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Editorial on the Research Topic

Transcription and chromatin regulators in

neurodevelopmental disorders

Disruptions to key cellular processes during mammalian brain formation such as

cell proliferation, lineage-specification and differentiation (Miller et al., 2019) lead to

neurodevelopmental disorders (NDDs) in humans (Ross andWalsh, 2001; Subramanian

et al., 2019). Among many signaling mechanisms underlying these processes, the

functions of transcription and chromatin regulators of gene expression arguably

represent the most prominent (Oproescu et al., 2021; Bölicke and Albert, 2022; Fujita

et al., 2022). This topic explores how their defective function leads to NDDs, and how

clarifying genotype-phenotype relationships of NDDs facilitates delineation of unique

pathological traits.

Reichard and Zimmer-Bensch overview the molecular regulation of brain

development, focusing on the role of chromatin modifiers, as well as consequences

flowing from their functional impairment. The authors discuss how environmental

stressors such as malnutrition or mental/neurophysiological stress during pregnancy

triggers epigenetic changes that affect brain and behavior. Along this theme, Sokpor et

al. discuss cell delamination during cortical development, an indispensable process for

tissue neurogenesis, gliogenesis and tissue growth. The authors discuss how transcription

and chromatin regulators mediate cellular detachment from germinal zones of the

embryonic cortex, as well as how disruptions to such processes are connected withNDDs.

Overlapping clinical features related to both physical appearance and cognitive

function are described across NDDs, yet the mechanistic basis for these shared NDD

traits remains poorly understood. Larizza et al. investigate Rubinstein-Taybi syndrome

(RSTS) and Heterogeneous Nuclear Ribonucleoprotein H1 (hnRNPH1)-related

syndromic intellectual disability (ID) to describe a putative chromatin and

transcriptional regulatory network underpinning shared phenotypes. RSTS is frequently
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caused by monoallelic pathogenic variants in genes encoding

CREB-binding protein (CBP) as well as EP300, homologous

lysine acetyltransferases that mediate histone H3 lysine 27

acetylation at enhancers (Hennekam, 2006; Raisner et al.,

2018). The authors show that alternative pre-mRNA splicing

regulators hnRNPs (including hnRNPH1) are strongly

downregulated in RSTS iPSC-derived neurons, and CBP/EP300

could also acetylate hnRNPs to modulate their signaling. Thus,

misregulated RNA processing could represent a common

underlying mechanism for clinical similarities observed across

HNRNPH1-related syndromes and RSTS.

In keeping with Larizza et al.’s hypothesis of converging

mechanisms underlying phenotypic similarities in chromatin

disorders, Parenti and Kaiser review Cornelia de Lange

Syndrome (CdLS) as a phenotypic spectrum of transcriptional

regulation and chromatin remodeling. CdLS diagnoses are

largely attributable to mutations in NIPBL, a gene encoding

the cohesin loading factor Nipped-B-like protein (NIPBL)

(Tonkin et al., 2004). Functional assays on patient cells show

that the underlying mechanism for disease-causing mutations

may not lie solely in its sister chromatid cohesion function.

Rather, evidence suggests broader roles in transcriptional

regulation, RNA polymerase II (RNApol2) interaction and

long-range chromatin contacts, collectively relevant to cellular

homeostasis and disease. Furthermore, disease-associated

variants in BRD4, encoding a histone acetyl lysine “reader”

and interactor of NIPBL (Olley et al., 2018), may cause

CdLS-like conditions through disruption of NIPBL function.

Correspondingly, variants in NIPBL-interacting transcription

factors and chromatin regulators are associated with classical

CdLS and CdLS-like features that are also shared with other

NDDs. Eigenhuis et al. further explore CdLS heterogenous

etiology within the context of genes encoding transcriptional

pause-release regulators. Notably, TFIID functions as a

General Transcription Factor (GTF) in the preinitiation

complex (PIC), an essential component for gene transcription,

pausing and release (Schier and Taatjes, 2020). Multiple

components of its TBP-associated factors (TAFs) interact with

the superelongation complex (SEC), including BRD4 and SEC

that associate with positive transcription elongation factor-b

(P-TEFb) complex, which is then recruited to paused RNApol2,

leading to efficient transcription elongation. Mutations to

transcriptional pausing regulators cause NDDs with craniofacial

and limb anomalies often reminiscent of a CdLS phenotype. A

phenotype-to-function hypothesis is presented that reconciles

genetic mutations to possible and plausible pausing regulators

(including KMT2A and ANKRD11) to defective transcription

and cellular dysfunction, leading to disease.

Further exploring chromatin regulators in NDDs

reminiscent of CdLS and RSTS, Vasko and Vergano study

Coffin-Siris Syndrome (CSS), a condition arising predominantly

from mutations to the SWI/SNF chromatin remodeling

complex. In a large cohort of CSS cases, the authors report

mutations in genes encoding SWI/SNF proteins (most

commonly ARID1B) and associated transcription factors

(SOX11, SOX4), and explore potential genotype-phenotype

associations with features including language deficits and

adaptive interventions.

Different mutations to a single gene can also precipitate

multiple NDDs. Antonyan and Ernst explore how stabilizing

and heterozygous loss-of-function mutations in SET binding

protein 1 (SETBP1) affect brain development to cause Schinzel-

Giedion syndrome (SGS) or SETBP1 deficiency disorder (SDD),

respectively. The authors describe how SETBP1 signals through

SET which, together with TAF1A and ANP32A, forms the

INHAT (inhibitor of acetyltransferase) complex to negatively

regulate histone acetyltransferases such as CBP/EP300 (Seo

et al., 2001). Other mechanisms, including regulation of AKT

signaling, DNA repair, and cell cycle control are also considered.

Rett syndrome (RTT) is a severe neurological condition

affecting almost exclusively females and largely caused by

mutations in the X-linked gene MECP2 (Lyst and Bird, 2015).

The gene encodes methyl-CpG-binding protein 2, an essential

gene expression regulator (Tillotson and Bird, 2019) that is

abundant in neuronal cells and relevant to their morphology

(Shahbazian et al., 2002). Yet, its role in astrocytes remains

understudied in RTT (Lioy et al., 2011; Garg et al., 2015).

Albizzati et al. address this by quantifying brain astrocyte

heterogeneity in an RTT mouse model (Burda and Sofroniew,

2014). They found Mecp2 null astrocytes were morphologically

less complex compared to wildtype, and such differences

were regionally variable in the brain, particularly within

motor and somatosensory cortices. Thus, Mecp2 may mediate

astrocyte morphology, possibly through chromatin remodeling

in RTT.

In conclusion, these studies collectively illustrate the wide-

ranging roles for transcription and chromatin regulators in

neurodevelopment. Taken alongside current advancements in

gene editing, improved pharmacological interventions that

modulate such signaling in cells, as well as innovative functional

assays to interpret the impact of causative vs. benign genetic

variants; we collectively move closer to the promise of precision

diagnoses and personalized treatments for NDDs in humans.
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