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Introduction: Neuromuscular electrical stimulation (NMES) induces neural plasticity

of the central nervous system (CNS) and improves motor function in patients

with CNS lesions. However, the extended stimulus duration of NMES reduces its

clinical applicability. Transcutaneous spinal direct current stimulation (tsDCS), which

increases afferent input, may enhance the effects and reduce the stimulus duration

of NMES. This study investigated the excitability of the motor cortex, somatosensory

cortex, and spinal motor neurons after the combined stimulation of NMES and tsDCS.

Methods: Among the 55 participants in this study, 24 were allocated to experiment 1,

15 to experiment 2, and 16 to experiment 3. They received intervention for 20 min on

different days: (1) NMES combined with tsDCS (NMES + tsDCS), (2) NMES combined

with sham tsDCS (NMES + sham tsDCS), and (3) sham NMES combined with tsDCS

(sham NMES + tsDCS). NMES was delivered to the right common peroneal nerve at

25 Hz with the intensity at 120% of the motor threshold. For tsDCS, the cathodal

electrode was positioned on the thoracic 10th–12th vertebral levels, and the anodal

electrode was located on the right shoulder. The stimulus intensity was 2.5 mA.

In experiment 1, motor evoked potentials (MEPs) and short-latency intracortical

inhibition (SICI) were measured by transcranial magnetic stimulation up to 60 min

after stimulation. The spinal motor neurons’ excitability was assessed by recording

the posterior root muscle reflex (PRMR) induced via transcutaneous spinal cord

stimulation in experiment 2, and the primary somatosensory cortex excitability was

evaluated by recording the somatosensory evoked potentials (SEPs) in experiment 3

up to 15 min after stimulation.

Results: Compared to before the stimulation, NMES + tsDCS significantly increased

MEP for 60 min or more, and significantly decreased SICI immediately after.

Conversely contrast, the PRMR significantly decreased immediately after, and SEPs

were unchanged.

Discussion: These results suggest that simultaneous afferent inputs from
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different stimulus positions critically induce primary motor cortex plasticity. The

combined stimulation of NMES with tsDCS may facilitate the development of a new

neurorehabilitation technique.

KEYWORDS

afferent input, corticospinal projection, neural plasticity, motor cortical excitability, spinal
excitability

1. Introduction

Neural plasticity plays a crucial role in improving motor
function and motor performance after stroke and spinal cord
injury (Nudo et al., 1996; Jurkiewicz et al., 2007; Yamaguchi et al.,
2016; Christiansen and Perez, 2018; Fujiwara, 2020). Therefore,
rehabilitation strategies that enhance plastic changes in the cerebral
cortex and spinal circuits’ excitability are strongly desired for patients
with central nervous system (CNS) lesions.

One strategy used to induce neural plasticity is neuromuscular
electrical stimulation (NMES), which increases sensory input and
enhances the excitability of the sensorimotor cortex and spinal
circuits in humans (Khaslavskaia et al., 2002; Knash et al., 2003; Perez
et al., 2003; Shin et al., 2008; Fujiwara et al., 2009; Takahashi et al.,
2018). However, NMES requires over 30 min of electrical stimulation
to induce neural plasticity (Chipchase et al., 2011). This prolonged
time interferes with its clinical application. A Cochrane review
(Pollock et al., 2014) reported that 30–60 min of active rehabilitation
per day provides significant benefits toward the functional recovery
of patients with stroke. Thus, prolonged stimulus time prevents active
rehabilitation.

However, NMES has been recommended as an adjunctive
therapeutic modality to improve motor function and voluntary
movement in patients with stroke (Knutson et al., 2015). Previous
studies have suggested that NMES combined with voluntary
contraction (Khaslavskaia and Sinkjaer, 2005; Yamaguchi et al., 2012;
Takahashi et al., 2018) and non-invasive stimulation techniques,
such as transcranial direct current stimulation (Rizzo et al.,
2014; Yamaguchi et al., 2016) or repetitive transcranial magnetic
stimulation (Yamaguchi et al., 2018; Du et al., 2022), may boost neural
plasticity and recovery of motor function.

Recently, transcutaneous spinal direct current stimulation
(tsDCS) was proposed to induce neural plasticity in the motor cortex
and spinal circuits in humans (Bocci et al., 2014, 2015a; Yamaguchi
et al., 2020). tsDCS leads to neural membrane depolarization or
hyperpolarization of spinal dorsal axons, inducing neural plasticity
of motor and sensory systems in a polarity-specific manner
(Cogiamanian et al., 2008; Winkler et al., 2010). Moreover, tsDCS

Abbreviations: aMT, active motor threshold; CNS, central nervous system;
CPN, common peroneal nerve; EEG, electroencephalographic; EMG,
electromyogram; fMRI, functional magnetic resonance imaging; ISI,
interstimulus interval; MEP, motor evoked potential; M-max, maximum
M-wave; MMRM, mixed-effects models for the repeated-measures analysis
of variance; MT, motor threshold; M1, primary motor cortex; NMES,
neuromuscular electrical stimulation; PRMR, posterior root muscle reflex;
rE, right earlobe; rMT, resting motor threshold; SEPs, somatosensory evoked
potentials; SICI, short-interval intracortical inhibition; TA, tibialis anterior;
TMS, transcranial magnetic stimulation; tSCS, transcutaneous spinal cord
stimulation; tsDCS, transcutaneous spinal direct current stimulation.

promotes the voluntary movement of leg muscles (Berry et al., 2017;
Yamaguchi et al., 2020). In particular, cathodal tsDCS consistently
facilitates motor cortex, motor-related pathway, and voluntary-motor
output (Bocci et al., 2014, 2015a,b; Murray et al., 2018; Powell
et al., 2018a; Yamaguchi et al., 2020; Therkidsen et al., 2022). In
addition, the neural plasticity of the motor cortex is influenced by
the dose-dependent response of the sensory input through electrical
stimulation (Powell et al., 2018b; Insausti-Delgado et al., 2021).
Therefore, we hypothesize that the combination of NMES with
cathodal tsDCS may induce an enduring increase in the sensorimotor
cortex and spinal circuits’ excitability by the summation of sensory
input to the sensorimotor cortex via NMES and the membrane
potential of spinal dorsal axons depolarization via tsDCS. In the
present study, to investigate the combined effects of NMES and
tsDCS on the neural plasticity of CNS, we measured the excitability of
the motor cortex, somatosensory cortex, and spinal circuits in healthy
adults. The results of this investigation may provide a foundation for
a new therapeutic strategy in patients with CNS lesions.

2. Materials and methods

2.1. Participants

A total of 55 healthy volunteers, with 24 (aged 24 ± 4 years; 24
males) allocated to experiment 1, 15 (aged 25 ± 4 years; 15 males)
to experiment 2, and 16 (24 ± 4 years; 16 males) to experiment 3,
were enrolled in this study. The sample size was determined based
on the effect size (g = 0.50) of a previous study investigating the
effect of tsDCS on corticospinal excitability (Murray et al., 2018). The
sample size was determined based on a previous study investigating
the effect of NMES on somatosensory cortex excitability (Schabrun
et al., 2012). The participants had no history of neurological
and/or musculoskeletal disorders. All participants provided written
informed consent before participation. The study was approved by
the Ethical Review Board of the Yamagata Prefectural University
of Health Science in Japan (approval number: 2103-17) and was
performed according to the ethical standards of the Declaration of
Helsinki.

2.2. General experimental design

This study comprised three experiments designed to evaluate
the combined effects of NMES with tsDCS on the neural plasticity
of motor and sensory systems in humans. We employed a single-
blinded (participants), randomized crossover experimental design
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for each of the three experiments. In experiment 1, the combined
effects of NMES and tsDCS on the excitability of the motor cortex
were evaluated by recording the motor evoked potential (MEP) and
short-interval intracortical inhibition (SICI) induced via transcranial
magnetic stimulation (TMS). In experiment 2, we investigated the
combined effect of NMES and tsDCS on spinal excitability was
evaluated by recording the posterior root muscle reflex (PRMR)
induced via transcutaneous spinal cord stimulation (tSCS). Lastly,
in experiment 3, the combined effect of NMES and tsDCS on
the excitability of the primary somatosensory cortex (S1) was
evaluated by recording the somatosensory evoked potential (SEP).
All participants received NMES and tsDCS during three separate 20-
min sessions on different days: (1) combined stimulation of NMES
and cathodal tsDCS (NMES + tsDCS), (2) NMES combined with
sham tsDCS (NMES + sham tsDCS), and (3) sham NMES combined
with cathodal tsDCS (sham NMES + tsDCS). The session order was
randomly assigned by a computer-generated list. To avoid carryover
effects from the previous intervention, washout intervals of three days
or more were inserted between sessions.

2.2.1. NMES
Neuromuscular electrical stimulation was delivered to the right

common peroneal nerve (CPN) via bipolar stimulus electrodes
(1.5 cm diameter, 3.0 cm inter-electrode distance) connected to
Neuropack MEB-2200 (Nihon Kohden, Tokyo, Japan). NMES
consisted of a train of 20 pulses at 25 Hz with a 50% duty cycle for
20 min (Knash et al., 2003; Andrews et al., 2013). The stimulation
intensity was 120% of the motor threshold (MT) in the right tibialis
anterior (TA) muscle with a pulse width of 0.2 ms (McKay et al., 2002;
Knash et al., 2003; Andrews et al., 2013). The MT was defined by
the minimum stimulation intensity that evoked a 100 µV M-wave
in the TA. The sham NMES was performed with the same electrode
position and stimulation device, but without an active electrode (Guo
and Kang, 2018).

2.2.2. tsDCS
Transcutaneous spinal direct current stimulation was delivered

by using a NeuroConn DC Stimulator Plus (Neurocare group
GMBH, Germany) through two carbon rubber electrodes
(5 cm × 7 cm) with electroconductive gel (Signagel, Parker
Laboratories, USA) to keep impedance levels below 10 k� during
stimulation. The cathodal electrode was positioned on the right side
of the thoracic 10th–12th vertebral levels, and the anode electrode
was positioned on the right shoulder (Yamaguchi et al., 2020). We
confirmed the Jacoby line (4th lumbar vertebrae), and the vertebrae
were counted up from the 4th lumbar vertebrae to the 10th–12th
thoracic vertebrae. The electrode was positioned 1.5 cm outside
from the 10th–12th thoracic vertebrae. The electrode of the right
shoulder was placed on the posterior deltoid muscle, which was
confirmed by manipulation. The underlying mechanisms for the
effects of tsDCS on the neural plasticity of motor and sensory
systems have not been clarified, but previous studies have shown
that cathodal tsDCS consistently facilitates the motor cortex and
motor-related pathway (Bocci et al., 2014, 2015a,b; Murray et al.,
2018; Yamaguchi et al., 2020; Therkidsen et al., 2022). Thus, cathodal
tsDCS was adopted in the present study. The stimulation intensity
was 2.5 mA (current density was 0.07 mA/cm2) for 20 min. Ramp up
and ramp down were set for 20 s. The sham tsDCS was delivered at
2.5 mA for 30 s.

2.2.3. Electromyogram recording
The electromyogram (EMG) was recorded using Ag/AgCl

electrodes (1 cm diameter, 2 cm inter-electrode distance). The skin
was rubbed with an alcohol pad to maintain an electrode impedance
of under 5 k� throughout the experiment. The EMG electrodes were
placed over the right TA muscle belly. The wrap ground electrode for
EMG was wrapped just below the knee. EMG signals were recorded
at a sampling rate of 5 kHz with 10–1,000 Hz bandpass filtering using
Neuropack MEB-2200.

2.2.4. Electroencephalograph recording
The electroencephalograph (EEG) was recorded using Ag/AgCl

electrodes (1 cm diameter). The skin was rubbed with an alcohol
pad to maintain an electrode impedance of under 5 k� throughout
the experiment. The active electrode was placed at Cpz representing
the somatosensory cortex of the lower extremity, and the reference
electrode was placed at the right earlobe (rE), according to the
international 10–20 system of electrode placement (Cogiamanian
et al., 2008). The wrap ground electrode for EEG was wrapped just
below the knee. EEG signals were recorded at a sampling rate of 5 kHz
with 0.5–200 Hz bandpass filtering using Neuropack MEB-2200.

2.3. Experimental procedure and
evaluation

2.3.1. Experiment 1: The combined effects of NMES
and tsDCS on MEPs and SICI

Because MEPs were found to increase more after tsDCS was
performed with participants lying supine compared with sitting on
a chair (Murray et al., 2018), the 24 participants in experiment 1 were
instructed to sit on a chair during the assessment and lay supine on
a couch during the intervention. To normalize MEPs at each tested
time point, MEPs were measured before the assessment (baseline).
After the baseline measurement, the MEPs and SICI were assessed
just before intervention (T0) and after intervention at 0 min (T1),
15 min (T2), 30 min (T3), and 60 min (T4) (Figure 1).

2.3.1.1. MEP and SICI

To assess corticospinal excitability, a single-pulse TMS was
delivered to the left primary motor cortex (M1) responsible for
the motor representation of the right TA muscle with a double-
cone coil connected to the Magstim 200 (Magstim Co., Whitland,
UK). The hotspot of the M1 was confirmed based on the induction
of maximum and sustained MEP in the right TA muscle at rest.
To stimulate the same hot spot throughout the study, we marked
the coil position on the head with a pen. The stimulus intensity
was adjusted to 120% of the resting motor threshold (rMT), which
was defined as the minimum stimulation intensity over the motor
hotspot required to evoke MEPs of no < 50 µV with a 50%
probability (Rossi et al., 2009). We averaged 15 measurements of
the peak-to-peak MEP amplitude and calculated the mean value
among participants. The average MEP value at each tested time
point following the intervention was expressed as a percentage
of the baseline measurement (%MEPs) and used for statistical
analysis.

To assess SICI, we adopt a sub-threshold conditioning paired-
pulse paradigm (Kujirai et al., 1993). We used 80% of the active
motor threshold (aMT) for the conditioning stimulation and 120%
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FIGURE 1

Experimental procedure. The participants received neuromuscular electrical stimulation (NMES) + transcutaneous spinal direct current stimulation
(tsDCS), NMES + sham tsDCS, or sham NMES + tsDCS (experiments 1, 2, and 3, respectively) in 20 min session conducted on different days. In experiment
1, motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) were measured at baseline, before the intervention (T0), and after the
intervention at 0 min (T1), 15 min (T2), 30 min (T3), and 60 min (T4). In experiment 2, maximum M-wave (M-max) and posterior root muscle reflex
(PRMR) were measured at baseline, T0, T1, and T2. In experiment 3, somatosensory evoked potentials (SEPs) were measured at baseline, T0, T1, and T2.

of the rMT for the test stimulus (Yamaguchi et al., 2012). The
aMT was defined as the minimum stimulus intensity required to
evoke MEPs of >200 µV with a 50% probability during isometric
contraction upon 100 µV EMG of the right TA muscle (Yamaguchi
et al., 2018; Katagiri et al., 2020). Participants were instructed to
maintain isometric contraction with visual feedback of the EMG
amplitude. The test stimulus intensity was adjusted to maintain the
average amplitude recorded before each intervention throughout the
experiment. The interstimulus interval (ISI) controlled by LabVIEW
software (National Instruments Co., TX, USA) was 2.5 ms, and 15
trials were recorded for each ISI and test stimulation (Katagiri et al.,
2020). The SICI amplitudes were expressed as percentages of the
mean test MEPs amplitudes and used for statistical analysis.

2.3.2. Experiment 2: The combined effect of NMES
and tsDCS on PRMR

The 15 participants enrolled in experiment 2 were instructed
to lay supine on a couch during the experiment. We measured
the PRMR before the assessment (baseline), and the PRMR and
maximum M-wave (M-max) were measured before intervention
(T0), immediately after (T1), and 15 min after the stimulation (T2)
(Figure 1). From our pilot study that investigated the lasting effects
of combined stimulation on PRMR and M-wave, the effects did not
last > 15 min after the stimulation.

2.3.2.1. PRMR

To induce the PRMR from the TA muscle, a stimulus (duration:
1.0 ms) was delivered at 0.3 Hz to the thoracic 10–12 vertebral levels
of the posterior root via two electrodes connected to Neuropack
MEB-2200. The cathodal electrode (5 cm × 7 cm) was positioned
on the right side of thoracic 10–12 vertebral levels, and the anode
electrode (10 cm × 10 cm) was positioned on the trunk above the
umbilicus (Minassian et al., 2007; Milosevic et al., 2019). The stimulus
intensity was adjusted to 120% of the MT, which was defined as the
minimum stimulation intensity required to evoke a sustained PRMR
of 100 µV in the TA muscle. We obtained five measurements of the
peak-to-peak amplitude of the PRMR and calculated the mean value
among participants at each stimulus intensity. The PRMR amplitudes
were expressed as a percentage of the mean M-max amplitudes
(%PRMR) and used for statistical analysis.

2.3.2.2. M-wave
To induce the M-wave from the right TA muscle, the stimulus

(duration: 0.2 ms) was delivered at 0.3 Hz to the CPN by bipolar
stimulus electrodes (1.5 cm diameter, 3.0 cm inter-electrode distance)
connected to Neuropack MEB-2200. A supra-maximal stimulus
intensity was used to evoke M-max. The peak-to-peak amplitude of
M-max was measured.

2.3.3. Experiment 3: The combined effect of NMES
and tsDCS on SEPs

The 16 participants in experiment 3 were instructed to lay supine
on a couch during the intervention. To normalize SEPs at each
time point, SEPs were measured before the assessment (baseline).
After the baseline measurement, SEPs were assessed just before the
intervention (T0) and after the intervention at 0 min (T1) and 15 min
(T2) (Figure 1). Based on our pilot study, we decided that SEPs
required to be assessed until 15 min after the stimulation.

2.3.3.1. SEP
Somatosensory evoked potentials were evoked by stimulation of

the right posterior tibialis nerve at the ankle. In total, 300 pulses of
0.2 ms duration were delivered at a rate of 3 Hz (Cogiamanian et al.,
2008). The stimulus intensity was adjusted to 300% of the perceptual
threshold, defined as the minimum stimulus intensity that can be
perceived by participants (Cruccu et al., 2008). Bipolar stimulus
electrodes (the cathode electrode was located 3.0 cm proximal to
the anode electrode) were connected to Neuropack MEB-2200. To
record S1 excitability, recording electrodes were placed over the Cpz
referred to rE. The peaks of the SEPs were labeled based on latency
from the stimulus onset (Schabrun et al., 2012; Figure 2). SEPs were
analyzed as peak-to-peak amplitudes for the component of N30-
P40 (Cogiamanian et al., 2008). SEPs waveforms were recorded 300
times, and the mean value of the peak-to-peak SEPs amplitude among
participants was calculated. The average SEPs value at each time
point following the intervention was expressed as a percentage of the
baseline measurement (%SEPs) and used for statistical analysis.

2.4. Statistical analysis

The Shapiro–Wilk test was used to determine whether the
baseline MEPs, %MEPs, SICI, baseline PRMR, %PRMR, M-max,
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FIGURE 2

The raw data of somatosensory evoked potentials (SEPs). The peaks of
the SEPs were labeled based on latency from the stimulus onset for
peak-to-peak analysis. P30 was defined as a positive peak with a
latency of around 39 ms (39 ± 5 ms). N40 was defined as a negative
peak following P30 and with a latency of around 45 ms (45 ± 5 ms).

baseline SEPs, and %SEPs were normally distributed. For experiment
1, a mixed-effects model for the repeated-measures analysis of
variance (MMRM) was used to determine the effects of time (T0,
T1, T2, T3, and T4) or condition (NMES + tsDCS, NMES + sham
tsDCS, and sham NMES + tsDCS) on the %MEPs and SICI data.
For experiments 2 and 3, a MMRM was used to determine the
effects of time (T0, T1, and T2) or condition (NMES + tsDCS,
NMES + sham tsDCS, and sham NMES + tsDCS) on the %PRMR,
M-max, and %SEPs data. When a significant main effect was
observed, we performed post-hoc comparisons. We used paired t-tests
with Bonferroni adjustments for normally distributed data, and the
Wilcoxon signed-rank test with Bonferroni adjustments was used
for non-normally distributed data. Statistical significance was set at
P < 0.05 for all comparisons. All statistical analyses were performed
using SPSS 24 (IBM, Armonk, NY, United States).

3. Results

The Shapiro–Wilk test confirmed that only SICI values were
normally distributed; therefore, they were analyzed using a
parametric test. The data of baseline MEPs, PRMR, M-max, and
SEPs are described in the Supplementary material. There was no
significant difference in any baseline data among all conditions
(P > 0.05). After each task, a questionnaire evaluated whether the
participants felt the combined stimulation or sham stimulation. The
chi-square (x2) test was used to confirm the number of correct
responses. No significant differences were found in the number of
correct responses to the stimulus questionnaire in the NMES + sham
tsDCS condition (P = 0.611) and the sham NMES + tsDCS condition
(P = 0.563) compared with the number of correct answers in the
combined stimulation condition.

3.1. Experiment 1: The combined effects of
NMES and tsDCS on MEPs and SICI

There were significant main effects of time on %MEPs in the
NMES + tsDCS (MMRM, F4, 92 = 10.501, P = 0.001) and sham
NMES + tsDCS (MMRM, F4, 92 = 5.242, P = 0.001) conditions.
However, there were no significant main effects of time on %MEPs
in the NMES + sham tsDCS condition (F4, 92 = 2.023, P = 0.098) or
among all conditions (MMRM, F2, 46 = 1.968, P = 0.151). Compared
to pre %MEPs, analysis using the Wilcoxon signed-rank test with

Bonferroni adjustment showed that NMES + tsDCS significantly
increased %MEPs at T2 (P = 0.040), T3 (P = 0.010), and T4
(P = 0.001), and sham NMES + tsDCS significantly increased %MEPs
at T1 (P = 0.010) and T2 (P = 0.020). These results indicate that the
combined stimulation of NMES and tsDCS increased corticospinal
excitability for 60 min or more (Figure 3A).

There was no significant interaction between time and condition
for SICI (MMRM, F8, 322 = 1.355, P = 0.216). Time had a main effect
on SICI in the NMES + tsDCS condition (MMRM, F4, 92 = 3.388,
P = 0.012), while there were no main effects of time on SICI in any of
the other conditions (MMRM, NMES + sham tsDCS: F4, 92 = 2.406,
P = 0.055; sham NMES + tsDCS: F4,92 = 2.264, P = 0.068). There
was a significant main effect of condition on SICI at T1 (MMRM,
F2, 46 = 3.932, P = 0.027), but these effects were not present for
any other time point (MMRM, T0: F2, 46 = 0.506, P = 0.606; T2:
F2,46 = 0.395, P = 0.676; T3: F2,46 = 0.116, P = 0.891; T4: F2,46 = 0.768,
P = 0.462). Compared to T0 SICI, analysis using the t-test with
Bonferroni adjustments revealed that NMES + tsDCS significantly
decreased SICI at T1 only (P = 0.010), while there were no significant
differences in any other time point (T2: P = 0.163; T3: P = 0.769;
T4: P > 0.999). Compared to SICI in the NMES + tsDCS condition
at T0, there were no significant differences in the NMES + sham

FIGURE 3

The combined effects of neuromuscular electrical stimulation (NMES)
and transcutaneous spinal direct current stimulation (tsDCS) on motor
evoked potentials (MEPs) and short-interval intracortical inhibition
(SICI). (A) Represents the MEPs changes before and after the
intervention. MEP amplitudes were normalized to baseline MEP
amplitudes. (B) Represents the SICI changes before and after the
intervention. Conditioned MEP amplitudes were normalized to test
MEP amplitudes to calculate SICI. NMES + tsDCS is denoted as dark
gray boxes, NMES + sham tsDCS is denoted as light gray boxes, and
sham NMES + tsDCS is denoted as white boxes. The median value and
interquartile ranges are represented by horizontal lines within boxes
and whiskers representing minimum and maximum values,
respectively. Asterisks indicate significant differences compared to
“T0” (P < 0.05).
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tsDCS condition (P = 0.056) or the sham NMES + tsDCS condition
(P = 0.059). These results indicate that combined stimulation of
NMES and tsDCS decreases the intracortical inhibition immediately
after stimulation (Figure 3B). Individual raw data for MEPs and SICI
amplitudes have been provided in the Supplementary material.

3.2. Experiment 2: The combined effect of
NMES and tsDCS on PRMR

Figure 4 presents the PRMR waveforms from the right TA
muscle. There was a significant main effect of time on %PRMR in the
NMES + tsDCS condition (MMRM, F2, 28 = 3.779, P = 0.035), but this
effect did not exist in the other conditions (MMRM, NMES + sham
tsDCS: F2, 28 = 0.816, P = 0.453; sham NMES + tsDCS: F2, 28 = 3.148,
P = 0.058). Moreover, there were no significant main effects of
condition on %PRMR in all time points (MMRM, T1: F2, 28 = 0.533,
P = 0.593; T2: F2, 28 = 0.361, P = 0.700). Comparing to T0%PRMR
using Wilcoxon signed rank test with Bonferroni adjustments, we
found that NMES + tsDCS significantly decreased the %PRMR at
T1 only (P = 0.018), while there was no significant difference at
T2 (P = 0.234). These results indicate that combined stimulation of
NMES and tsDCS decreased spinal reflex excitability immediately
after stimulation (Table 1).

There was a significant main effect of time on M-max in the sham
NMES + tsDCS condition (MMRM, F2, 28 = 3.428, P = 0.047), which
was not present in the other conditions (MMRM, NMES + tsDCS:
F2, 28 = 1.340, P = 0.278; NMES + sham tsDCS: F2, 28 = 1.198,
P = 0.317). Additionally, analysis with the Wilcoxon signed rank test
with Bonferroni adjustments revealed no significant differences in
M-max between T0 and any other time point (T1: P = 0.573; T2:
P = 0.264). The average of raw data of the M-max amplitudes is
provided in Table 2.

3.3. Experiment 3: The combined effect of
NMES and tsDCS on SEPs

There were no significant main effects of time on SEPs (MMRM,
NMES + tsDCS: F2, 30 = 1.385, P = 0.266; NMES + sham tsDCS:

FIGURE 4

Raw traces of posterior root muscle reflex (PRMR) waveforms from
the right tibialis anterior muscle were obtained from a participant
before and after neuromuscular electrical stimulation
(NMES) + transcutaneous spinal direct current stimulation (tsDCS);
NMES + sham tsDCS; and sham NMES + tsDCS. Each waveform
represents the average of five trials.

F2, 30 = 1.766, P = 0.188; sham NMES + tsDCS: F2, 30 = 2.055,
P = 0.146) or of condition on SEPs (MMRM, T1: F2, 30 = 1.043,
P = 0.365; T2: F2, 30 = 0.740, P = 0.486). These results indicate
that combined stimulation of NMES and tsDCS do not affect
somatosensory cortical excitability. The average of raw data for the
SEP amplitudes is provided in Table 3.

4. Discussion

This study demonstrates that combining NMES and tsDCS
increases corticospinal excitability of the TA muscle and prolongs
motor cortex excitability for ≥60 min. Intercortical inhibition and
spinal reflex excitability decreased, and there was no change in
somatosensory cortex excitability, immediately after the combined
stimulation. These results provide evidence of the underlying
mechanism of combining NMES with tsDCS to enhance the primary
motor cortex excitability, which may contribute to the development
of neurorehabilitation for CNS lesions.

TABLE 1 Changes in %PRMR before and after the combined stimulation of
neuromuscular electrical stimulation (NMES) and transcutaneous spinal
direct current stimulation (tsDCS).

T0 T1 T2

NMES + tsDCS 13.22
(5.27)

11.61*
(5.54)

12.13
(6.58)

NMES + sham tsDCS 12.34
(7.81)

10.30
(3.58)

10.70
(3.56)

sham NMES + tsDCS 12.43
(7.77)

11.72
(7.66)

11.07
(8.06)

The values represent the mean (standard deviation). Posterior root muscle reflex (PRMR)
values represent the percentage of normalized maximum M-wave (M-max) values to calculate
%PRMR. Asterisks indicate a significant difference compared to “T0” (P < 0.05).

TABLE 2 Changes in M-max before and after combined stimulation using
neuromuscular electrical stimulation (NMES) and transcutaneous spinal
direct current stimulation (tsDCS).

T0 T1 T2

NMES + tsDCS 2.50
(0.86)

2.64
(0.87)

2.56
(1.00)

NMES + sham tsDCS 2.84
(1.11)

3.00
(1.43)

3.02
(1.41)

sham NMES + tsDCS 2.87
(1.07)

2.95
(1.00)

3.05
(0.95)

The values represent the mean (standard deviation) of the maximum M-wave (M-max) (mV).

TABLE 3 Changes in %SEPs before and after combined stimulation using
neuromuscular electrical stimulation (NMES) and transcutaneous spinal
direct current stimulation (tsDCS).

T0 T1 T2

NMES + tsDCS 108.3
(19.4)

110.8
(31.4)

121.9
(42.2)

NMES + sham tsDCS 104.1
(18.1)

110.8
(27.5)

119.9
(35.7)

sham NMES + tsDCS 95.3
(20.0)

97.9
(31.4)

111.0
(44.5)

The values represent the mean (standard deviation). Somatosensory evoked potential (SEP)
values represent the percentage of baseline SEP values to calculate %SEPs.
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Applying NMES to peripheral afferent fibers increases the
motor cortex excitability via cortico-cortical projections from the
somatosensory cortex in humans and animals (Kaneko et al., 1994a,b;
Hamdy et al., 1998; Ridding et al., 2000; Kaelin-Lang et al., 2002;
Khaslavskaia et al., 2002; Luft et al., 2002; Knash et al., 2003; Taib
et al., 2005; Mang et al., 2010; Chipchase et al., 2011; Schabrun
et al., 2012; Yamaguchi et al., 2012; Sasaki et al., 2017; Carson and
Buick, 2021; Insausti-Delgado et al., 2021). Meanwhile, tsDCS over
the lumber spinal segments activates afferent fibers at the spinal
dorsal root and increases motor cortex excitability (Bocci et al.,
2015a,b; Murray et al., 2018; Yamaguchi et al., 2020; Therkidsen et al.,
2022). However, in agreement with a previous study (Cogiamanian
et al., 2008), the results of experiment 3 showed that somatosensory
cortex excitability was not changed following either tsDCS alone or
combined stimulation. A possible reason was that afferent inputs
with tsDCS increase motor cortex excitability via the projection
of thalamic neurons to the motor cortex, which is a part of the
transcortical reflex pathway (Asanuma et al., 1980; Christensen
et al., 2000; Yamaguchi et al., 2020; Therkidsen et al., 2022). Such
different afferent pathways (e.g., the cortico-cortical pathway from
the somatosensory cortex and transcortical reflex pathway) activated
by NMES and tsDCS may provide a summation effect, thereby
enhancing the motor cortex excitability and inducing neural plasticity
of the primary motor cortex. In addition, a previous study reported
that cutaneous stimulation to the sural nerves has a facilitating effect
on the TA MEPs elicited with TMS (Wolfe and Hayes, 1995). Thus,
the influence of the combined stimulation via cutaneous nerves
on the corticospinal projection requires investigation. Moreover,
the combined stimulation decreased the SICI, which reflects motor
cortex inhibitory interneuron excitability via GABAA receptors
(Ziemann et al., 2015). A previous study reported that higher
intensity electrical stimulation increases activation of afferent fibers
and decreases intracortical inhibition (Golaszewski et al., 2012).
Thus, plastic changes in the motor cortex excitability may be induced
by increasing afferent inputs to the motor cortex via the combined
stimulation. On the contrary, there was variability in MEPs and SICI
after each intervention. A previous study reported the variability
effects of tsDCS because the electric field varies depending on
individual differences in tissue and anatomical characteristics, such
as the thickness of the soft tissue between the participant’s skin and
the dorsal root of the spinal cord (Yamaguchi et al., 2020).

Interestingly, experiment 1 revealed that corticospinal excitability
was increased 15 min after the combined stimulation of NMES
and tsDCS, but the increased corticospinal excitability was not
observed immediately after the intervention. This may be because
the combined stimulation of NMES and tsDCS decreased the
spinal motor neuron’s excitability, making it difficult to detect
changes in the corticospinal excitability immediately after the
stimulation. This speculation is supported by the results of
experiment 2, which showed that excitability in the spinal motor
neuron pool was decreased in the combined stimulation only. The
spinal motor neuron’s excitability is influenced by transmission in
inhibitory pathways, such as Ib inhibition mediated by Ib inhibitory
interneurons and recurrent inhibition mediated by Renshaw cells
(Pierrot-Deseilligny and Mazevet, 2000; Hultborn, 2006). Therefore,
these inhibitory pathways might be activated by the combined
stimulation, which could decrease the spinal motor neuron’s
excitability immediately after stimulation. Another possibility is
neural or muscle fatigue (Stephens and Taylor, 1972), but the M-max
amplitudes were unchanged in experiment 2. In agreement with a
previous study (Murray et al., 2018), we found that spinal excitability

shows a decreasing trend after the cathodal tsDCS with sham NMES.
Therefore, cathodal tsDCS may affect the spinal inhibitory circuits. In
addition, the time sequence of NMES and tsDCS may be important
to induce neural plasticity. Many studies have reported the effects
of stimulus timing on the efficacy of interventions that can induce
plasticity (Iyer et al., 2003; Ridding and Ziemann, 2010; Yamaguchi
et al., 2018). Thus, further investigation is required to examine the
interaction of stimulus timing between NMES and tsDCS on neural
plasticity. Further studies are necessary to identify the effects of
NMES and tsDCS on spinal inhibitory pathways and other neural
circuits related to the excitability of the spinal motor neurons.
It is also interesting to optimize the parameter of the combined
stimulation to increase the plasticity of the spinal motor neuron pool.

In this study, both the motor and somatosensory cortex
excitability were unchanged by NMES alone. NMES-induced changes
in sensorimotor cortex activity have a dose–response relationship
with the recruitment of afferent fibers, which was influenced by
stimulation intensity (Smith et al., 2003; Cho et al., 2007; Insausti-
Delgado et al., 2021) and duration (Chipchase et al., 2011). Thus,
20 min of NMES with MT stimulus intensity might be insufficient
to modulate the sensorimotor cortex excitability. On the other hand,
in agreement with previous studies (Bocci et al., 2015a; Murray et al.,
2018; Yamaguchi et al., 2020), tsDCS alone increased the motor cortex
excitability up to 15 min after the stimulation, but the lasting effect
disappeared after 30 min. Therefore, increasing afferent inputs by
different stimulus positions (i.e., peripheral nerve and spinal dorsal
root) may be an important factor for inducing neural plasticity of the
motor cortex.

Many studies reported that the enhancement of plastic changes
in the motor cortex plays a crucial role in improving motor
function after stroke and spinal cord injury (Jurkiewicz et al., 2007;
Christiansen and Perez, 2018). Our finding provides the possibility
that tsDCS enhances the recovery of motor function after CNS lesions
by NMES alone (Sharififar et al., 2018). In addition, a previous
study reported that the ankle dorsiflexion strength affected the gait
velocity of patients with stroke (Lin et al., 2006). Thus, the combined
stimulation of NMES and tsDCS may be an adjuvant therapy for
motor rehabilitation. For example, it is possible to use this method
for locomotor training, such as treadmill walking with partial body
weight support (Mehrholz et al., 2017), robot-assisted locomotor
training (Hornby et al., 2008), or pedaling exercise (Yamaguchi et al.,
2013). However, lower extremity muscle activity during gait is also
influenced by other descending pathways (e.g., the reticulospinal
tract) (Soulard et al., 2020). Thus, the combined effect on gait exercise
requires careful consideration of the patients.

The combined stimulation of NMES and tsDCS can be effectively
used to increase motor cortex excitability of the TA muscle in
rehabilitation programs of patients with CNS injuries. However,
this study has some limitations. First, our study was conducted
in healthy participants. Second, the participants were all male.
A previous study reported that transcranial direct current stimulation
(tDCS) could modulate neural activity more in females than in
males (Boggio et al., 2008). Thus, sex differences may also influence
the effect of combined stimulation, but as with tDCS, women
may have a better response. Therefore, the combined effects of
NMES and tsDCS on motor dysfunction should be examined in
patients with CNS injury and in women. Third, inter-participant
variability in responses to each stimulation is possible. Therefore,
further studies are needed to reduce variability such as in stimulus
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parameters and differences in anatomical characteristics. Finally, no
significant difference was observed in the number of correct answers
between each condition (real or sham), but participants might have
noticed the stimulation condition during the stimulation because
the stimulus intensity of the NMES was applied above the motor
threshold in the real condition.

In conclusion, cathodal tsDCS enhances the facilitation effects of
NMES on the corticospinal projection, indicating that incremental
ascending volleys to the primary motor cortex via the stimulation of
the peripheral nerve and spinal dorsal roots play an important role
in motor cortical plasticity. The current findings provide evidence
for a new neuromodulation method to promote neural plasticity and
motor functional recovery after stroke and spinal cord injury. Further
studies are warranted to clarify the clinical application of the current
approach in patients with neurological motor dysfunction.
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