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Introduction: Stroke is usually accompanied by a range of complications,

like post-stroke motor disorders. So far, its evaluation of motor function

is developed on clinical scales, such as Fugl-Meyer Assessment (FMA),

Instrumental Activities of Daily Living (IADL), etc. These scale results from

behavior and kinematic assessment are inevitably influenced by subjective

factors, like the experience of patients and doctors, lacking neurological

correlations and evidence.

Methods: This paper applied a microstate model based on modified k-means

clustering to analyze 64-channel electroencephalogram (EEG) from 12 stroke

patients and 12 healthy volunteers, respectively, to explore the feasibility of

applying microstate analysis to stroke patients. We aimed at finding some

possible differences between stroke and healthy individuals in resting-state

EEG microstate features. We further explored the correlations between EEG

microstate features and scales within the stroke group.

Results and discussion: By statistical analysis, we obtained significant

differences in EEG microstate features between the stroke and healthy groups

and significant correlations between microstate features and scales within

the stroke group. These results might provide some neurological evidence

and correlations in the perspective of EEG microstate analysis for post-stroke

rehabilitation and evaluation of motor disorders. Our work suggests that

microstate analysis of resting-state EEG is a promising method to assist clinical

and assessment applications.

KEYWORDS

resting-state EEG, microstate analysis, post-stroke, rehabilitation assessment, clinical
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Introduction

Stroke is usually accompanied by a range of complications,
one of the recognized post-stroke complications is motor
disorder (Handley et al., 2009). Although dyskinesia occurs
uncommonly in adult stroke patients, about 1–4% of patients
have dyskinesia after stroke severely affecting their life of
patients (Bansil et al., 2012; Mehanna and Jankovic, 2013).

There are two clinical scales for motor function evaluation.
The first one is the Fugl-Meyer Assessment (FMA), which
assesses sensory-motor disorders in stroke patients. FMA has
good consistency, responsiveness, and accuracy and is most
widely used in clinical assessment (Gladstone et al., 2002). The
other is the Instrumental Activities of Daily Living (IADL)
assessment, which assess IADL functions in eight categories:
shopping in the street, going out, food preparation, household
maintenance, laundry, ability to use the telephone, taking
medication, and ability to handle finances (Lawton and Brody,
1969). Both scales are based on behavioral scores, which are
inevitably influenced by subjective factors, like the experience
of patients and doctors, lacking neurological correlations and
evidence.

Electroencephalogram (EEG) is an electrical field recording
of the cerebral cortex (Nunez and Srinivasan, 2006), where
the large-scale activity of cortical neurons creates a specific
distribution of electrical fields in the cortex (Schmidt, 1983)and
through volume conduction (Helmholtz, 1853), a potential
distribution is created on the scalp surface through the skull
and scalp (Michel and Murray, 2012). Placing electrodes on
the scalp surface, changes in scalp surface potential distribution
can be recorded and used to assess the spatial and temporal
dynamics of brain electrophysiological activity (Rappelsberger,
1978). EEG is non-invasive, easy to use, and inexpensive, so
it is a quite common tool for studying brain activity. EEG
signals have a high temporal resolution (Michel and Brunet,
2019) compared to other neuroimaging tools, such as functional
magnetic resonance imaging (fMRI). However, the presence of
volume conduction affects the spatial resolution of EEG (Michel
and Murray, 2012), and the high spatial dimension of EEG
signals cannot be interpreted directly, so it is difficult to extract
valuable information from EEG data.

There are many methods of EEG analysis used to extract
feature information, and microstates analysis is one of them.
A microstate is a sub-stable pattern of cortical potential
distribution in space and time (Lehmann et al., 1987).
In the temporal dimension of EEG, it can be observed
that the temporal sequence of EEG topography consists of
a set of discrete prototype topographies, each of which
maintains a sub-stable state for approximately 60–120 ms before
shifting to another prototype topography (Michel and Koenig,
2018). These prototypical topographies are called functional
microstates, and in resting-state EEG, microstate topographies
share a high similarity across individuals (Koenig et al., 1999),

which ensures the feasibility of consistent microstate analysis
among subjects. At present, microstate analysis is widely used,
such as in the fields of Alzheimer’s disease, schizophrenia, and
depression research (Michel and Koenig, 2018), but it is rarely
used for motor disorder analysis in stroke.

We applied this method to explore the feasibility of applying
microstate analysis to stroke patients. Our work is to find some
possible differences between stroke and healthy individuals in
resting-state EEG microstate features, and furthermore, to find
some correlations between EEG microstate features and scales
within stroke patients. It expects to obtain some significant
results which can provide some neurological evidence or
correlations in the perspective of EEG microstate analysis for
post-stroke rehabilitation and evaluation of motor disorders.

Materials and methods

Subjects

Our study included 12 patients (nine males and three
females, with an average age of 59.8 ± 12.8) with different
degrees of stroke motor disorder and 12 healthy subjects (eight
males and four females, with an average age of 29.0 ± 7.1).
All subjects gave signed informed consent. This study has been
approved by the Ethics Committee of Tianjin University and
Tianjin Hospital in Tianjin, China.

Experimental setup

For both groups, resting EEG was collected with eyes open,
and additional FMA scale and IADL scale scores were collected
in the patient group with stroke motor disorders. Clinical
diagnosis was assessed by experienced doctors. The experiment
was performed in a quiet room. Subjects were comfortably
seated in a chair, and they were asked to rest for a period to
meet the standard of resting state EEG. Subjects were asked
to keep still to avoid artifacts such as myoelectricity. The EEG
data were acquired while remaining resting in the open-eyed
state, and record each subject’s EEG for more than 200 s. For
patients, the clinical diagnosis was evaluated by an experienced
doctor after data collection, then FMA and IADL scores were
given. FMA has three scores: total score, upper limb score, and
lower limb score.

Data acquisition and preprocessing

Eye-opened resting-state EEG data were acquired from a 64-
channel electrode cap with 64 scalp electrodes (Ag-AgCl) placed
according to the 10–20 electrode system of the International
Federation of Clinical Neurophysiology (Klem et al., 1999).
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A 64-channel SynAmps2 system (NeuroScan Inc., USA) was
used for EEG recording. The sampling rate was 1,000 Hz. The
impedance for all electrodes was kept below 10 k�.

Electroencephalogram data were preprocessed offline on
MATLAB (R2021b, MathWorks Inc., USA) with the EEGLAB
(Delorme and Makeig, 2004) 2022.0 toolbox.

First, down-sampling was performed, and the sampling rate
was reduced to 250 Hz, for decreasing the amount of data and
the computational stress of data processing. The sampling rate
satisfies Nyquist’s sampling theorem (Landau, 1967), and 250 Hz
is much larger than twice the 45 Hz.

Second, a Finite Impulse Response (FIR) filter with a
filtering range of 1–45 Hz was applied to eliminate low-
frequency signal shifts and high-frequency interference.

Third, an Independent Component Analysis (ICA) was
performed. After the ICA decomposition of the components,
the joint use of ICLabel (Han et al., 2019) and ADJUST
(Mognon et al., 2011) algorithm assists in identifying artifactual
components, such as blink, muscle movement, eye movement,
and electrode loosening components. After that, use EEGLAB’s
clear raw data and Artifact Subspace Reconstruction (ASR)
function to clean up bad channels and abnormal data segments,
then do ICA on the data again, use ICLabel and ADJUST
algorithm to assist in identifying artifact components, and
visually remove most of the other artifact components.

After the last ICA processing, most of the components in the
top ranking of ICA components are brain-active components,
and their confidence level can reach more than 90%.

Data analysis

We performed microstate analysis to extract features from
data using the microstate toolbox (Poulsen et al., 2018), and then
performed a statistical analysis of the features. The complete
analysis graphical representation shows in Figure 1.

Microstate analysis
A common average reference (CAR) is helpful before

microstate analysis (Ludwig et al., 2009). Then, the largest
signal-to-noise ratio point is determined by calculating the
Global Field Power (GFP) of each topography in time series,
which is calculated as follows:

GFP =

√∑N
i (Vi (t)− Vmean(t))2

N

where Vi(t) denotes the instantaneous potential value of the No. i
electrode at time t ; Vmean(t) represents the average potential value
of all electrodes at time t ; N is the number of electrodes.

Second, the EEG data was segmented. Before segmentation,
EEG data should be normalized. The time point where the GFP
local maximum was located often indicated the presence of a
stable microstate, so the brain topography map at the time point

FIGURE 1

Graphical representation of the analysis method in the study.
The left side shows five steps: calculate GFP, EEG segmentation,
optimized clustering, back fitting, and feature extraction. On the
right side are examples of each step.

of the GFP local maximum was extracted, these maps were also
called original maps. The extracted brain topographies were
clustered and analyzed using a modified K-means clustering
algorithm (Pascual-Marqui et al., 1995), and the prototype
microstates formed by clustering were ranked based on the
global explained variance. The clustering operation was repeated
using the algorithm for clustering parameters 3–8, respectively.

Third, Optimization of clustering parameters. Usually, the
optimization of the clustering parameters is based on the cross-
validation criterion (CV), Global explained variance (GEV),
Dispersion (W), and Krzanowski-Lai (KL) criterion to choose
the suitable number of prototype microstates (Poulsen et al.,
2018). However, according to the previous experience (Koenig
et al., 1999), the number of resting-state microstates clustering
is generally chosen to be 4, because the topography of four
prototype microstates has high similarity among different
studies, and the fixed microstate clustering number of 4 can
ensure the consistency and comparability between individual
studies (Michel and Koenig, 2018). These prototype microstate
topographic maps are easily recognized, and therefore they
are labeled as four classes A, B, C, and D, which are left-
right direction (type A), left-right direction (type B), anterior-
posterior direction (type C), and frontocentral maximum
(type D).

When we got the four microstates, a back fitting was
performed based on the number of microstates selected. After
the four prototype microstates are obtained by clustering, the
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FIGURE 2

(A) Four prototype microstates extracted from one healthy subject. (B) Four prototype microstates extracted from one patient subject. The brain
topographies are labeled as type A, B, C, and D. In both graphs GFP, the EEG data is divided into small segments. Each of them is corresponding
to one of four microstates and a microstate sequence is formed. There are slight differences between the healthy group and the patient group.

TABLE 1 Microstate features GFP, Occ, Dur, and Cov for each
prototype microstate.

Microstate features A B C D

GFP 2.5429 2.6814 2.9412 2.5121

Occ 3.0817 3.3100 3.7209 1.9061

Dur (ms) 79.1481 85.1345 92.6626 67.9401

Cov 0.2439 0.2818 0.3448 0.1295

whole data set is fitted to the prototype microstates, and each
segment of EEG data is matched with a microstate label,
which is one of the four prototype microstates. A winner-
take-all method was used, i.e., the prototype microstate
with the highest similarity is selected as the microstate
label of the EEG data and a sequence of microstates is
formed. However, the presence of interference and artifacts
in the original data affects the quality of the microstate
back fitting and may produce some microstates with short
durations, which are not true microstates and do not meet the
requirements of sub-stability. Therefore, these short microstates
need to be rejected, temporal smoothing was performed
by merging data segments with microstate durations of
less than 30 ms.

In the last step, the microstate features are calculated.
For each microstate, the duration (Dur) is defined as
the average duration of the microstate per second.
Occurrence (Occ) frequency was defined as the average
frequency of the observed microstates. Coverage (Cov)
was defined as the percentage of each microstate that
occurred in each period. The average GFP is defined as
the average amplitude of GFP during each microstate class
dominance. The transition probability (TP) is defined as
the probability of moving from one microstate to another
different microstate.

Statistical analysis
Statistical analysis was performed on SPSS software (IBM

Inc., USA). In this study, the significance level is 0.05. All
statistical tests are two-tailed tests.

We conducted an independent sample t-test to find whether
there are some differences between the features of resting-
state patients’ microstates and those of healthy subjects. Then
we conducted a Pearson correlation analysis to analyze the
correlation between EEG microstate features and scale scores
within the stroke group. Considering that the features of
microstates may be affected by factors such as age, further
partial correlation analysis was performed with age as the
control variable.

Results

Descriptive statistics

In both groups, the number of clusters was set to 4. The
cluster maps obtained from each subject’s EEG were highly
consistent (Michel and Koenig, 2018), so we called them
prototype microstates, yet slight differences could still be found
when comparing patients and healthy subjects as Figure 2
shows. We have marked the type of prototype microstates
manually. In the EEG time series, the EEG signal is segmented
corresponding to each prototype microstate, and each prototype
microstate lasts for about 60–120 ms. The topography of the
microstates was slightly different between patients and healthy
subjects.

For each prototype microstate, we calculated the features
corresponding to each prototype microstate and grouped
them according to the label of the microstate. Each microstate
corresponds to four features: average duration, average
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FIGURE 3

Transition probability matrix.

occurrence, coverage, and average GFP. The features between
microstates are the transition probabilities, 12 values in total,
they are A-B (A-B denotes the transfer from the prototype
microstate A to the prototype microstate B unidirectionally,
the same below), A-C, A-D, B-A, B-C, B-D, C-A, C-B, C-D,
D-A, D-B, D-C, respectively. A TP matrix was formed with a
zero diagonal because the prototype microstate transfer to itself
is not meaningful. Table 1 and Figure 3 show the data on the
microstate features of one of the patients.

Independent samples t-test

To find differences between the health and patient group, we
did independent samples t-test. There are two group settings:

the experimental group (healthy subjects) and the experimental
group (patients), with a total of 28 test variables, i.e., 12
probabilities of transition and a total of 16 (4∗4) microstate
features corresponding to each prototype microstate. When
performing the independent samples t-test, it was found that
the two groups of data did not meet the requirement of
homogeneity of variance, so Welch’s method was used for
correction. The following Table 2 was obtained, labeling the
differences between the two groups for each microstate feature
respectively, and the average duration of microstate C (Dur_C)
was significantly different between the groups (t=2.268, p=0.038).
The detailed information is shown in Figure 4. To examine
the influence of age, we applied a two-factor ANOVA analysis
to the data, then, we got the result that the factor age
has no statistical significance (F = 0.782, p = 0.387) and
the factor Dur_C has a statistical significance (F = 5.077,
p = 0.036).

Scale correlations

Pearson correlation analysis was performed using SPSS
25 software to analyze the correlation between the microstate
features and the clinical scales. The dependent variables are
the scale scores: FMA, upper limb score, lower limb score,
and IADL score. The independent variables are the microstate
features corresponding to each prototype microstate: average
GFP, average duration, average occurrence, coverage, and
transition probabilities. Statistical analysis showed a significant
correlation between the transition probability from C to D and
the scale scores.

There was a significant correlation between C-D transition
probability and FMA score within the confidence interval of

TABLE 2 Independent samples t-tests for 28 variables respectively with t-values and significance p-values.

Characters A-B A-C A-D B-A B-C B-D C-A

t-value −0.696 1.511 −0.552 −0.227 1.360 −1.009 0.530

Significance 0.499 0.146 0.587 0.823 0.189 0.325 0.602

Characters C-B C-D D-A D-B D-C GFP_A GFP_B

t-value 0.546 −0.843 −0.390 −0.802 0.978 −0.312 −0.131

Significance 0.591 0.409 0.700 0.433 0.344 0.759 0.897

Characters GFP_C GFP_D Occ_A Occ_B Occ_C Occ_D Dur_A

t-value 0.042 −0.444 −0.409 −0.414 1.439 −0.859 −0.362

Significance 0.967 0.663 0.687 0.684 0.168 0.401 0.722

Characters Dur_B Dur_C Dur_D Cov_A Cov_B Cov_C Cov_D

t-value −0.393 2.268 −0.018 −0.522 −0.564 1.907 −0.716

Significance 0.700 0.038* 0.986 0.607 0.582 0.075 0.482*

GFP_A represents the character GFP of microstate A, and similar definitions as the table show (*represents p < 0.05, **represents p < 0.01).
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FIGURE 4

Estimation Plot for the average duration of microstate C. C
represents the control group (healthy group) and E represents
the experimental group (patient group).

95% (r = 0.7383, p = 0.0061, two-tailed test), which indicates
that C-D transition probability influences the FMA score.
Furthermore, the C-D transition probability was significantly
correlated with the upper limb score (r = 0.7953, p = 0.0020,
two-tailed test) within the confidence interval of 95%. It is
noted that the r-value of the latter correlation test is higher,
and the p-value is smaller, suggesting that the C-D transition
probability reflects the upper limb score and implies the
mobility of the upper limb. Since the microstate features are
also influenced by age and gender (Hu and Zhang, 2019),
we further implemented a partial correlation analysis, which
was performed mainly on the age variable. By setting the
control variable as age, there was a significant correlation
between C-D and FMA (r = 0.742, p = 0.009), and C-D
and upper limb score (r = 0.802, p = 0.003) also had a
significant correlation. The comparison revealed that age had
an insignificant effect on the correlation, which indicates that
age is not a major factor affecting the scores and that there is
a significant correlation between the transition probability C-D
and the FMA score, as well as the upper limb score. For the
other microstates, no significant correlation was found. Then
we did a linear regression as Figure 5 shows. For transition
probability C-D vs. the FMA score, the R squared is 0.5451; for
transition probability C-D vs. upper limb score, the R squared is
0.6325.

The resting state microstate feature average duration of
microstate A(Dur_A) was significantly correlated with the lower
limb score (r = −0.6415, p = 0.0246) as Figure 6 shows.
Furthermore, partial correlation analysis was performed with
the control variable age, and there was statistically significant
(r = −0.673, p = 0.023), suggesting that the correlation between
Dur_A and the lower limb score was significant when influenced
by the age variable. Linear regression was done, and the R
squared is 0.4115.

FIGURE 5

Linear regression graph between C-D transition probability and
scores. The dots represent the FMA score, and the squares
represent the upper limb score.

FIGURE 6

Linear regression graph between duration of microstate A and
lower limb score.

Discussion

We used microstate analysis to assess the EEG differences
between patients and healthy subjects, and further assessed the
correlations between patient microstate features and clinical
scales. Our study got statistically significant results. The
transition probability from A to C was slightly decreased in
patients with stroke motor disorders compared to healthy
subjects and the variance was larger within the patient group
compared to the healthy group. There was a significant
correlation between transition probability from C to D and the
FMA score, upper limb score. Particularly, a more significant
correlation between transition probability from C to D and
upper limb score was found. There was a significant correlation
between the average duration of microstate A and the lower limb
score. For other microstate features, no significant difference
was found between groups, and no correlation was found
between other features and other clinical scale scores.

Microstates provide information on the combinatorial
activity of large-scale neural networks, and correlations between
EEG microstates and fMRI resting states are found in previous
studies (Britz et al., 2010; Musso et al., 2010; Yuan et al., 2012).
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Microstate A correlates with negative Blood Oxygen on Level
Depending (BOLD) activation in the bilateral superior temporal
lobe and middle temporal lobe, microstate B correlates with
negative BOLD activation in the bilateral occipital cortex.
Microstate C correlates with positive BOLD activation in the
dorsal anterior cingulate cortex, bilateral inferior frontal cortex,
and right insula area. Microstate D is associated with negative
activation of BOLD in frontal and parietal cortical righting
dorsal and ventral areas. Britz et al. (2010) correlate microstate
C with activity in cognitive control networks (mainly salience
networks) and with activation of the anterior cingulate and
insula (Seeley et al., 2007). According to (Britz et al., 2010),
microstate D is associated with the focal attention network.

There is an antagonistic relationship between microstate C
and microstate D, creating a dynamic equilibrium (Santarnecchi
et al., 2017). When a stroke occurs, the equilibrium is disrupted,
and the degree of this imbalance varies depending on the
severity of the stroke motor disorder. As seen in the figure, the
lower the patient score is, the lower the transition probability
C-D is, representing a state transition from microstate C
to microstate D is less likely to occur. This suggests that
the connectivity of the microstate C salience network to the
microstate D dorsal attention network is reduced. However,
there is no evidence to determine the relationship between
changes in network connectivity balance and stroke motor
disorder. This may be related to impaired proprioception, which
requires a more detailed study of the relationship between
microstates and fMRI of patient brain function.

Our study involved a limited number of subjects, more
healthy subjects and patients could be involved to get
furthermore detailed analysis in the future. However, it suggests
the feasibility of applying microstate analysis to stroke patients
and that there are some correlations between microstate features
and clinical scales. As a purely phenomenological concept,
the association between microstates and brain activity remains
vague, and more work needs to be done in the future to reveal
the association between microstate features and brain activity
and to find more neurological evidence.

Conclusion

In summary, we found some differences between stroke
and healthy individuals in resting-state EEG microstate features,
which is statistically significant by independent samples t-test.
And we performed the Pearson correlation analysis between
EEG microstate features and scales within the stroke group.
We obtained significant differences in EEG microstate features
between the stroke and healthy groups, and significant
correlations between microstate features and scales within the
stroke group. These results might provide some neurological
evidence of EEG microstate analysis for stroke rehabilitation.

Resting-state EEG microstate might assist clinical diagnosis and
assessment application as a neurological marker.
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