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Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China

Purpose: To investigate the structural and network topological changes in

the white matter (WM) in MMD patients with limb paresthesia by performing

diffusion kurtosis imaging (DKI).

Materials and methods: A total of 151 MMD patients, including 46 with

left-limb paresthesia (MLP), 52 with right-limb paresthesia (MRP), and 53

without paresthesia (MWP), and 28 healthy controls (HCs) underwent whole-

brain DKI, while the surgical patients were reexamined 3-4 months after

revascularization. The data were preprocessed to calculate the fractional

anisotropy (FA) and mean kurtosis (MK) values. Voxel-wise statistics for FA

and MK images were obtained by using tract-based spatial statistics (TBSS).

Next, the whole-brain network was constructed, and global and local network

parameters were analyzed using graph theory. All parameters were compared

among the HC, MWP, MLP, and MRP groups, and changes in the MMD patients

before and after revascularization were also compared.

Results: The TBSS analysis revealed significant reductions in FA and MK in

extensive WM regions in the three patient groups. In comparison with the

MWP group, the MLP group showed reductions in FA and MK in both right

and left WM, mainly in the right WM, while the MRP group mainly showed a

reduction in FA in the left WM region and demonstrated no significant change

in MK. The graph theoretical analysis showed decreased global network

efficiency, increased characteristic path length, and increased sigma in the

MWP, MRP, and MLP groups in comparison with the HC group. Among local

network parameters, the nodal efficiency decreased in the bilateral MFG and

IFGtriang, while the degree decreased in the MFG.L and bilateral IFGtriang.

Patients with right-limb paresthesia showed the lowest nodal efficiency and

degree in MFG.L and IFGtriang.L, while those with left-limb paresthesia

showed the lowest nodal efficiency in MFG.R and IFGtriang.R and the lowest

degree in IFGtriang.R.
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Conclusion: A DKI-based whole-brain structural and network analysis can be

used to detect changes in WM damage and network topological changes

in MMD patients with limb paresthesia. FA is more sensitive than MK in

detecting WM injury, while MFG and IFGtriang are the key nodes related to

the development of acroparesthesia.

KEYWORDS

moyamoya disease (MMD), magnetic resonance imaging (MRI), diffusion kurtosis
imaging (DKI), brain network, limb paresthesia

Introduction

Moyamoya disease (MMD) is a cerebrovascular disease
caused by the development of moyamoya vessels to compensate
for chronic bilateral occlusion of the internal carotid arteries
(Kuroda and Houkin, 2008; Kazumata et al., 2016a). Voxel-
based morphometric analyses have recently shown extensive
microstructural changes in the white matter (WM) of patients
with MMD, probably due to nerve function impairment
(Kazumata et al., 2015). We had previously used diffusion
kurtosis imaging (DKI) and region of interest (ROI) analyses
to identify changes in the DKI parameters in the WM
regions associated with sensory transduction pathways in MMD
patients with acroparesthesia (Qiao et al., 2020). However, ROI-
or voxel-based morphometry can only identify the WM region
involved and cannot identify the affected neural pathways.

Complex models of the brain network consisting of neural
units (e.g., neurons and brain regions) with structural or
functional connections have been constructed in many recent
studies (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010;
Van Essen et al., 2012; Liao et al., 2017). In these studies, non-
invasive neuroimaging techniques (Bullmore and Sporns, 2009;
Yong and Evans, 2010; van den Heuvel and Sporns, 2013)
such as multimodal magnetic resonance imaging (e.g., structural
MRI, diffusion MRI, and functional MRI) were combined
with graph theoretical approaches to map the structural and
functional connectivity patterns in the human brain, improving
our understanding of the topological properties of the complex
brain network.

Small-world architecture has shown increasing relevance
in descriptions of the human brain network because of the
associated low wiring and energy costs and effective information
segregation and integration (Watts and Strogatz, 1998). In
this regard, changes in the small-world characteristics of the
brain network have been shown to be associated with normal
aging and brain diseases such as neurodegenerative diseases,
epilepsy, gliomas, and schizophrenia (Lo et al., 2010; van den
Heuvel et al., 2010; Griffa et al., 2013; Huang et al., 2014).
However, only a few studies have evaluated the brain network
in patients with MMD, and most of them were diffusion tensor

imaging (DTI)-based correlation analyses. DTI is constrained
by technical insufficiencies: It is based on the assumption
that water molecules diffuse freely and that diffusion can be
characterized by a Gaussian distribution. Moreover, the tensor
model is based on the observation that water diffusion is
anisotropic in many tissues. Thus, this model performs well in
regions where fibers are aligned along a single axis and fails in
regions with several fiber populations aligned along intersecting
axes because it cannot simultaneously map several diffusion
maxima. DKI is an extension of DTI that estimates both the
diffusion and kurtosis tensors in order to characterize non-
Gaussian diffusion dynamics within complex biological tissue
(van den Heuvel et al., 2010; Kazumata et al., 2016a). The
Orientation Distribution Function (ODF) assessments based
on DKI is one of the important methods to describe the
directionality of multimodal diffusion in regions with complex
fiber architecture present in brain and other biological tissues,
which can resolve fiber crossings in a model independent
manner (Lazar et al., 2008; Glenn et al., 2015). Therefore, in this
study, we constructed a DKI-based brain structural network of
MMD patients with acroparesthesia and used graph theory to
characterize the topological organization of the brain structural
network, with the aim of understanding the central mechanism
of acroparesthesia in MMD patients and thereby facilitating
accurate assessment and clinical treatment of MMD.

Materials and methods

Participants

Between January 2015 to July 2018, a total of 151 patients
with MMD, including 46 with left-limb paresthesia (MLP group,
age = 36.7 ± 9.7 years; 24 males), 52 with right-limb paresthesia
(MRP group, age = 37.5 ± 9.8 years; 30 males), and 53
without paresthesia (MWP group, age = 39.1 ± 7.0 years; 26
males), were recruited in this study. Of these, 18 patients in
the MLP group, 17 in the MRP group, and 24 in the MWP
group underwent encephaloduroarteriosynangiosis (EDAS).
Limb paresthesia manifested as paroxysmal limb numbness or
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hypoesthesia. In addition, 28 age- and sex-matched healthy
volunteers were recruited as healthy controls (HC group).

The inclusion criteria were as follows: (1) diagnosis
and staging using digital subtraction angiography (DSA);
(2) stable condition, no cerebral hemorrhage before
scanning, no cerebral infarction on conventional MRI,
and cooperation for the examination; (3) no other neurological
or psychiatric disorder; and (4) right-handedness. All
patients underwent MRI within 1 week before and
after DSA, and the 59 surgical patients underwent a
second MRI 3–4 months after EDAS. All volunteers
were informed of the procedures and precautions before
examination and signed an informed consent form before
participating in the study. The ethics committee of ∗∗∗

approved the study.

Physiological and biochemical tests

Before MRI data acquisition, a series of physiological and
biochemical tests were conducted in all of the patients to
measure their blood pressure, blood sugar level, and total
cholesterol level. In addition, data pertaining to their smoking
and drinking histories were collected.

Image acquisition

A Siemens 3.0-Tesla Skyra magnetic resonance imaging
scanner (Siemens AG, Erlangen, Germany) with a 32-
channel standard head coil was used to acquire images.
All volunteers and patients with MMD underwent whole-
brain DKI, which was performed using an axial echo-planar
imaging sequence with the following parameters: repetition
time (TR), 5,600 ms; echo time (TE), 92 ms; field of view
(FOV), 228 × 228 mm2; matrix, 76 × 76; slice thickness,
3 mm; number of slices, 33; and b value = 0, 1,000, and
2,000 s/mm2; the diffusion sensitive gradient field was applied
in 30 directions.

Diffusion magnetic resonance imaging
data preprocessing

Data quality was checked initially, and participants with
serious data quality problems on visual inspection were
excluded. Then, data were converted from DICOM format
to nifti format using dcm2nii. Diffusion MRI data were
preprocessed using the FMRIB software library (FSL, version
6.0.3)1. Data preprocessing involved the following steps: head-
motion/eddy-current correction (“eddy_correct” command);

1 https://fsl.fmrib.ox.ac.uk/fsl

gradient direction correction (“fdt_rotate_bvecs” command);
and brain mask extraction (“bet2” command). Finally, the
fractional anisotropy (FA), axial diffusivity (AD), radial
diffusivity (RD), and mean diffusivity (MD) values were
calculated using the “dtifit” command of FDT in FSL, while the
mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis
(RK) values were calculated using DKE software. Only images
with b = 0 and 1,000 s/mm2 were employed for DTI fitting,
and all the data (b = 0, 1,000, 2,000 s/mm2) were used
for DKI fitting.

Tract-based spatial statistics

A voxel-wise statistical analysis of FA and MK images
was performed using the TBSS toolbox in FSL. We used
flirt and fnirt to linearly and then non-linearly register the
individual FA image to the FMRIB58 FA template image in
the standard space. The threshold average FA for the WM
skeleton was set to 0.2, and the region with an FA value
of > 0.20 was considered as the final skeleton region. Finally, an
independent FA skeleton image was generated in the standard
space. After execution of all TBSS steps on the basis of FA
values, the TBSS analysis was performed on MK values using
the “tbss_non_FA” command to obtain MK values for all
skeletons tested.

Whole-brain network construction

The preprocessed data were used for the reconstruction
or calculation of the orientation distribution function in the
DKE software2. The fiber-tracking module in the DKE software
was used for whole-brain fiber tracking with the following
parameters: FA threshold, 0.1; angular threshold, 45◦; length
threshold, 20 mm; step size, 1 mm; and number of random seed
points, 105 (default parameter of DKE).

Linear and non-linear registration tools (flirt and fnirt,
respectively) were used to register the 90 brain regions of the
automated anatomic labeling (AAL) template into the individual
diffusion space to define network nodes. First, we employed the
linear method to register the native FA map to the individual
brain T1 image in T1 space by using the registration tool flirt
(Jenkinson et al., 2002). Then, we used flirt and fnirt to linearly
and then non-linearly register the individual brain T1 image
to the MNI152_T1_2-mm_brain image in the standard space.
Next, we inverted the two derived transformations from the
diffusion MRI space to the T1 space and from the T1 space to
standard space. Finally, the two inverted transformations were
applied to warp the AAL from the standard space to the native
diffusion MRI space.

2 https://www.nitrc.org/projects/dke
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A whole-brain network was then constructed using the
command g_Deterministic Network in PANDA, with AAL brain
regions as nodes and the number of fibers connecting brain
regions as the weights of the edges (Figure 1).

Graph theoretical analysis

Binary networks with thresholds of 1, 2, and 3 were
constructed for calculation of network indices (global and
local network parameters). We calculate the area under the
curve (AUC) for each network measure (threshold = 1,
2, 3) to provide a scalar, which does not depend on the
specific threshold selection (Wang et al., 2015). Global network
parameters included global efficiency, local efficiency, clustering
coefficient (CC), normalized CC (γ = CC/CCrand), sigma,
and characteristic path length. Local network parameters were
also used to describe the local network characteristics of each
brain region in the structural network, and these parameters
included degree, shortest path length, local efficiency, nodal
efficiency, CC, and betweenness centrality (Rubinov and
Sporns, 2010). All network analyses were performed using
the Graph Theoretical Network Analysis (GRETNA) toolbox
(Wang et al., 2015).

Statistical analysis

An analysis of covariance was performed on FA and
MK images of the skeleton using the “randomize” command
in FSL (50,000 permutations) to identify differential regions
among groups. Within differential regions, a post hoc test was
performed for pairwise comparisons of two groups using the
“randomize” command in FSL (50,000 permutations) to identify
differential regions (patterns) between groups. The family-
wise error (FWE) method was used for multiple comparison
correction in all statistical analyses (p < 0.05). The JHU
ICBM white matter atlas was then used to localize and
label regions showing significant differences between groups.
ANOVA followed by post hoc tests was performed to identify
differences in network indices among the four groups. Statistical
analyses were corrected for multiple comparisons using the
FWE method with thresholds of p < 0.05 and p < 0.01.

Results

Demographic data of the study
participants

The demographic data of the four groups of participants,
including sex, age, diabetes, hypertension, hyperlipidemia,
smoking history, and drinking history, were comparable
(Table 1).

Overview of motion in the data

Table 2 shows the quantification of the movement
parameters (measures of rotation, translation, and mean
displacement in the frame-to-frame movement) of the four
groups. The results shows there were no significant differences
in the movement parameters between the four groups.

Comparison of fractional anisotropy

Fractional anisotropy was compared among the HC, MWP,
MRP, and MLP groups. In comparison with HCs, the MWP,
MRP, and MLP groups showed significantly lower FA values
in the following regions (Figures 2A–D): bilateral superior
longitudinal fasciculus, bilateral corona radiata, body of the
corpus callosum, genu of the corpus callosum, splenium of the
corpus callosum, bilateral cingulum (cingulate gyrus), bilateral
sagittal stratum (including inferior longitudinal fasciculus
and inferior fronto-occipital fasciculus), bilateral anterior and
posterior limbs of the internal capsule, bilateral external capsule,
right cerebral peduncle, bilateral superior cerebellar peduncle,
right fornix (cres)/stria terminalis, and bilateral posterior
thalamic radiation (including the optic radiation).

In comparison with the MWP group, the MLP group
showed significantly lower FA values in the following regions
(Figure 2E): bilateral superior longitudinal fasciculus, bilateral
corona radiata, body of the corpus callosum, genu of the
corpus callosum, splenium of the corpus callosum, bilateral
cingulum (cingulate gyrus), right sagittal stratum (including
inferior longitudinal fasciculus and inferior fronto-occipital
fasciculus), right anterior and posterior limb of internal capsule,
right external capsule, right cerebral peduncle, right superior
cerebellar peduncle, right fornix (cres)/stria terminalis, and right
posterior thalamic radiation (including the optic radiation).
Additionally, FA also showed significant reductions in the
following regions in the MRP group (Figure 2F): body of the
corpus callosum, left corona radiata, left anterior and posterior
limb of the internal capsule, left cerebral peduncle, and left
sagittal stratum (including the inferior longitudinal fasciculus
and inferior fronto-occipital fasciculus).

Comparison of mean kurtosis

Ean kurtosis was compared among the HC, MWP, MRP,
and MLP groups. In comparison with HCs, the MWP,
MRP, and MLP groups showed significantly lower MK values
in the following regions (Figures 3A-D): bilateral superior
longitudinal fasciculus, bilateral corona radiata, body of the
corpus callosum, genu of the corpus callosum, splenium of
the corpus callosum, right cingulum (cingulate gyrus), bilateral
sagittal stratum (including inferior longitudinal fasciculus and
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FIGURE 1

Schematic diagram outlining the construction of the brain network.

TABLE 1 Demographic data of the study subjects.

HC (n = 28) MRP (n = 52) MLP (n = 46) MWP (n = 53) F1 F2 P1 P2

Age(years) 35.14 ± 7.0 37.5 ± 9.8 36.7 ± 9.7 39.1 ± 7.0 1.053 0.911 0.371 0.404

Gender(Male/Female) 14/14 30/22 24/22 26/27 0.290 0.396 0.832 0.674

Diabetes 0 1 (1.8%) 3 (6.5%) 2 (3.8%) 0.912 0.673 0.437 0.512

Hypertension 0 23 (44.2%) 15 (32.6%) 18 (44.0%) 6.128 0.870 0.001 0.421

Hyperlipidemia 0 4 (7.7%) 5 (10.9%) 11 (20.8%) 3.111 2.129 0.028 0.123

Smoking 5 (17.9%) 14 (26.9%) 10 (21.7%) 15 (28.3%) 0.084 0.112 0.968 0.894

Drinking 6 (21.4%) 9 (17.3%) 9 (19.6%) 12 (22.6%) 0.165 0.232 0.920 0.793

Data presented as mean ± SD for age. One-way ANOVA, SPSS 23. F1 and P1 value is the comparison result between the four groups; F2 and P2 value is the comparison result between
the three groups of MRP, MLP, and MWP.

TABLE 2 Overview of motion in the data.

HC (n = 28) MRP (n = 52) MLP (n = 46) MWP (n = 53) F P

rotation (degree) 1.04 ± 0.43 1.08 ± 0.39 1.13 ± 0.38 1.25 ± 0.86 1.156 0.328

translation (mm) 1.71 ± 0.47 1.72 ± 0.39 1.83 ± 0.47 1.72 ± 0.35 0.771 0.512

mean displacement 0.90 ± 0.31 0.99 ± 0.32 1.09 ± 0.25 0.99 ± 0.34 2.157 0.095

Data presented as mean ± SD for all variables. One-way ANOVA, SPSS 23.

inferior fronto-occipital fasciculus), bilateral posterior limb of
the internal capsule, bilateral cerebral peduncle, and bilateral
posterior thalamic radiation (including optic radiation).

In comparison with the MWP group, the MLP group
showed a significant reduction in MK in the following regions

(Figure 3E): right superior longitudinal fasciculus, right corona
radiata, body of the corpus callosum, the right splenium of
the corpus callosum, right cingulum (cingulate gyrus), right
sagittal stratum (including the inferior longitudinal fasciculus
and inferior fronto-occipital fasciculus), right posterior limb of
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FIGURE 2

Voxel-wise TBSS analysis results of fractional anisotropy (FA) images across MMD patients with or without limb paresthesia and healthy controls
(HCs). (A) Significant differences in FA (red-yellow) between patients without paresthesia (MWP), patients with left-limb paresthesia (MLP),
patients with right-limb paresthesia (MRP), and HCs (p < 0.05; FWE corrected based on the threshold-free cluster enhancement statistical
image). Post hoc analyses revealed significant reductions in FA (red-yellow) in the MWP (B), MLP (C), and MRP (D) groups in comparison with
HCs. Post hoc analyses also revealed significant reductions in FA (red-yellow) in the MLP (E) and MRP (F) groups in comparison with the MWP
group. Green represents the mean white matter skeleton of all participants. The color scale (red-yellow) represents significant differences
between groups, with colored regions exceeding the significance threshold of P < 0.05. The left side of the image corresponds to the right
hemisphere of the brain. ANCOVA, analysis of covariance.

the internal capsule, right cerebral peduncle, and right posterior
thalamic radiation (including the optic radiation). The MRP and
MWP groups showed no significant difference in MK values
(Figure 3F).

Comparison of global network
parameters

In comparison with HC, MMD patients showed lower
global efficiencies in the following order: MWP > MRP > MLP
(Figure 4A); increased characteristic path length in the
following order: MLP > MRP > MWP (Figure 4B);
and increased sigma values in the following order:

MLP > MWP > MRP (Figure 4C). MMD patients with
left-limb paresthesia showed the lowest global efficiency, longest
characteristic path length, and largest sigma value.

Comparison of local network
parameters

Nodal efficiency
In comparisons with HCs, four of the 90 nodes showed

significant differences (p < 0.05) in nodal efficiency, including
the left middle frontal gyrus (MFG.L), right middle frontal
gyrus (MFG.R), left inferior frontal gyrus pars triangularis
(IFGtriang.L), and right inferior frontal gyrus pars triangularis
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FIGURE 3

Voxel-wise TBSS analysis results of mean kurtosis (MK) images across MMD patients with or without limb paresthesia and healthy controls (HCs).
(A) Significant differences in MK (red-yellow) between patients without acroparesthesia (MWP), patients with left-limb paresthesia (MLP),
patients with right-limb paresthesia (MRP), and HCs (p < 0.05; family-wise error corrected based on the threshold-free cluster enhancement
statistical image). Post hoc analyses revealed significant reductions (red-yellow) in MK in the MWP (B), MLP (C), and MRP (D) groups in
comparison with the HCs. Post hoc analyses revealed significant reductions in MK in the MLP group (E) in comparison with MWP group, and no
significant reductions in MK were observed in the MRP group (F) in comparison with the MWP group. Green represents the mean white matter
skeleton of all participants. The color scale (red-yellow) represents significant differences between groups, with colored regions exceeding the
significance threshold of P < 0.05. The left side of the image corresponds to the right hemisphere of the brain. ANCOVA, analysis of covariance.

(IFGtriang.R). The nodal efficiency of MMD patients was lower
in these regions; patients with right-limb paresthesia showed the
lowest nodal efficiency in MFG.L (Figure 5A) and IFGtriang.L
(Figure 5C), and patients with left-limb paresthesia showed the
lowest nodal efficiency in MFG.R (Figure 5B) and IFGtriang.R
(Figure 5D).

Degree
In comparisons with HCs, three of the 90 nodes (MFG.L,

IFGtriang.L, and IFGtriang.R) showed significant differences
in degree. The degree decreased in these regions: the patients
with right-limb paresthesia showed the lowest degree in MFG.L

(Figure 6A) and IFGtriang.L (Figure 6B), and the patients with
left-limb paresthesia showed the lowest degree in IFGtriang.R
(Figure 6C).

Preoperative and postoperative comparisons
At 3–4 months after EDAS, the clinical symptoms in the 35

patients with acroparesthesia had reduced or disappeared, but
no significant changes were observed in FA, MK, global or local
network parameters after the operation.

The 24 patients without acroparesthesia showed
preoperative symptoms of dizziness, headache, blurred
vision, or fluency disorder, which reduced or disappeared at
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FIGURE 4

Comparison of global network parameters. In comparison with the findings for healthy controls (HCs), global network efficiency (A) was
decreased, and characteristic path length (B) was increased, both in the order of MMD patients without paresthesia (MWP), patients with
right-limb paresthesia (MRP), and patients with left-limb paresthesia (MLP); in contrast, sigma values increased in the order of MRP, MWP, and
MLP (C). The asterisk (*) denotes results without family-wise error (FWE) correction, **p < 0.05 after FWE correction, and ***p < 0.01 after FWE
correction.

FIGURE 5

Comparison of nodal efficiency in the local network. In comparison with the healthy controls (HCs), MMD patients without paresthesia (MWP),
patients with right-limb paresthesia (MRP), and patients with left-limb paresthesia (MLP) showed reductions in nodal efficiency in the following
brain regions: MFG.L (A): MLP > MWP > MRP; MFG.R (B): MWP > MRP > MLP; IFGtriang.L (C): MLP > MWP > MRP; and IFGtriang.R
(D):MWP > MRP > MLP;. The asterisk (*) denotes results without family-wise error (FWE) correction, **p < 0.05 after FWE correction, and
***p < 0.01 after FWE correction.

3–4 months after unilateral EDAS, but no significant changes
were observed in WM structural or network parameters
after the operation.

Discussion

Diffusion kurtosis imaging is a diffusion-weighted MRI
technique that requires the use of at least three b-values and

15 diffusion directions to estimate diffusional kurtosis. In early
DKI studies, six b-values, ranging from 0 to 2,500 s/mm2 in
increments of 500 s/mm2, were often used. The advantage of
using more than three b-values is that it allows assessment of
the fitting model’s goodness of fit. However, with three b-values
(0, 1,000, and 2,000 s/mm2), the acquisition time is shorter and
brain tissue changes can be evaluated more conveniently and
effectively (Jensen and Helpern, 2010). Therefore, based on the
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FIGURE 6

Comparison of degrees in the local network. In comparison with the healthy controls (HCs), MMD patients without paresthesia (MWP), patients
with right-limb paresthesia (MRP), and patients with left-limb paresthesia (MLP) showed reductions in degree in the following brain regions:
MFG.L (A): MLP > MWP > MRP; IFGtriang.L (B): MLP > MWP > MRP; and IFGtriang.R (C): MWP > MRP > MLP. Asterisk (∗) denotes results without
family-wise error (FWE) correction, ∗∗p < 0.05 after FWE correction, and ∗∗∗p < 0.01 after FWE correction.

tolerance level of the patient, we used a three b-value protocol
for DKI to investigate the WM changes in patients with MMD.

The results of this study indicate that the changes in FA and
MK derived from DKI can reflect microstructural changes in
brain tissue of patients with MMD before detection of changes
in the brain parenchyma by conventional MRI. In patients

with MMD, the WM microstructure may change during long-
term chronic ischemia, and these changes may occur even
among patients with normal-appearing WM. This result is
partly consistent with the observations recorded in previous
studies (Hofer and Frahm, 2006; Jeong et al., 2011; Kazumata
et al., 2016a). Our TBSS analysis identified widespread FA and

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.1029388
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1029388 October 25, 2022 Time: 13:39 # 10

Sun et al. 10.3389/fnins.2022.1029388

MK reductions among patients, and the regions showing a
reduction in FA were larger than those showing a reduction
in MK. It seems that the change in FA value is more sensitive
in detecting the change in WM microstructure, but abnormal
FA can also be influenced by multiple non-biological factors
(e.g., scanner parameters, data quality, head motion, and so
on) and the presence of crossing fibers within a voxel (Volz
et al., 2018). On the other hand, FA represents the degree of
anisotropy of the diffusion of water molecules in the tissue, and
MK represents the complexity or heterogeneity in the tissue
microenvironment; the two values complement each other to
better reflect the microstructural changes in brain tissue (Jensen
and Helpern, 2010). In an experimental animal model of chronic
WM ischemia, myelin sheath damage preceded axonal damage,
suggesting that myelin sheath changes are the main pathological
changes in the WM in cases of chronic cerebral perfusion
deficiency (Kurumatani et al., 1998). Therefore, for patients with
MMD, FA and MK reductions may be related to long-term
chronic ischemia (O’Sullivan et al., 2001; Shiraishi et al., 2005;
Jeong et al., 2011).

FA reductions reflect microstructural changes of the WM
that probably indicate reduced myelination of WM tracts. On
the other hand, a reduction in MK usually indicates a reduction
in the complexity of fibrous tissue in these regions, which
reflects microstructural changes with regard to attenuation of
the myelin sheath and/or axon. Thus, our findings may reveal
impairment of the myelin sheath rather than axonal loss in
MMD patients (Cechetti et al., 2012; Kazumata et al., 2016a; Li
et al., 2021).

Graph theory analysis of the DKI-based structural network
revealed the small-world network changes in patients with
MMD. In these patients, the global efficiency of information
transmission in the brain network decreases with an increase in
the characteristic path length, and the changes were greater in
patients with acroparesthesia. The shorter the path length, the
higher the global efficiency of information transmission (Latora
and Marchiori, 2001; Liao et al., 2017), and global efficiency was
affected by the loss of long-range connections (8). In patients
with MMD, extensive WM injury during long-term chronic
ischemia may cause damage to the long-range connections
between brain regions, thus decreasing global efficiency.

Comparison of the local network parameters in MMD
patients with acroparesthesia showed that the nodal efficiency
decreased in bilateral MFG and IFGtriang, while the degree
decreased in MFG.L and bilateral IFGtriang. Patients with
right-limb paresthesia showed the lowest nodal efficiency and
degree in MFG.L and IFGtriang.L, while patients with left-
limb paresthesia showed the lowest nodal efficiency in MFG.R
and IFGtriang.R and the lowest degree in IFGtriang.R. MFG
is connected to the frontopolar region, supplementary motor
area, premotor cortex, and IFG through intralobar short-range
U-shaped tracts, forming the frontal longitudinal system as an
extension of the superior longitudinal fasciculus (short frontal

lobe connections of the human brain). The functions of cortical-
cortical connections in these areas are largely unknown, and
these connections may be involved in executive function and
memory (Catani et al., 2012; Kazumata et al., 2016b). The results
of our study suggested that changes in the connections of MFG,
IFGtriang, and the whole brain are closely associated with the
development of acroparesthesia in patients with MMD and may
be an important link for evaluating disease severity in MMD
patients with acroparesthesia.

Additionally, this study showed an interesting result. In
comparison with the MMD patients without limb paresthesia,
those with left-limb paresthesia exhibited more extensive WM
injury than those with right-limb paresthesia, and the MMD
patients with left-limb paresthesia showed the lowest global
efficiency and the longest characteristic path length. This may
be related to the fact that only right-handed patients, who were
more sensitive to subtle changes in right-limb paresthesia, were
recruited. Therefore, left-limb paresthesia may be detected later
than right-limb paresthesia, causing more severe damage to the
WM and greater changes in the structural network.

Unfortunately, in this study, although the patients’
symptoms improved or disappeared after revascularization, all
three groups showed no significant differences in FA, MK, or
global and local network parameters before and after surgery
(MWP, MLP, and MRP). On one hand, this could be attributed
to the short time interval between postoperative reexamination
and preoperative examination. When hemodynamics are
improved after revascularization, the microstructure of brain
tissue may not easily show changes within a short period of
time. On the other hand, the plasticity of brain function can
help patients regain functionality neuro-elastically by rerouting
functional pathways elsewhere to compensate for permanently
damaged neuropathways (Klein et al., 2018; Wang et al.,
2020; Xing et al., 2021). A longer-term follow-up period could
facilitate the observation of changes in DKI parameters after
an improvement in cerebral hemodynamics and validate our
hypothesis.

Limitations

This study had multiple limitations: (1) Limb paresthesia in
the MMD patients manifested as paroxysmal limb numbness
or hypoesthesia, and the grading of the symptom severity
was lacking, so analysis of the correlation of this symptom
with DKI results could not be performed. (2) The patients
were followed up for only 3–4 months, although long-term
follow-up evaluations would have been more useful to study
the changes in the brain network with improved cerebral
hemodynamics, because all of the patients underwent indirect
revascularization. (3) In this study, we used DKI with TBSS to
detect WM changes in MMD patients with limb paresthesia.
However, the skeleton projection step in TBSS’s had some
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deficiencies in normalization strategy (Bach et al., 2014). Better
registration methods, such as voxel-based analyses of DTI
using groupwise registration based on ANTS or other well-
performing non-linear registration algorithms, can yield more
accurate registration results (Schwarz et al., 2014). (4) Because
of limitations imposed by the hardware performance of the
MRI scanner and the degree of patient cooperation, the spatial
resolution and angular resolution of the data in this study
were relatively low, which may have influenced the accurate
construction of the brain network.

Conclusion

In conclusion, DKI can detect the structural and network
changes in patients with MMD. FA is more sensitive than MK
in detecting WM injury in MMD patients with acroparesthesia.
The global and local network parameters of a whole-brain
network in patients with MMD changed with chronic ischemia,
and these changes affected the clinical symptoms of the
patients, MFG and IFGtriang are the key nodes related
to the development of acroparesthesia. DKI can be used
to assess the severity of chronic ischemic injury from a
network perspective, which may facilitate disease assessment
and prognostic evaluations.
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