prominent power peaks

at the fundamental frequency of the stimulation pulse train (50

Hz) as well as its super-harmonics (100, 150, 200, 250 Hz).

Frequencies below 50 Hz exhibited lower interference index

values for all 4 subjects. These results were corroborated by

the KS test (p = 0.01), which showed that the stimulation-on

and stimulation-off PSDs were not significantly different for a

majority of frequencies below 50 Hz. Other electrodes in the grid

exhibited similar PSDs, albeit with reduced overall power.

3.4. Spatial domain analysis and dipole
model estimation

Artifact spatial maps exhibited dipole-like voltage

distributions, representative examples of which are shown

in Figures 5–8 for each subject. The amplitude of a pulse

response recorded by an electrode depended on the position

of that electrode with respect to the stimulation channel.

Generally, the artifact amplitude scaled inversely with the

distance of the electrode to the stimulating channel, which is
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FIGURE 1

Co-registration of electrodes segmented from CT images and brain segmented from MRI. (Left) Co-registration image for each subject, with

the representative grid outlined in white. Note that the points representing electrodes are not to scale. Also note that the co-registration image

for Subject 3 shows a left hemisphere (sagittal plane) with electrodes in the inter-hemispheric fissure. (Right) Insets of representative grids with

electrode numbers encircled. The label size is not related to the electrode size.
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FIGURE 2

Representative examples of time-domain signal features across four subjects. (A) Insets of co-registered images showing the representative grid

with the stimulation channel marked in yellow. (B) Time-domain signals from an electrode (marked by blue on the grid) adjacent to the

stimulation channel exhibiting ratcheting e�ects. The raw waveforms show 5–6 stimulation epochs at di�erent stimulation amplitudes. Note

that ratcheting severity increases with stimulation amplitude. (C) The ratcheting is removed by high-pass filtering at 1.5 Hz. (D) A zoomed plot of

the strongest artifacts before and after filtering shows that high-passing has negligible e�ect on the individual pulse responses. Raw signal is

de-meaned so that it can be overlaid with high-passed signal.

consistent with Equation (4). Furthermore, electrodes lying

co-linearly with the stimulation dipole moment experienced

stronger artifacts compared to those lying orthogonally.

Also, artifact amplitudes increased monotonically with

stimulation amplitude, which resulted in the expansion of the

saturation region. Correspondingly, the worst-case distance

also monotonically increased with stimulation amplitude for

these examples. Some exceptions to these behaviors occurred

at higher stimulation amplitudes, where the increased current

caused a departure from the dipole voltage distribution.

The ranges of WCDs for each subject over all stimulation

channels and amplitudes are reported in Table 2. For a

comprehensive list of all WCDs across all subjects, stimulation

channels, and stimulation amplitudes, the reader is referred to

the Supplementary material. We found the saturation regions

to be localized to the vicinity of the stimulation channel, with
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FIGURE 3

Representative examples of pulse response phase-locking in all 4 subjects. (Left) Insets of co-registration images, with color-coded electrodes

lying in the direction of strongest artifact (co-linear with the dipole moment). (Right) ECoG data high-passed at 1.5 Hz with colors matched to

the corresponding electrode. Artifact peaks/troughs, marked by vertical lines, on these electrodes are within 2 ms (1 sample) of each other.

Pulse responses occur every 20 ms (50 Hz pulse train frequency). The artifact amplitude decreases with distance from the stimulation channel.
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FIGURE 4

(Top) Time domain and frequency domain representations of a 50 Hz square pulse train. (Bottom) Power spectra of ECoG signals during 50 Hz

biphasic square pulse stimulation for worst-case electrodes from each subject. The power distribution of ECoG signals, with peaks present at 50,

100, 150, 200 Hz, resembles the power distribution of a 50 Hz square pulse train. Interference index and Kolmogorov-Smirno� testing (p = 0.01)

show that a majority of significantly impacted frequencies are above the 50 Hz stimulation pulse frequency.
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FIGURE 5

Artifact spatial maps based on recorded ECoG data and model predictions for Subject 1. (Top left) Co-registration image showing the

representative grid over the left parietal lobe. (Bottom left) Regression results aggregating data from stimulation channel LPG13-14 for 2–8 mA

stimulation amplitudes. Artifact spatial maps were generated using values from the recorded data (middle) and the dipole model (right). The

worst-case distance (WCD) is the distance from the center of the stimulating channel to the farthest point on the ±1.1 mV contour. Note that

the electrodes comprising the stimulation channel (LPG13-14) were saturated on the hospital ECoG recording system and recorded no data. As

such these were excluded from the dipole regression and their values were set to ±8.711 mV (the saturation limit of the hospital ECoG

recording system) on the artifact spatial maps.

WCDs ranging from 4.43 to 38.34 mm. Generally, larger WCDs

corresponded to larger stimulation amplitudes. The resolution

of the WCD is limited by the relatively coarse spatial resolution

of ECoG electrodes within a grid. Other factors, such as grid

placement and electrode material properties may have also

affected the WCD values. Another contributing factor is the

location of the stimulation channel within the grid, which may

limit the ability for the dipole field to be captured entirely,

e.g, stimulation channels placed on the corner or the edge of

the grid.

Table 3 shows the median and median absolute deviation

(MAD) for parameters of the linear regression model and
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FIGURE 6

Artifact spatial maps for recorded ECoG data and model predictions for subject 2. (Top left) Co-registration image showing the representative

grid over the left temporal lobe. (Bottom left) Regression uses ECoG data from 2 to 10 mA stimulation amplitudes on the stimulation channel

LTG8-9. Artifact spatial maps were generated using values from the recorded data (middle) the dipole model (right). Electrodes LTG19 and

LTG20 contained no recorded ECoG data, so they are excluded from the analysis (values on the recorded data map are imputed from electrode

LTG18).

goodness-of-fit values across different stimulation channels for

each subject. We chose median-based statistics to counter the

effect of a few outliers, primarily contributed by stimulation

channels located at the corners of ECoG grids. Despite the

differences in implantation site and grid size/type, the median

values of k̂ remained relatively consistent across subjects and

ranged from 2.1 to 3.9 �mm. Similarly, the median values for

n̂ were consistent across subjects, and ranged from -78 µV to

70 µV. These values are within the same order of magnitude as

ECoG signals (Schalk and Leuthardt, 2011; Wang et al., 2017),
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FIGURE 7

Artifact spatial maps for recorded ECoG data and model predictions for subject 3. (Top left) Co-registration image showing the representative

grid located over the leg area on the left side of the interhemispheric fissure. (Bottom left) Regression results for the stimulation channel

LIHG19-27 aggregating data from current amplitudes 3–10 mA. Artifact spatial maps were generated using values from the recorded data

(middle) the dipole model (right).

which concurs with the fact that n̂ is a parameter that accounts

for neural activity and background noise. For a comprehensive

list of k̂ and n̂ values across all dipoles and all subjects, the reader

is referred to the Supplementary material.

Table 3 also shows that the median values of R-squared

ranged across subjects from 0.78 to 0.88. Over all subjects,

R-squared values ranged from 0.33 to 0.99, with a median

of 0.80 and a median absolute deviation of 0.08 (see

Supplementary material for full table). This suggests that the

dipole model is a good approximation for the propagation

of stimulation artifacts in ECoG. R-squared values falling

in the lowest 15th percentile (R2 < 0.57) occurred

due to violations of the dipole model assumptions. These

include “island-like” saturation regions located away from the

stimulation site, asymmetrical elongation of the saturation

region along the edge of the grid, and abnormally strong

artifacts appearing on electrodes adjacent to the stimulation

channel.
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FIGURE 8

Artifact spatial maps for recorded ECoG data and predicted data for subject 4. (Top left) Co-registration image showing the representative grid

located over the right sensorimotor area. (Bottom left) Regression results for the stimulation channel RCG19-20 aggregating data from current

amplitudes 2–10 mA. Artifact spatial maps were generated using values from the recorded data (middle) the dipole model (right). Electrode

RCG18 saturates at 6 mA and above, at which point it is excluded from the analysis as it no longer contains any ECoG data.

4. Discussion

4.1. Time domain characteristics

Time-domain analysis revealed the ratcheting effect

occurring in all subjects, most prominently at higher stimulation

amplitudes (Figure 2). This is unsurprising given that strong

stimulation amplitudes are more likely to trigger irreversible

Faradaic reactions at the electrode-tissue interface (Merrill et al.,

2005). These reactions generate electrochemical products during

the cathodic phase that diffuse away, preventing those products

from being reverted during the anodic phase. Therefore, despite
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TABLE 2 WCD ranges for each subject.

Subject no. Min. WCD Max. WCD Stim. range

(mm) (mm) (mA)

Subject 1 12.06 38.34 2–10

Subject 2 12.43 36.45 2–12

Subject 3 4.43 9.12 3–12

Subject 4 5.40 25.89 2–12

TABLE 3 Median and median absolute deviation (MAD) values for

dipole model parameters and R-squared values across subjects.

Median and MAD are calculated across all stimulation channels in each

representative grid.

Regression Summary Subject 1 Subject 2 Subject 3 Subject 4

parameter statistic

k̂ (�mm) Median 3.9 3.3 2.1 3.3

MAD 1.2 0.3 0.3 0.9

n̂ (mV) Median 0.070 −0.078 −0.012 0.045

MAD 0.074 0.080 0.061 0.129

R2 Median 0.88 0.81 0.78 0.80

MAD 0.06 0.10 0.04 0.10

the charge-balancing of the biphasic pulses, this unrecoverable

loss of charges creates a residual potential. Since stimulation

pulses arrive every 20 ms, which is much faster than the tissue

discharge time constant (a few seconds, see Figure 2), these

residual potentials accumulate over the course of a stimulation

epoch to generate significant DC voltage shifts. The presence of

ratcheting in a clinical, FDA-approved stimulator suggests that

BD-BCI systems need to be carefully designed with superior

charge-balancing mechanisms (Sohn et al., 2020; Pu et al., 2021).

The electrodes most severely affected by artifacts exhibited

phase-locking of pulse responses. This is in agreement with

the volume conduction assumption expressed by Equation (3).

It also supports the possibility that ECoG electrodes impose

consistent phase shifts whose differences fall below the signal

sampling resolution of 512 Hz. To illustrate this, the model of

electrode-electrolyte interface can be approximated by a parallel

circuit consisting of a double-layer resistance and capacitance,

serially connected to an electrolyte resistance (Merrill et al.,

2005; Webster, 2009). For a typical double-layer capacitance

of 10-20 µF/cm2 (Merrill et al., 2005) and typical resistance

values in the 100–200 � range (Geddes et al., 1969), we estimate

the ECoG electrodes’ phase shifts to be in the microsecond

range over the ECoG frequency band (0–200 Hz). Perturbing

these parameters by a factor of 10 did not significantly change

these estimates, with the largest phase shifts reaching 0.3 ms.

Thus, we conclude that the differences in phase shifts imposed

by individual ECoG electrodes likely fall below the sampling

resolution of 1.95 ms (1/512 Hz), resulting in the appearance of

phase-locked pulse responses.

4.2. Frequency domain characteristics

The power distribution of stimulation artifacts resembled

the theoretical power spectrum of a biphasic pulse train

(Figure 4). These similarities suggest that the propagation

of artifacts from the stimulation channel to the recording

electrodes can be approximated by a linear system. The system

identification of such a model would require the simultaneous

recording of stimulation pulse trains and ECoG responses.

Strong stimulation artifacts at the fundamental frequency and its

super-harmonics interfere with ECoG frequencies that underlie

motor behavior (Wang et al., 2017; McCrimmon et al., 2018),

most notably those in the γ band. Conversely, the band below

the fundamental frequency exhibited little or no artifacts. This

suggests that increasing the stimulation frequency above 160

Hz [the upper limit of ECoG γ band (Wang et al., 2013b)]

could spare the γ band from excessive artifacts in ECoG-based

BD-BCI systems. Recent experiments have demonstrated that

reliable perception can be elicited in humans with stimulation

frequencies as high as 500 Hz (Hiremath et al., 2017), so

high-frequency stimulation might be a viable artifact mitigation

strategy for BD-BCIs. However, such a high stimulation

frequency would significantly increase the power consumption.

This trade-offmust especially be considered for fully implantable

BD-BCI, where preserving the battery life may be of critical

importance.

4.3. Spatial domain characteristics

The worst-case distance analysis gives ametric for evaluating

the saturation risk of stimulation at various current amplitudes.

As can be seen from Figures 5–8, at the higher stimulation

amplitudes, the saturation region extends to, and possibly

beyond, the edges of the ECoG grids. However, studies on

artificial somatosensation (Hiremath et al., 2017; Lee et al., 2018)

demonstrated that current amplitudes below 4 mA (and often

times as low as 1 mA), delivered by subdurally implanted ECoG

grids, were sufficient for eliciting somatosensory perception

in human subjects. Saturation is thus only a concern when

stimulation and recording electrodes are immediately adjacent

(within 20 mm) and when the recording device has a low

saturation tolerance. Optimization of other parameters such as

the pulse train frequency and pulse width also permits lower-

amplitude stimulation to elicit similar sensations (Hiremath

et al., 2017).

The current transmission path in cortical electrostimulation

depends on a number of factors. Given the complexity of the

problem, we adopted a path-agnostic approach by lumping
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these factors into a single parameter k (see Equation 4). Since

the units of k are �m, we can interpret this parameter as the

specific resistance of the path. Furthermore, these paths, as

well as the electrode properties (Webster, 2009), may depend

non-linearly on the current passing through. However, our

approach assumes a single regression model across a range

of current amplitudes. Despite these simplifying assumptions,

we still achieved a median goodness-of-fit of 0.80 across all

subjects and across a wide variety of stimulation scenarios. The

departure from this behavior mostly happens for stimulation

channels placed on the corners of grids. In these cases, the

majority of artifacts lie outside of the grid and cannot be

adequately measured. Other examples of non-dipole behavior,

such as the formation of “islands” or extensions of the saturation

region, are potentially the result of conduction of stimulation

current along neural fibers, pockets of cerebrospinal fluid,

or neural vasculature. Even in many of these cases, the R-

squared value is still around 0.65. Taken together, these results

confirm that the spatial variations of stimulation artifacts can

be explained with a simple dipole-like model. Dipole models

have long been used to describe the propagation of neural

signals through neural tissues (Wood, 1982; Scherg, 1990; Boon

et al., 1997; Sutherling et al., 2001; Nunez and Srinivasan,

2006). However, to our knowledge there have been no other

works analyzing the dipole model’s applicability to ECoG

stimulation artifacts. These models can be used to predict

the spatial extent of artifacts and ultimately the size of the

saturation region.

4.4. Limitations

The main limitation of our work is that the results were

derived from artifacts generated and recorded by a clinical

ECoG stimulation/acquisition system. To make these results

generalizable to BD-BCI systems, we imposed a ±1,100 µV

saturation limit based on the specifications of an implantable

BD-BCI prototype (Rouse et al., 2011). Furthermore, our

observations may be specific to the type of ECoG grids

that were being used by the clinic. However, our analysis

still encompasses grids from different manufacturers (AdTech

and Integra), different grid sizes (standard and high-density),

a variety implantation sites, and multiple subjects. Note

that ECoG grids with similar electrode materials (platinum),

size and pitch have been successfully used for motor BCI

applications (Wang et al., 2013b, 2019) as well as artificial

sensation studies (Hiremath et al., 2017; Lee et al., 2018).

The stimulation parameters used for this study also overlap

with those used to elicit artificial sensations (Lee et al., 2018)

in the same ECoG grids. Therefore, despite the limitations,

the results in this study are likely still applicable to BD-BCI

systems.

5. Conclusion

This article provides a comprehensive temporal, spectral

and spatial analysis of cortical electrostimulation artifacts

recorded subdurally by a grid of ECoG electrodes. We

have also demonstrated that the spatial distribution of

stimulation artifacts can be explained by a simple dipole model.

These findings can help improve existing artifact suppression

techniques, inspire the development of novel artifact mitigation

methods, and aid in the development of novel cortical

stimulation protocols. Additionally, they may be useful for

studies examining cortical functional tractography (Trebaul

et al., 2018), cortico-cortical evoked potentials for clinical

applications (Russo et al., 2021), and source localization for

non-invasive functional neuroimaging (Mikulan et al., 2020).

In general, the results in this work deepen our understanding

of cortical electrostimulation and could provide critical design

specifications for future BD-BCI systems.
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