
fnins-16-1028929 November 23, 2022 Time: 6:49 # 1

TYPE Original Research
PUBLISHED 24 November 2022
DOI 10.3389/fnins.2022.1028929

OPEN ACCESS

EDITED BY

Tong Tong,
Fuzhou University, China

REVIEWED BY

Zhijin Wang,
Jimei University, China
Xinrui Wang,
Northern Theater General Hospital,
China
Qingling Huang,
Nanjing Brain Hospital Affiliated
to Nanjing Medical University, China

*CORRESPONDENCE

Chih-Ying Gwo
ericgwo@uch.edu.tw

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Brain Imaging Methods,
a section of the journal
Frontiers in Neuroscience

RECEIVED 26 August 2022
ACCEPTED 07 November 2022
PUBLISHED 24 November 2022

CITATION

Gwo C-Y, Zhu DC and Zhang R (2022)
Brain white matter hyperintensity
lesion characterization in 3D T2

fluid-attenuated inversion recovery
magnetic resonance images: Shape,
texture, and their correlations with
potential growth.
Front. Neurosci. 16:1028929.
doi: 10.3389/fnins.2022.1028929

COPYRIGHT

© 2022 Gwo, Zhu and Zhang. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Brain white matter
hyperintensity lesion
characterization in 3D T2
fluid-attenuated inversion
recovery magnetic resonance
images: Shape, texture, and
their correlations with potential
growth
Chih-Ying Gwo1*†, David C. Zhu2,3† and Rong Zhang4,5

1Department of Information Management, Chien Hsin University of Science and Technology,
Taoyuan City, Taiwan, 2Department of Radiology, Cognitive Imaging Research Center, Michigan
State University, East Lansing, MI, United States, 3Department of Psychology, Cognitive Imaging
Research Center, Michigan State University, East Lansing, MI, United States, 4Department of
Neurology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX,
United States, 5Institute for Exercise and Environmental Medicine, Texas Health Presbyterian
Hospital Dallas, Dallas, TX, United States

Analyses of age-related white matter hyperintensity (WMH) lesions manifested

in T2 fluid-attenuated inversion recovery (FLAIR) magnetic resonance images

(MRI) have been mostly on understanding the size and location of the WMH

lesions and rarely on the morphological characterization of the lesions. This

work extends our prior analyses of the morphological characteristics and

texture of WMH from 2D to 3D based on 3D T2 FLAIR images. 3D Zernike

transformation was used to characterize WMH shape; a fuzzy logic method

was used to characterize the lesion texture. We then clustered 3D WMH

lesions into groups based on their 3D shape and texture features. A potential

growth index (PGI) to assess dynamic changes in WMH lesions was developed

based on the image texture features of the WMH lesion penumbra. WMH

lesions with various sizes were segmented from brain images of 32 cognitively

normal older adults. The WMH lesions were divided into two groups based on

their size. Analyses of Variance (ANOVAs) showed significant differences in PGI

among WMH shape clusters (P = 1.57× 10−3 for small lesions; P = 3.14× 10−2

for large lesions). Significant differences in PGI were also found among WMH

texture group clusters (P = 1.79 × 10−6). In conclusion, we presented a novel
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approach to characterize the morphology of 3D WMH lesions and explored

the potential to assess the dynamic morphological changes of WMH lesions

using PGI.

KEYWORDS

white matter hyperintensity, 3D Zernike transformation, shape, texture, potential
growth index

Introduction

White matter hyperintensities (WMH) on T2 fluid-
attenuated inversion recovery (FLAIR) magnetic resonance
brain images (MRI) are commonly observed in older adults
over 65 years old with a prevalence rate of ∼ 60–80% in the
general population (De Leeuw et al., 2001; Wen and Sachdev,
2004). WMH lesions are even more extensive in those with
vascular or Alzheimer’s disease (AD) type of dementia when
compared with cognitively normal older adults, suggesting its
role in dementia pathogenesis and neurocognitive dysfunction
(Bombois et al., 2007; Kloppenborg et al., 2014; Lee et al.,
2016). WMH is also frequently observed in patients with
multiple sclerosis (MS) (Loizou et al., 2015; Newton et al.,
2017). Qualitative and quantitative WMH characterization has
been used as a biomarker to assist cerebral small vessel disease
diagnosis and to assess treatment effects (Wardlaw et al., 2013).
The pathogenic mechanisms of WMH are not well understood,
and have been attributed to brain hypoperfusion, white matter
demyelization, or both (Greenberg, 2006; Wardlaw et al., 2013).
Furthermore, periventricular and subcortical deep WMHs may
have different pathogenic mechanisms (Schmidt et al., 2011;
Poels et al., 2012; Tseng et al., 2013). The commonly used
methods for WMH quantification are to measure its regional
or total volume (i.e., the sum of WMH voxel size) within the
whole brain based on image tissue segmentation algorithms
(DeCarli et al., 2005; Wardlaw et al., 2013). This method,
however, neglects entirely the typological or morphological
features of WMH lesions which may have important clinical
significance as demonstrated in recent studies in patients with
MS (Loizou et al., 2015; Newton et al., 2017). In this regard,
imaging processing using deep learning may reveal image
patterns related to disease progression (Zeng et al., 2021; Li
et al., 2022). However, this approach has limitations in that
the unique typological or morphological features of WMH
and its underlying neurobiological mechanisms cannot be
characterized.

White matter hyperintensities shape is a basic
morphological feature which can be derived from high-
resolution T2 FLAIR images after tissue segmentation. Shape
feature extraction, recognition, and classification can be
implemented either in the original or the transformed image

space (Khotanzad and Hong, 1990; Mikolajczyk et al., 2003;
Carmichael and Hebert, 2004; Tahmasbi et al., 2011). The
analysis of 3D shape has been widely applied in the fields
of image processing and pattern recognition, such as terrain
matching (Rodriguez and Aggarwal, 1990), object retrieval
(Körtgen et al., 2003; Novotni and Klein, 2004), anatomical
structure analysis (Gerig et al., 2001; Styner et al., 2005;
Terriberry et al., 2005; Luders et al., 2006; Gerardin et al.,
2009; Shen et al., 2012; Wachinger et al., 2015; Makkinejad
et al., 2019), and protein structural similarity retrieval (Mak
et al., 2008; Sael et al., 2008). In general, the feature vectors of
3D shapes are first extracted. Then the similarity between the
vectors is indexed for comparison, clustering, and recognition.
The feature representation of 3D shape is to transform the
original space of 3D objects to a high-dimensional feature
vector space while preserving the shape information. The
resulting feature vector (also known as a shape descriptor)
can be used to characterize the unique shape of an object. In
(Zhang et al., 2007), the computational techniques used for
obtaining shape descriptors were comprehensively reviewed,
and categorizations of the approaches were also provided.
A shape descriptor, in general, needs to be able to characterize
both the global shape contour and the regional topological
details (Deng et al., 2016). Additionally, in order to assess the
reliability and the accuracy of the descriptor, the descriptor
must be able to reconstruct as close to the original object as
possible. Due to the complexity of 3D shape feature extraction
and the computational instability of numerical feature values,
low-order 3D descriptors of objects, especially with the voxel-
based approach, were commonly found in current literature
(Novotni and Klein, 2004; Venkatraman et al., 2009a). Although
a low-order shape descriptor may provide sufficient information
for classification of objects at a coarse level, higher-order shape
features are required to differentiate subtle regional topological
differences in objects with fine structures. Therefore, choosing
an appropriate order of shape descriptor is crucial to represent
a 3D shape with different morphological features.

Based on literature, three categories of algorithms have
applied to study the shapes of 3D objects: (1) surface-based
methods using spherical harmonics as the basis functions
(Kelemen et al., 1999; Styner et al., 2006), (2) voxel-based
methods based on 3D Fourier (Vranic and Saupe, 2001)
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and Zernike transforms (Novotni and Klein, 2003), and (3)
spectrum-based methods by solving the eigenvalues of 2D
and 3D Laplace-Beltrami operators on triangular (boundary)
and tetrahedral (volume) meshes (Reuter et al., 2006; Lian
et al., 2013). All these methods theoretically can characterize
3D object shapes with high fidelity and have been applied to
characterize brain structures (Joshi et al., 1997; Gerig et al.,
2001; Styner et al., 2006; Wachinger et al., 2015, 2016).
However, the surface-based methods are only suitable for
smooth shapes with spherical topology, and cannot characterize
3D structures with holes or torus-like surfaces. Spectrum-
based methods are isometry invariance, but cannot easily
distinguish resembling objects (Reuter et al., 2006; Lian et al.,
2013). Among the methods used for shape feature extraction,
the voxel-based 3D Zernike transformation has its unique
advantages. In contrast to surface-based methods (Zhang
et al., 2007), 3D Zernike transform can characterize holes
and torus. Compared to the surface-based method based on
spherical harmonics, the 3D Zernike transformation combines
spherical harmonics with radial polynomials to produce a more
compact representation and requires fewer expansion orders
(Venkatraman et al., 2009a). The advantages of 3D Zernike
descriptor over spherical harmonics have been demonstrated
in the benchmark studies involving image retrieval for general
3D objects (Novotni and Klein, 2004) and protein molecules
with similar global structures (Sael et al., 2008). Furthermore,
Zernike transform is rotational invariance in space, but Fourier
transform is not which may lead to the dependence of
the derived shape features on the orientation of original
objects.

Based on the orthogonality of 2D Zernike moments
(Teague, 1980), Canterakis generalized the classical 2D Zernike
polynomials to 3D and derived 3D Zernike polynomials and
moments. With this theory, Novotni and Klein developed
methods for computing the Zernike moments and object
reconstruction (Novotni and Klein, 2003, 2004). Similar to the
2D Zernike moments, the magnitudes of complex 3D Zernike
moments, named the Zernike descriptor, is rotational invariant.

The 3D Zernike descriptors have been successfully applied
to protein structural similarity retrieval (Mak et al., 2008;
Sael et al., 2008), protein-protein docking using region-
based (Venkatraman et al., 2009b), terrain matching (Ye and
Chen, 2012), and amphetamine-type stimulant (ATS) drugs
identification (Pratama et al., 2015). The maximum order of 3D
Zernike moments used in most, if not all, studies is below 30
and can only represent the rough shape features of 3D objects
because the existing computation method developed by Novotni
and Klein is time-consuming and computationally instable for
calculating higher orders of Zernike moments (Zhang et al.,
2007). Recently, we have proposed a new algorithm to calculate
high order 3D Zernike moments to characterize objects which
have fine structures (Deng and Gwo, 2020).

Texture is also a basic feature of the surface appearance
of an object, and one of the important morphological
features of images. Textured surfaces are the core of human
vision because they are important visual cues about surface
characteristics. Texture information is used to identify objects
and understand the pre-attentional vision of the scene
(Depeursinge et al., 2014). Texture analysis has received
widespread attention because of its important role in the field
of computer vision and pattern recognition, including facial
analysis, industrial inspection, satellite or aerial image analysis,
biomedical image analysis, and biometrics object recognition
(Depeursinge et al., 2017; Liu et al., 2017). Image texture
can be assessed using several quantitative approaches such
as structural, spectral transformation, modeling, or statistics-
based approaches (Bharati et al., 2004). For image texture
analysis, the statistical approaches have the benefits of being
rotational, size, and translational invariant in the feature vector
spaces. Furthermore, these methods can characterize image
intensity distributions directly (Bharati et al., 2004; Castellano
et al., 2004). In addition, they require fewer a priori model
assumptions, such as basic symbolic image elements and
repeated image patterns (Castellano et al., 2004). We used
a statistical method based on fuzzy logic to construct the
image intensity histogram of WMH lesions, and then cluster
lesion features into several groups. Significant differences in
the intensity of lesions can be observed in the resulting
groups (Gwo et al., 2019). However, the concept of three-
dimensional texture is rarely used because textures that exist
in more than two dimensions cannot be fully visualized by
humans. Computer graphics only provide virtual navigation in
multi–planar rendering or translucent visualization and allow
observation of two-dimensional projections of opaque textures
(Toriwaki and Yoshida, 2009). Depeursinge et al. provided a
good review of the challenges and opportunities of 3D texture
analysis in biomedical imaging (Depeursinge et al., 2014).

White matter hyperintensities morphological characteristics
such as the size, shape, and image texture may change with
time which may reflect the progression of underlying dynamic
pathophysiological process (Novotni and Klein, 2003; Lian
et al., 2013). In this regard, recent studies have shown that
the immediate surrounding areas of the defined WMH lesions
may be at risk for further tissue damage and conversion to
lesions (Reuter et al., 2006; Wachinger et al., 2016). These
areas are classified as WMH penumbras (Wachinger et al.,
2016). To characterize WMH lesions as well as their penumbras,
we developed a seed-based region-growing algorithm to
characterize 2D WMH boundaries to explore the potential
growth of WMH lesions. We defined this specific WMH
boundary characteristic as potential growth index (PGI) and
observed that both shape and texture characteristics of 2D
WMH are related to PGI (Gwo et al., 2019).

The characterization and quantification of the shape and
texture of 3D WMH lesions have not been previously attempted.
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FIGURE 1

(A) An example a slice of T2 FLAIR image volume from one subject showing multiple white matter hyperintensity (WMH) lesions; (B) the results
of WMH segmentation using the lesion prediction algorithm (LPA) showing in red, and (C) a WMH binary mask after tissue segmentation, which
was used to form the 3D structure of WMH for feature extraction.

In this work, we extended 2D to high-order 3D Zernike
transform to study the shape of 3D WMH and applied fuzzy
logic to the intensity histogram of 3D WMH lesions for texture
feature extraction. We also explored the potential growth index
to predict of future tissue damage surrounding the 3D WMH
lesion, that is, the WMH penumbra. Finally, we evaluated
3D potential growth differences among different lesion shape
categories and texture clusters.

Methods and results

Magnetic resonance images
acquisition

Full-brain 3D T2 FLAIR images with voxel size of
1 × 1 × 1 mm3 were collected on a GE Discovery MR 750W
3T MRI scanner (GE Healthcare, Waukesha, WI) with the
following parameters: sagittal, time of echo (TE) = 115 ms, time
of repetition (TR) = 6.8 s, time of inversion (TI) = 1828 ms,
echo train length = 200, receiver bandwidth = 41.67 kHz, fat
saturation on, field of view (FOV) = 25.6 × 25.6 cm, slice
thickness = 1 mm, number of slices = 176, acquisition matrix
size = 256× 256. All subjects signed informed consent approved
by the Institutional Review Boards of the UT Southwestern
Medical Center and Texas Health Presbyterian Hospital of
Dallas. Thirty-two T2 FLAIR brain image datasets (15 male,
17 female, 66.7 ± 6.0 years old and normal cognition),
which contained clearly identifiable white matter hyperintensity
(WMH) lesions with various sizes, were selected from an on-
going HIPAC clinical trial (NCT03354143). Inclusion criteria:
(1) age 55–79 years; (2) Mini-Mental State Exam (MMSE) > 26
to exclude dementia; (3) normotensive subjects and patiens
with hypertension Exclusion criteria: (1) severe cerebrovascular
disease such as stroke, transient ischemic attack, traumatic

brain injury; (2) clinical diagnosis of dementia or other
neurodegenerative diseases; (3) severe depression or other
psychopathology; (4) unstable heart disease; (5) chronic kidney
diseases with GFR< 40 ml/min; (6) orthostatic hypotension; (7)
history of significant autoimmune disorders; (8) history of drug
or alcohol abuse within the last 2 years; (9) uncontrolled diabetes
mellitus; (10) obstructive sleep apnea; (11) regularly smoking
cigarette within the past year; (12) severe obesity with BMI≥ 45;
(13) carotid stent or severe stenosis (> 50%); (14) pacemaker
or other medical device of metal that precludes performing
MRI; (15) history B12 deficiency or hypothyroidismT2 FLAIR
Image Segmentation.

T2 FLAIR WMH regions were segmented on each 3D
image volume through the lesion prediction algorithm (LPA)
implemented in the Lesion Segmentation Toolbox (LST)
version 2.0.12 for Statistical Parametric Mapping (SPM12).
In LPA, the algorithm is trained using a logistic regression
model on T2 FLAIR brain images from 53 MS patients
with severe lesion patterns. LPA was also validated in
other patient populations such as older adults with diabetes
(Styner et al., 2005). The fitness of a new T2 FLAIR
brain image to this model provides an estimate of lesion
probability for each voxel in the image. In this study,
we used a threshold of 0.5, as suggested by LST, on
the obtained lesion probability maps to identify WMH
regions. The segmentation accuracy was further verified
through visual inspection. Figure 1 shows an example of
the segmentation.

Lesion size distribution

We extracted the WMH3D lesions greater than 30 mm3

in each subject and obtained a total number of 280 lesions.
The lesion size distributions of all subjects are shown in
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FIGURE 2

The histogram of WMH3D lesion size distribution for all subjects. The cumulative lesion size distribution is shown in percentage on the right
vertical axis.

Figure 2. The figure shows a wide range of lesion sizes
and most of the lesions are relatively small. To explore
whether the shape of WMH3D is related to its potential
growth, the volume of all WMH3D is required to normalize
to the same size. However, the volume scaling process
can add or lose 3D shape details, and more so when
the size distribution of WMH3D has a wide range as
in our subjects (Figure 2). To reduce this scaling issue,
this study divided the 280 WMH3D lesions to two groups
based on their size. Group Ss had lesion size smaller
than or equal to 250 voxels, and Group Sl had lesions
larger than 250 voxels The group division generated 206
lesions for Ss and 74 lesions for Sl. To understand the
anatomical distribution of the 280 WMH3D lesions, we
classified the WMH clusters within or adjacent to the
ventricle borders with a 3-mm thickness as periventricular
WMH, and the rest as deep WMH. We found that 84.6%
of the WMH clusters were at the periventricular region,
and they tended to be relatively large with a volume
size of 587.3 ± 1660.5 (mm3) with a range of 31–
12409 mm3. The deep WMH clusters tended to be small with
a volume size of 72.0 ± 44.4 (mm3), with a range of 31–
256 mm3.

The rationale of using 250 voxels as the cut-off for
the lesion groups was based on both volume and shape
characteristics of the lesions. All extracted WMH3D lesions
were positioned to 150 × 150 × 150 cubes with their
centroids at the centers. Then 3D Zernike transform with
an order of 150 was applied to the cubes to obtain the
corresponding shape descriptors, and then a K-mean algorithm

was used to cluster all 280 lesions into four clusters which
are determined by the gap statistic (GAP, described in the
later section) (Tibshirani et al., 2001). This process assisted
in finding a size classification based on both the volume
and shape of the lesion to reduce the influence of the
shape changes caused by volume normalization on subsequent
analyses. The size distribution results of GAP clustering are
shown in Figure 3. The cluster shown in Figure 3A contains
187 lesions. The size of 250 voxels is a proper cutoff and
thus was chosen to divide 280 lesions by their sizes into
two groups.

WMH3D shape feature extraction and
classification

WMH3D shape feature extraction using 3D
Zernike transformation

The 2D Zernike transformation is based on the
Zernike polynomials defined on the unit disc D.
This transformation has been extensively applied to
imaging shape feature extraction and pattern recognition
(Papakostas et al., 2007; Wee and Paramesran, 2007;
Gwo et al., 2019). The coefficients of the Zernike
polynomial expansion of an object are called Zernike
moments (ZMs). The magnitude of the ZMs, which
is also named as the Zernike descriptor, is rotational
invariant and represents the shape features of the
analyzed objects. To define the 3D version of Zernike
polynomials, the unit disc D is replaced by a unit ball
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FIGURE 3

The four clusters with the histogram of the WMH3D volume size distribution are determined by gap statistic. The numbers of WMH3D in each
cluster (A–D) are 187, 59, 25, and 9, respectively.

B. Every point (x, y, z) in the unit ball B can be
represented by a spherical coordinates (r, θ, φ) as shown
in Eq. 1,

Znm =
n+ 1

π

∫ 2π

0

∫ 1

0
f (r, θ)V∗nm (r, θ) rdrdθ, |r| ≤ 1,

(1)
where

r =
√

x2 + y2 + z2

θ = cos−1 z
r

(2)

φ = sin−1 y√
x2 + y2

Canterakis introduced the first algorithm to calculate
3D Zernike moments (3DZMs) (Canterakis, 1999), where
the 3DZMs were expressed as the linear combination of
geometric moments. These 3DZMs were later described as
shape descriptors for shape retrieval (Novotni and Klein, 2004).
Canterakis’ algorithm has been applied to terrain matching

(Wang et al., 2018a,b) and protein–protein interface
prediction (Daberdaku and Ferrari, 2018). However,
Canterakis’ algorithm could only be used to compute
ZM up to the order of 25, due to computational demand
and instability. Hosny et al. introduced a fast algorithm
using eight ways of (anti-)symmetries (Hosny and Hafez,
2012). To overcome the limitations on computational
efficiency and the maximum ZM order that can be
computed reliably in previous algorithms, Deng and Gwo
proposed a new algorithm based on a recursive approach
to calculate 3D Zernike radial polynomials, as described
in Eqs 10–13 (Deng and Gwo, 2020). The algorithm
used to calculate the 3D Zernike polynomial is briefly
described below.

The 3D Zernike polynomial Vm
n` (r, θ, φ) is defined as

the multiplication of spherical harmonic Ym
` (θ, φ) and radial

polynomial Rn` (r) as below:

Vm
n` (r, θ, φ) = Ym

` (θ, φ)Rn` (r) (3)
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Ym
` (θ, φ) and Rn` (r) are computed separately. The

spherical harmonic Ym
` (θ, φ) of degree ` with order m is given

by

Ym
` (θ, φ) =

{
Km
` Pm

` (cos θ) cos mφ if m ≥ 0
Km
` Pm

` (cos θ)sin mφ otherwise
(4)

where Pm
` (·) is the associated Legendre polynomial of degree `,

given by

Pm
` (x) = (−1)m

(
1− x2)m

2 dm

dxm (P` (x) ) (5)

and Km
` is the normalizing factor given by

Km
` = (−1)m

√
∈m (2`+ 1) (`−m) !

(`+m) !
where ∈m =

 1 if m 6= 0

2 oterwise
(6)

Let P̃m
` (cos θ) = Km

` Pm
` (cos θ) be the normalized

associated Legendre polynomial. Then Eq. 4 is simplified to

Ym
` (θ, φ) =

{
P̃m
` (cos θ) cos mφ if m ≥ 0

P̃m
` (cos θ) sin mφ otherwise

(7)

The spherical harmonics Ym
` (·) form an orthonormal basis

for the Hilbert space L2(S2) of the square-integrable functions
over the unit sphere S2. For any function f of L2(S2), f can be
expressed as in Eq. 8 (Szegõ, 1939):

f (θ, φ) =
∞∑
` = 0

∑̀
m = −`

Cm
` Ym

` (θ, φ) (8)

where Cm
` are the coefficients; ` is a non-negative integer; m is an

integer with |m| `. The computation procedures of P̃m
` (cos θ)

for degree ` ≤ `max are summarized to the following (Szegõ,
1939; Deng and Gwo, 2018a):

1. Initialize P̃0
0 (cos θ) =

√
1

4π
, which is the normalizing

factor for volumetric integration. Then iteratively calculate
the following:

2. P̃`` (cos θ) = C3sin θ P̃`−1
`−1 (cos θ) for ` 1, 2, 3,..., `max

3. P̃`−1
` (cos θ) = C1cos θ P̃`−1

`−1 (cos θ)
4. P̃m

` (cos θ) = C1cos θ P̃m
`−1 (cos θ)− C2P̃m

`−2 (cos θ)
for m = 0, 1, ..,`− 2 (9)

C =
√

2`+1
(`+m)(`−m) ,C1 = C

√
2`− 1

C2 = C
√
(`+m−1)(`−m−1)

2`−3 ,C3 =
√

2`+1
2`

For a Zernike polynomial order n (a non-negative integer),
the integer ` above needs to ≤ n and n− ` = even, and the
integer m above needs to |m| ≤ `.

The 3D Zernike radial polynomial Rn` (r) in Eq. 3 was
originally given in terms of Jacobi polynomials as described in
(Szegõ, 1939), but different calculation methods of 3D Zernike
radial polynomial have been proposed (Deng and Gwo, 2020).
In our work, the Rn` is computed recursively, similar to the
Kintner’s P-method in the case of 2D Zernike polynomials
(Kintner, 1976; Deng and Gwo, 2018b), and is presented in
Eq. 10.

Rn` (r) =
(
K1r2
+ K2

)
Rn−2,` (r)+ K3Rn−4,` (r) (10)

for n = `+ 4, `+ 6,...,nmax

where the coefficients Ki are given by the following,

k0 = (n− `) (n+ `+ 1) (2n−3) (11)

k1 = (2n− 1) (2n+1) (2n−3)

k2 = (−2n+ 1)
(

4`2
+4`+1

2

)
−

k1
2

k3 = − (n− `− 2) (n+ `+ 1) (2n+1)

K1 =
k1
k0
, K2 =

k2
k0
, K3 =

k3
k0

For this recursive formula, the following initial equalities are
also required:

Rnn (r) = rn for n 0, 1, 2, (12)
and

Rn,n−2 (r) = (n+
1
2
)rn
− (n−

1
2
)rn−2 for n = 2, 3, 4, ...

(13)

Let f (r, θ, φ) be a 3D image function within the unit ball
B. The 3DZM Zm

n` can be regarded as the inner product of the
image function f (r, θ, φ) with the basis function Vm

n` (r, θ, φ)
(Deng and Gwo, 2020), and can be described as

Zm
n` = (2n+ 3)

y

(r,θ,φ)∈B

f (r, θ, φ)Vm
n` (r, θ, φ)r

2sin θdrdθdφ

(14)

Each moment within Order n corresponds to a (2`+1)-

dimensional vector
⇀
Z n` as

⇀
Z n` =

(
Z−`n` , Z−`+1

n` , · · · , Z0
n`, · · · , Z`−1

n` , Z`n`
)

(15)

The l2-norm of
⇀
Z n`, denoted by

∣∣∣∣∣∣∣∣⇀Z n`

∣∣∣∣∣∣∣∣ =
√√√√ ∑̀

m = −`

∣∣Zm
n`
∣∣2 (16)
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is rotation invariant, and can be used as the 3D shape
descriptor (or Zernike descriptor) of a 3D object. The total
number of 3DZMs and the dimension of Zernike descriptor for
an expansion up to order n are given by Eqs 17, 18, respectively:

Number of 3DZMs =
n∑

i 0

⌊
(i+ 2)2

4

⌋
(17)

Dimension of Zernike descriptor =


( n+2

2
)2 if order n is even

(n+3)(n+1)
4 if order n is odd

(18)

The image object function f can be reconstructed with ZM
order M as fM below:

fM (r, θ, φ) =
M∑

n 0

∑
`

∑̀
m −`

Zm
n`V

m
n` (r, θ, φ) (19)

When M is large enough, the function fM can be used to
approximate the original image f (Deng and Gwo, 2018b). For
a binary shape with the background represented by 0, the error
rate Er between the original image f and the reconstructed fM
can be calculated by

Er =

∑
∀(x,y,z)

(
f
(
x, y, z

)
⊕ fM

(
x, y, z

))∑
∀(x,y,z) f

(
x, y, z

) (20)

where fM
(
x, y, z

)
=

{
1 if fM

(
x, y, z

)
≥ 0.5

0 otherwise

where ⊕ is exclusive disjunction and f
(
x, y, z

)
0 or 1. Based

on the error rate Er , an appropriate ZM order M can be chosen.
Overall, the calculation of 3D Zernike moments is

summarized as follows: First, the normalized associated
polynomial P̃m

` (cos θ) of the spherical harmonic function is
calculated using Eq. 9. Second, the 3D Zernike radial polynomial
Rn` is recursively calculated using Eqs 10–13. Then, the
3D Zernike polynomials can be obtained by Eq. 3. Finally,
Eq. 14 is used to generate 3D Zernike moments. The 3D
spherical harmonics and Radial polynomials are illustrated in
Supplementary Figure 1.

For 3D Zernike Transformation of WMH, all lesions were
linearly rescaled at the ratio of 3

√
v′/v in three dimensions, and

the intensity of the resulting voxel was calculated by tricubic
interpolation (Arata, 1995), where v was the original volume
size and the v

′

was the volume scaled to. Due to blurring
effect in scaling, an appropriate intensity threshold was then
chosen so that the scaled volume is closest to v

′

. To compare
the Zernike descriptors at the same scale, the lesions in Group
Ss are normalized to about 80 voxels within a 36 × 36 × 36

cube, with the centroid at the center of the cube. Similarly, the
lesions in Group Sl are normalized to about 1500 voxels within
a 90 × 90 × 90 cube. These two numbers, 80 and 1500, are
medium size in their own lesion groups.

As an example, the effect of ZM order on the Zernike
transformation of two WMH3D lesions and their reconstruction
accuracy is shown in Supplementary Figure 2.

As shown in Supplementary Figure 2 qualitatively and in
Figure 4 quantitatively, the order of the Zernike transformation
needs to be large enough to preserve the original shape details.

As illustrated in Figure 4, the error rates of WMH3D lesion
reconstruction, Er , would decrease with the reconstruction
order. The 3D Zernike transformation with order of 100 for
Group Ss and then 250 for Group Sl, were applied to the
voxel cubes containing the size-normalized lesions. The error
rates of group Ss and Sl were 7.3 × 10−4

± 3.4 × 10−3 and
7.2 × 10−4

± 1.3 × 10−3, respectively. Zernike descriptor
was obtained for each lesion with 2,601 dimensions for Group
Ss and 15,876 for Group Sl, based on Eqs 16, 18. The
principal component analysis (PCA) was then used to reduce
the large number of dimensions of the Zernike descriptors
to reduce computation demand while minimizing information
loss. To maintain 99.8% variance of the two lesion size groups,
the number of principal component choices for the two
groups are 80 and 68, respectively (Figure 5). The Zernike
descriptors were projected on the selected principal components
(eigenvectors), and the coefficients corresponding to these
principal components were used for WMH3D shape clustering
and classification.

WMH3D shape classification
A K-means algorithm was used for clustering and

classification due to its simplicity and efficiency (Bharati et al.,
2004). However, different initial seeds used in the clustering
algorithm may generate different clustering results (Hamerly
and Elkan, 2002). In this study, we randomly selected the
initial clustering seeds from the shape lesion feature space
and conducted 1,000 trials to assess the clustering results. We
employed a gap statistic method to determine the optimal
number of clusters for WMH3D shape clustering (Tibshirani
et al., 2001).

1. The sum of the within-cluster dispersion Wk is computed
for each choice k clusters (k = 1, 2,. . ., N).

Wk =

k∑
r = 1

∑
xi∈Cr

(xi − xr)
2 (21)

where xi is a data point, Cr denotes cluster r, and xr is the vector
mean of Cr .
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FIGURE 4

The error rates of two lesions calculated from two different normalized sizes at different Zernike reconstruction orders: (A) the error rate of an
80-voxel lesion in a 36 × 36 × 36 voxel cube approached zero at order around 100, and (B) the error rate of a 1500-voxel lesion in a
90 × 90 × 90 voxel cube approached zero at order around 250.

FIGURE 5

To maintain 99.8% variance of the two lesion size groups, (A) the first 80 principal components and (B) the first 68 principal components were
chosen for group Ss and group Sl, respectively.

The B reference datasets is uniformly generated by randomly
sampling from the bounding rectangle of the original dataset. By
Eq. 21, W∗kb is computed for each k and b (b = 1, 2, . . ., B, k = 1,
2, . . ., N). Then, compute the estimated gap statistic

Gap
(
k
)
=

1
B

∑
b

log
(
W∗kb

)
− log (Wk) (22)

2. let l = (1/B)
∑

b log (Wkb), compute the standard
deviation

sdk =

[
1
B

∑
b

(
log

(
W∗kb − l

))2
]1/2

(23)

Let sk = sdk
√
(1+ 1/B). Choose the optimal number of

shape clusters via

k̂ = smallest k such that Gap
(
k
)
≥ Gap

(
k+ 1

)
− sk+1 (24)

In gap statistic procedure, N is a pre-selected number of
clusters such that k̂ can be determined in the range of [1, N], and
B is selected to calculate the value of sdk in a statistical sense. In
this study, N and B were set to 20 and 30, respectively.

For the size-normalized lesions, the feature dimension
were 80 in Group Ss and 68 in Group Sl, the Gap values
were calculated and displayed in Supplementary Figure 3; the
optimal numbers of shape clusters were 5 for Group Ss and 4 for
Group Sl according to Eq. 24.

Figure 6 shows the WMH3D shape clustering results using
the K-means clustering algorithm (Hartigan and Wong, 1979)
based on the cluster number of 5 for Group Ss and 4 for Group
Sl. The second column shows the number of lesions in each
shape cluster. The third column presents the four lesion images
closest to their cluster means, as the representative lesion shapes
corresponding to their clusters. All lesion images shown in the
figure were normalized close to the voxel size of 80 for Group
Sl and 1500 for Group Sl. The orientation-adjusted images can
be seen in Figure 6 with the significant differences among the
shape clusters.
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FIGURE 6

A K-means algorithm was performed to categorize WMH3D lesion shapes to different clusters for Group Ss (A) and Group Sl (B).

WMH3D texture feature and
classification

Texture feature extraction

To obtain rotation-invariant texture features that are

applicable to both small and large-size WMH3D, the fuzzy logic

technique that we developed in (Gwo et al., 2019) was extended

to WMH3D. Specifically, when segmenting WMH3D, false

positives likely occurred at boundaries of a lesion, where signal

intensity was usually low and thus led to biased estimation.

To reduce chance of false positive, voxels with intensity at the

lowest 1% were discarded. To reduce the variations of the signal

intensity of individual subjects, a min-max normalization was

applied to a WMH3D to normalize its voxel intensity based on
Eq. 25.

s
(
x, y, z

)
=

f
(
x, y, z

)
− gMin

gMax− gMin
for f

(
x, y, z

)
= max

((
f
(
x, y, z

)
, gMin

))
(25)

where f
(
x, y, z

)
is the intensity of voxel f

(
x, y, z

)
and s∈ [0, 1],

gMax = maximal voxel intensity of WMH3D and gMin =
minimal voxel intensity of WMH3D.

For feature extraction, each voxel intensity was quantized
into one of the n bins to create a histogram that represents
voxel intensity distribution of a WMH3D. To minimize the
interference of quantization to the frequency histogram, we
used a fuzzy logic method (Gwo and Wei, 2013) to allocate
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normalized voxel intensity values to each of the pre-selected
bins. Specifically, a normalized voxel intensity s was assigned
proportionally two values, called fuzzy values, to the two
neighboring bins according its relative positions to the bin
centers (Supplementary Figure 4).

The fuzzy logic functions used for assigning voxels to the
frequency histogram are presented in Eq. 26 (Gwo and Wei,
2013). The fuzzy value v[j] at bin j is calculated as:



v [0] = 1 if s ≤ 1
2n

v
[
j− 1

]
=

2j+1
2 − s × n

v
[
j
]
= s × n− 2j−1

2

}
if 1

2n ≤ s ≤ 2j+1
2n

v
[
j
]
=

2j+3
2 − s × n

v
[
j+ 1

]
= s × n− 2j+1

2

}
if 1− 1

2n ≥ s > 2j+1
2n

v [n− 1] = 1 if s ≥ 1− 1
2n

(26)

where n = the total number of bins, and j = 0,..., n-1. Since the
sizes of WMH3D lesions vary in a wide range (Figure 2), the
WMH3D intensity frequency distribution histograms need to be
further normalized before they can be compared. Herein, each
histogram is normalized to have a total accumulative frequency
of 1.

WMH3D texture feature classification

Texture feature classification of individual WMH3D lesion
images was conducted using a feature vector clustering method
similar to those discussed above in the section of “WMH3D
Shape Classification.” Of note, the texture feature vector was
based on the frequency histogram presented above using the
fuzzy logic method. The influences of different texture feature
dimensions (i.e., the number of bins used to construct the
intensity histogram) and the numbers of clusters on texture
feature classification were explored using the same strategy
discussed above for WMH3D shape feature clustering. The sum
of within-cluster dispersion Wk value was calculated with the
cluster number from 2 to 20 and the feature dimensions from 2
to 15. As illustrated in Supplementary Figure 5, Wk decreased
with the increase of the cluster numbers. A noticeable “elbow”
phenomenon was seen for a wide range of texture feature
dimensions from 2 to 15. In (Hughes, 1968), there are two
considerations in choosing an appropriate number of bins: (1)
If the number of bins is too large, the fuzzy values accumulated
in some bins become sparse, especially for small-sized lesions.
Sparsity is problematic for any statistical analysis method. (2)
Conversely, if the number of bins is too small, lesion features
may not be effectively distinguishable. With these two reasons
in mind, in this study, we selected ten bins for texture feature
extraction.

The gap statistics discussed above was applied to determine
the optimal number of texture feature cluster for pattern

recognition based on the K-means algorithm for grouping
(Hartigan and Wong, 1979). Supplementary Figure 6 shows
that 5 is the optimal number of cluster.

WMH3D potential growth index

Voxel intensity is an important feature in image analysis.
In this study, the intensity information of voxels in the
penumbra area was used to estimate the likelihood of lesion
development. The intuitive assumption is that the higher the
intensity value, the higher the probability that the lesion may
develop. If the intensity of neighboring voxels (penumbra)
around the identified lesions is within a reasonable range
discussed below, these will be the voxels of interest for potential
growth. The distance between the voxels and the boundary of
the lesion should also be considered. It hypothesized that the
farther the voxel is from the lesion boundary, the greater the
contribution to the PGI.

For each subject, the interesting voxel set Pw in
lesion penumbra involves the calculation of PGI, and the
corresponding intensity range is defined as follows:

Pw =
{

p
(
x, y, z

) ∣∣ m− f
(
x, y, z

)
≤ γ × σ (27)

where f
(
x, y, z

)
denotes the voxel p

(
x, y, z

)
intensity, m is

the average intensity of all WMH3Ds in the subject, σ is
the corresponding standard deviation, and γ is a user-defined
positive real number. Dilation morphological operation is
applied to mask image to iteratively generate l layers masks
with one-voxel thickness surrounding the lesion, which is the
interest area of the penumbra to estimate the PGI of the lesion.
The schematic analysis pipeline for calculating WMH3D PGI is
shown in Figure 7.

In this study, we chose γ = 2.5, which covers 99.38% of
all WMH3D voxel intensities in a subject to demonstrate the
presence of potential growth regions of WMH3D lesions. In the
l-layer mask of the lesion, we are only interested in voxels with
an intensity value greater than the value displayed by the red
dotted line in the figure, which is m−2.5 × σ. These apparent
layer masks are used to identify the relative location of a growth
voxel. A growth voxel at an outer layers of these masks weights
more in its contribution to the PGI. Specifically, the weight wi at
ith layer, with total l layers, is given by the following equation:

wi =
i∑l

j = 1 j
(28)

Once the number of growth voxels at each layers were
evaluated, PGI for each WMH3D lesion is calculated below:

PGI =
∑l

i = 1 GV iwi

Vl
(29)
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FIGURE 7

Schematic analysis pipeline for calculating WMH3D potential growth index (PGI). (A) The 3D image volume of a subject, (B) the results of WMH
segmentation using the lesion prediction algorithm, (C) two enlarged WMH3Ds whose locations are marked with red circles in panels (B,D) the
intensities of potential penumbra voxels within the range of interest are displayed in a lighter color with two different viewing directions. The
sizes of these two 3D lesions are 91 and 12409 voxels, respectively.

TABLE 1 ANOVA analysis of the potential growth indices (PGIs) for shape clusters and corresponding lesion sizes in the Ss group.

SHAPE (volume size ≤ 250 voxels)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Numberof lesions 22 50 39 61 34

PGI 0.0716± 0.0279 0.0667± 0.0362 0.0649± 0.0372 0.0577± 0.0312 0.0411± 0.0209

Between-cluster difference: P = 1.5706× 10−3 , F = 4.5378

Vol. size 60.3± 34.2 66.9± 41.5 75.7± 42.8 99.7± 61.7 128.7± 61.3

Between-cluster difference: P = 1.1692× 10−7 , F = 10.3747

TABLE 2 ANOVA analysis of the potential growth indices (PGIs) for shape clusters and corresponding lesion sizes in the Sl group.

SHAPE (volume size > 250 voxels)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of lesions 9 21 23 21

PGI 0.0889± 0.0481 0.0674± 0.0299 0.0653± 0.0379 0.0494± 0.0213

Between-cluster difference: P = 3.1419× 10−2 , F = 3.1195

Vol. size 502.1± 215.3 1482.9± 2605.8 2667.1± 3734.7 1295.3± 1466.2

Between-cluster difference: P = 0.1437, F = 1.8638

where, GV i = number of “growth voxels” found at the ith layer,
and Vl = the total number of voxels in all l layers for a WMH3D.
All lesion images were evaluated for their PGIs with l set to 5.

The PGIs estimated from the small lesions and the large lesions
that are near the ventricle shown in Figure 7 are 0.0569 and
0.0844, respectively.
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TABLE 3 ANOVA analysis of the potential growth indices (PGIs) for texture clusters and corresponding lesion sizes for all 280 lesions.

Texture

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of lesions 29 91 41 119

PGI 0.0783± 0.0289 0.0686± 0.0368 0.0668± 0.0327 0.0493± 0.0282

Between-cluster difference: P = 1.7865× 10−6 , F = 10.3463

Vol. size 358.5± 1400.3 295.4± 636.9 500.7± 1738.5 733.6± 1821.7

Between-cluster difference: P = 0.2761, F = 1.2960

TABLE 4 PGI and lesion size differences between shape clusters in
the Ss group.

Between
clusters

PGI Vol. size

F value P F value P

Cluster 1 vs.
Cluster 2

0.32 0.5715 0.42 0.5190

Cluster 1 vs.
Cluster 3

0.54 0.4661 2.10 0.1530

Cluster 1 vs.
Cluster 4

3.39 0.0693 8.03 5.82× 10−3

Cluster 1 vs.
Cluster 5

21.75 2.08× 10−5** 22.66 1.49× 10−5**

Cluster 2 vs.
Cluster 3

0.05 0.8227 0.98 0.3255

Cluster 2 vs.
Cluster 4

1.97 0.1631 10.33 1.72× 10−3*

Cluster 2 vs.
Cluster 5

13.82 3.67× 10−4** 30.42 3.94× 10−7**

Cluster 3 vs.
Cluster 4

1.09 0.2980 4.49 3.66× 10−2

Cluster 3 vs.
Cluster 5

10.90 1.51× 10−3* 18.65 5.00× 10−5**

Cluster 4 vs.
Cluster 5

7.67 6.77× 10−3 4.83 3.04× 10−2

Shown P-values are before Bonferroni corrections. To account for corrections, the
thresholds are set at P < 5.0 × 10−3 to be considered significant (indicated by *) and
P < 1.0× 10−3 to be considered highly significant (indicated by **).

The relationships between potential
growth index and WMH3D shape and
texture features

For the shape and the texture clusters classified as shown in
Figures 6, 8 above, one-way Analyses of Variance (ANOVAs)
were performed to evaluate if there were significant differences
in PGI among the shape or the texture clusters. Significant
differences were found among both shape (P = 1.57 × 10−3 for
Group Ss and P = 3.14× 10−2 for Group Sl shown in Tables 1, 2)
and texture (P = 1.79 × 10−6 shown in Table 3) clusters.
Tables 4–6 also show the results after the Bonferroni corrections
for multiple comparisons. As a reference, lesion volume size

TABLE 5 Compare the PGI and lesion size between shape clusters in
the Sl group.

PGI between clusters F value P

Cluster 1 vs. Cluster 2 2.23 0.1466

Cluster 1 vs. Cluster 3 2.15 0.1527

Cluster 1 vs. Cluster 4 9.95 3.82× 10−3*

Cluster 2 vs. Cluster 3 0.04 0.8382

Cluster 2 vs. Cluster 4 5.04 0.0304

Cluster 3 vs. Cluster 4 2.85 0.0986

Shown P-values are before Bonferroni corrections. To account for corrections, the
significant threshold is set at P < 8.33× 10−3 (indicated by *).

TABLE 6 Compare the PGI between texture clusters for all
280 lesions.

PGI between clusters F value P

Cluster 1 vs Cluster 2 1.70 0.1953

Cluster 1 vs Cluster 3 2.30 0.1338

Cluster 1 vs Cluster 4 24.51 2.02× 10−6**

Cluster 2 vs Cluster 3 0.07 0.7947

Cluster 2 vs Cluster 4 18.55 2.55× 10−5**

Cluster 3 vs Cluster 4 10.88 1.20× 10−3**

Shown P-values are before Bonferroni corrections. To account for corrections, thresholds
is set at P < 1.67× 10−3 to be considered highly significant (indicated by **).

analyses are also included. It is worth noting that among the
shape clusters in the Ss group (Table 4 and Figure 6A), cluster
5 is significantly different from the other four clusters in terms
of both PGI and lesion size. However, the PGI difference in
cluster 5 from other four clusters was not likely driven by the
lesion size because this cluster contains size evenly distributed
between 30 and 250 voxels. For the Sl group, significant PGI
differences were only found between Clusters 1 and 4 and
between Clusters 2 and 4 (Table 5 and Figure 6B). However,
due to the large lesion size variance in each cluster, there was
no significant difference in lesion size among the shape clusters
(Table 2). Furthermore, significant PGI differences were found
between cluster 4 and the other three clusters (Table 6). Of note,
compared with the other three clusters, the average PGI value
of cluster 4 is smaller and the texture color is lighter (e.g., high
intensity) (Figures 8, 9).
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FIGURE 8

The WMH3D lesion images from the 32 subjects were classified into four clusters. The images at three view directions are displayed.

FIGURE 9

The 280 WMH3D lesion images from the 32 subjects were classified into four clusters based on their fuzzy image textures. The label on the
y-axis is the probabilities of voxels in the lesion assigned to the bin.
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Discussion and conclusion

In this study, we extended our prior work in WMH
morphological analyses from 2D to 3D. A total of 280 3D lesions
from 32 cognitively normal older adults with a volume size
of greater than 30 voxels were used in shape and texture the
analysis. When using Zernike transformation to extract shape
features of 3D objects, volume normalization is a necessary
process. In this regard, excessive scaling may enlarge the
boundary details of small lesions while losing the details of large
lesions. In this work, before clustering the shape of the lesions,
WMH3D lesions were divided into two groups according to the
size of the lesions to minimize volume normalization error. The
texture features of the lesions used in this study were generated
based on the intensity distribution. The fuzzy processing based
on image intensity normalization for feature extraction reduced
the influences of the intensity quantification. In addition, the
intensity distribution was normalized by the size of the lesion,
resulting in size independency.

The statistical data analyses showed that regardless of
the volume size category of the lesions, PGI had significant
differences among the shape clusters. The significant differences
were also presented among the texture clusters. T2 FLAIR WMH
lesions were mostly located around the ventricles. The lesions
around the ventricle were usually longer in shape and had high
voxel intensity in texture, and had lower average PGI values than
lesions distant from the ventricles. These observations together
suggest that WMH lesion anatomic locations, morphological
characteristics, as well as the lesion texture may have impact
on lesion progression. Further work with a large sample size
and a longitudinal study design would allow us to address these
clinically significant questions.

When the number of lesions is sufficient with a large
sample size of subjects, the merging of different lesion size
groups performed in the present study to reduce the influence
of lesion size on the application of Zernike transformation
would not be necessary. The etiology of WNH is complex
and can be multifactorial (Alber et al., 2019). Given that
healthy subjects and patients with hypertension were enrolled
this study, we suspect, but cannot prove that WHM lesions
observed likely reflect the presence of cerebral small vessel
disease (Alber et al., 2019). Whether WMH3D shape and texture
characteristics and location are related to different etiology
also worth further studies. Finally, studies are also needed to
optimize the algorithms and parameters of shape and texture
feature extraction, clustering, and PGI estimation with a goal to
apply this novel imaging processing method to clinical research.
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