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Background and objective: Essential tremor (ET) is a common movement

syndrome, and the pathogenesis mechanisms, especially the brain network

topological changes in ET are still unclear. The combination of graph theory

(GT) analysis with machine learning (ML) algorithms provides a promising way

to identify ET from healthy controls (HCs) at the individual level, and further

help to reveal the topological pathogenesis in ET.

Methods: Resting-state functional magnetic resonance imaging (fMRI) data

were obtained from 101 ET and 105 HCs. The topological properties were

analyzed by using GT analysis, and the topological metrics under every

single threshold and the area under the curve (AUC) of all thresholds were

used as features. Then a Mann-Whitney U-test and least absolute shrinkage

and selection operator (LASSO) were conducted to feature dimensionality

reduction. Four ML algorithms were adopted to identify ET from HCs. The

mean accuracy, mean balanced accuracy, mean sensitivity, mean specificity,

and mean AUC were used to evaluate the classification performance. In

addition, correlation analysis was carried out between selected topological

features and clinical tremor characteristics.

Results: All classifiers achieved good classification performance. The mean

accuracy of Support vector machine (SVM), logistic regression (LR), random

forest (RF), and naïve bayes (NB) was 84.65, 85.03, 84.85, and 76.31%,

respectively. LR classifier achieved the best classification performance with

85.03% mean accuracy, 83.97% sensitivity, and an AUC of 0.924. Correlation

analysis results showed that 2 topological features negatively and 1 positively

correlated with tremor severity.
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Conclusion: These results demonstrated that combining topological metrics

with ML algorithms could not only achieve high classification accuracy for

discrimination ET from HCs but also help us to reveal the potential topological

pathogenesis of ET.

KEYWORDS

graph theory, multiple thresholds, machine learning, resting-state functional
magnetic resonance imaging, essential tremor

Introduction

The 2018 Movement Disorders Consensus Criteria
redefined essential tremor (ET) as a common movement
syndrome characterized by isolated bilateral upper limb action
tremor for at least 3 years and without other neurological
signs (Bhatia et al., 2018). It is reported that more than 60
million people worldwide are affected, and the incidence
increases with age (Welton et al., 2021). Although a large
number of researches has revealed that the abnormalities
in the cerebello-thalamo-cortical networks were closely
associated with tremor in ET (Nicoletti et al., 2020), its
pathogenesis mechanism, especially brain network topological
properties changes, is still not well understood, and the lack
of specific diagnostic markers also makes the diagnosis of ET
difficult.

Resting-state functional magnetic resonance imaging
(Rs-fMRI) has been widely used to study the brain network
pathogenesis mechanisms of ET due to its good temporal
and spatial resolution and high safety. Compared with
the other common brain network analysis methods (i.e.,
regional homogeneity, degree centrality, and functional
connectivity), the graph theory (GT) approach has been
used to characterize the brain complex network topological
properties in neurological diseases with the advantage of fully
describing the topological properties of brain networks (Dai
et al., 2019; De Micco et al., 2021; Suo et al., 2021). Several
studies have used the GT method and have found that loss
of small-world characteristics and the alterations of degree
centrality, nodal local efficiency, and nodal betweenness
centrality in motor and no-motor areas were related to ET
patients (Jang et al., 2016; Benito-León et al., 2019b; Li et al.,
2021; Novaes et al., 2021; Yang et al., 2021). However, the
methods of these studies were traditional mass univariate
analyses, and they could not be used to diagnose individual
ET patients, and the topological properties based on network
sparsity thresholds selection approaches have not been
adopted.

Fortunately, these shortcomings can be remedied by
machine learning (ML) approaches. ML builds the optimal
models by learning and training from massive input data and

then applies the model to new data to predict and analyze
diseases based on a single-subject level (Myszczynska et al.,
2020). In the past several years, the application of the ML
method on ET research has been widely discussed and achieved
relatively good results (Benito-León et al., 2019a; Prasad et al.,
2019; Suppa et al., 2021). However, up to now, no study has
combined the brain network topological properties based on GT
analysis with ML to identify ET patients.

Therefore, considering the potential advantages of ML, we
explored whether combining the brain network topological
metrics based on GT analysis with multiple ML algorithms could
be used to identify ET patients from healthy controls (HCs). It
is worth noting that the brain network topological properties
metrics under every single threshold and the area under the
curve (AUC) values for each topological metric over the sparsity
range were all selected as features for model building in our
study. We hypothesized that these models could achieve good
classification performance and these significant discriminative
features could help to reveal the changes of the underlying brain
network topological properties in ET.

Materials and methods

Participants

ET patients were recruited at the movement disorders
outpatient clinic of the First Affiliated Hospital of Chongqing
Medical University. HCs were recruited from the local area
through poster advertisements and evaluated by experienced
neurologists. The inclusion criteria for subjects were as follows:
(1) the diagnosis of ET patients met the 2018 Movement
Disorders Consensus Criteria (Bhatia et al., 2018), and all
ET patients had annual follow-ups through the outpatient
department or by telephone; (2) the tremor onset age of
patients is between 18 and 55 years old, and patients with
earlier or later tremor onset age were not included; (3) the
patients were without any apparent cognitive impairment
[Mini-Mental State Examination (MMSE) scores > 24] and
were right-handed; (4) the patients presented with moderate
or greater amplitude kinetic tremor (tremor rating ≥ 2 during
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at least three tests); (5) the ET patients were without PD,
parkinsonism, dystonia, ataxia, thyroid disease, stroke, epilepsy,
brain injury, or any other neurological dysfunction; (6) all
participants had no evidence of vascular or structural brain
defects on T2- or T1-weighted images; (7) all participants
met the image quality and head motion control criteria (see
Supplementary Text 1). After controlling image quality and
head motion, 2 ET patients and 3 HCs with arachnoid
cysts and 2 ET patients and 4 HCs with FD_power head
motion > 0.2 mm were removed from our study. Finally,
101 ET and 105 age- and sex-matched HCs were included
in our study. In addition, none of the HCs reported having
a first-degree or second-degree relative with ET or PD. Each
subject signed an informed consent form approved by the ethics
committee of the First Affiliated Hospital of Chongqing Medical
University (Chongqing, China), and the study was performed
in accordance with the Declaration of Helsinki of the World
Medical Association.

Tremor severity was assessed with the Fahn-Tolosa-Marin
Tremor Rating Scale (FTM-TRS) (Fahn et al., 1988) and the
Essential Tremor Rating Assessment Scale (TETRAS) (Elble
et al., 2012). The depression severity of each patient was assessed
by the Hamilton Depression Rating Scale (HDRS-17) (Bobo
et al., 2016), and the anxiety severity of each patient was
assessed by the Hamilton Anxiety Rating Scale (HARS-14)
(Bruss et al., 1994). The MMSE was used to briefly evaluate
cognitive function and to screen for dementia.

Data acquisition

All subjects were scanned on GE Signa Hdxt 3-T scanner
(General Electric Medical Systems, Milwaukee, WI, USA)
equipped with a standard 8-channel head coil at the First
Affiliated Hospital of Chongqing Medical University. Foam
padding and rubber earplugs were used to control head
motion and attenuate scanner noise. During Rs-fMRI scanning,
all subjects were required to relax, think of nothing, keep
their eyes closed but not fall asleep, and move as little as
possible. Rs-fMRI images were collected using an echo-planar
imaging (EPI) pulse sequence with the following parameters:
33 axial slices, repetition time (TR) = 2,000 ms, echo time
(TE) = 40 ms, flip angle = 90◦, slice thickness = 4.0 mm,
slice gap = 0 mm, acquisition order = interleaved (interleaved
scans and the slice order is 1:2:33, 2:2:32, and the reference
slice is 33), field of view (FOV) = 240 × 240 mm,
matrix size = 64 × 64, and a total of 240 volumes were
obtained (duration = 8 min). High-resolution 3D T1-weighted
images (TR = 8.3 ms, TE = 3.3 ms, flip angle = 15◦,
slice thickness/gap = 1.0/0 mm, FOV = 240 × 240 mm,
and matrix = 256 × 192) and T2-weighted FLAIR images
(TR = 8,000 ms, TE = 126 ms, TI = 1,500 ms, slice
thickness/gap = 5.0/1.5 mm, FOV = 240 × 240 mm, and

matrix = 256× 192) were also obtained. We did not use the T2-
weighted FLAIR images for data processing, but they were used
for image evaluation and data quality assessment.

Data preprocessing

Data preprocessing was performed using the DPARSFA
toolbox version 2.21 on MATLAB (MathWorks Inc., Natick,
MA, USA) platform, which involved: (1) Removal of the
first 10 time points for signal stabilization. (2) Slice timing
correction. (3) Realignment. This step realigns individual
images such that each part of the brain in every volume
is in the same position. (4) T1 segmentation and spatial
normalization. The 3D-T1 images were co-registered to the
mean Rs-fMRI data for each subject. Specifically, 3D T1-
weighted images were divided into white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) probability maps
using SPM DARTEL segmentation, and CSF images were
resampled to 1.5-mm isotropic voxels, spatially normalized
to the MNI space using affine transformation and non-linear
deformation, and then, resampled to 3-mm isotropic voxels
resolution with Rs-fMRI and the deformation field was applied
to the Rs-fMRI data. (5) Spatial smoothing with a 4-mm full-
width at half-maximum Gaussian kernel. (6) Regressing out
nuisance covariates: global, WM, CSF signals, and Friston 24
head motion parameters. (7) Detrending and filtering. Linear
detrending and temporal band-pass filtering at 0.01–0.08 Hz
was used to remove low-frequency drift and high-frequency
physiological noise.

Network construction

The functional brain network is composed of nodes and
edges between nodes. To better study the alterations of
the brain network topological properties in ET patients, a
functional segmentation atlas, the Dosenbach atlas was adopted
(Dosenbach et al., 2010), and it divides the brain into 160 nodes,
including six networks, namely the CON, frontal-parietal,
default, sensorimotor, occipital, and cerebellum. Extracting the
average time series of each node, and the edges were defined as
the Pearson correlation coefficients of the average time series
between each pair of nodes. And then, the raw 160 × 160
brain connectivity (BC) matrix was obtained. To improve the
normality, the BC matrix was transformed into a Z-score
matrix by using Fisher’s r-to-z transformation. Finally, the
Z-score matrix was converted to a binary adjacency matrix
based on a wide range of sparsity thresholds (S) (as defined
below).

1 http://rfmri.org/DPARSF
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Network topological properties
metrics

Further network analysis was based on the binary adjacent
matrices at a wide range of sparsity thresholds (S). S is defined
as the ratio of the number of existing edges divided by the
maximum possible number of edges in the network. There is
no unified rule for the selection of network sparsity. Therefore,
a wide range of S was used to ensure that the threshold network
was evaluable for the small-world and to minimize the number
of spurious edges in each network (Zhang et al., 2011). The
threshold range of our study was 0.05–0.50 with an interval of
0.05 (a total of 10 thresholds were defined).

The global and nodal topological metrics were analyzed
by GRETNA software (Wang et al., 2015) on MATLAB
(MathWorks Inc., Natick, MA, USA) platform. The global
topological metrics include (1) small-world measures: the
clustering coefficient (Cp), characteristic path length (Lp),
normalized clustering coefficient (γ), normalized characteristic
path length (λ), and small-worldness (σ); (2) network efficiency
measures: global efficiency (Eglobal) and local efficiency
(Elocal). The nodal topological properties include the nodal
clustering coefficient (NCp), nodal efficiency (Ne), nodal local
efficiency (NLe), degree centrality (DC), and nodal betweenness
centrality (BC). These brain network topological properties
are defined and explained in the study by Rubinov and
Sporns (2010). The brain network global and nodal topological
properties on the 160 ROIs under 10 thresholds were selected as
features.

Moreover, for each network metric, the AUC was calculated
over 0.05≤ S≤ 0.50 with an interval of 0.05. The AUC provides
a summarized scalar that does not rely on specific threshold
selection and is a sensitive way to detect topological alterations
in the brain network (Zhang et al., 2011). The AUC values of
each topological metric on the 160 ROIs were also selected as
features.

Feature selection

As mentioned above, there were a total of 8,877 features for
each participant. However, a large number of original features in
the dataset will easily fall into a “curse of dimensionality,” which
slows down the running speed of the algorithm and reduces the
accuracy of the model. By identifying the key features of the
data, feature selection can improve the learning efficiency of ML
models and reduce the probability of overfitting (Remeseiro and
Bolon-Canedo, 2019).

In our study, firstly, the data was divided into a 70% training
set and a 30% testing set by stratified sampling. Next, we
combined the Mann-Whitney U-test and LASSO as the feature
selection method for the 8,877 features. Specifically, features
with P < 0.01 were retained after the Mann-Whitney U-test.

Secondly, Spearman’s rank correlation analysis was used to
eliminate multicollinearity between any two feature columns. If
the correlation coefficient of the two features was greater than
0.7, the latter one was removed. Thirdly, data standardization
was conducted for the features selected by Spearman’s rank
correlation. Finally, by constructing a lost function, LASSO (L1
regularization) resets the weight of unimportant features to 0 to
achieve the purpose of accurate prediction with fewer features
(Tibshirani, 1996). The lost function of LASSO is as follows:

L =
n∑

i = 1

(yi − ŷi)
2
+ λ

p∑
j = 1

|βj|

where λ
∑p

j = 1 |βj| is the L1 regularization penalty on the
coefficient βj and λ is the shrinkage parameter that needs to
be determined before performing the learning task (Ueno et al.,
2021). Therefore, LASSO with fivefold cross-validation was used
to further select important features by finding the optimal λ and
calculate the weight coefficients of each feature.

Model building and evaluation

After selecting the discriminative features of the brain
functional network, four classifiers, including support vector
machine (SVM), logistic regression (LR), random forest (RF),
and Gaussian Naïve Bayes (GaussianNB) algorithms were used
to construct models for classification (all steps of feature
selection and model construction were just performed in the
training set). The applications of these classifiers are as follows:

As a supervised learning model, SVM can automatically
learn the classification hyperplane in feature space by finding
the maximum boundary distance (Hsu et al., 2003), and the
performance of classification highly depends on the selection of
hyperparameters. Therefore, in our study, grid-search strategy
with 10-fold cross-validation (GS-10 CV) was applied to find the
optimal hyperparameters (the penalty parameter C and kernel
width parameter γ) and kernel function. It means that we will
apply the combination of parameters with the highest accuracy
in the GS-10 CV to the testing set.

RF is ensemble learning by constructing a set (ensemble)
of trained decision trees (base estimators) to predict the
outcome variable (Badillo et al., 2020). It works based on
a consensus among decision trees. In most cases, ensemble
learning can obtain better classification results than a single
learner. Additionally, the RF can effectively avoid overfitting
(Breiman, 2001) and require less parameter tuning (Segal, 2004).
In our study, we performed parameter optimization for the base
estimators.

LR is a probability statistical classification model, which uses
the probability score as the predicted value of the dependent
variable to measure the relationship between a classification
dependent variable and one or more independent variables
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(Zhang et al., 2015). In our study, L1-regularized LR was
used to avoid overfitting and improve the performance of
the classification model, and Cs was used for parameter
optimization.

The Naïve Bayes classifier is based on calculating simple
statistics from a given training data set as a learning step,
following the conditional probability of the Bayesian formula for
classification (Badillo et al., 2020). In Bayes’ formula, assuming
that conditions are independent between features, calculate the
conditional probability of Y (classify into certain categories) in
the case of X (feature distribution) occurrence. In our study, the
feature distribution was assumed to be Gaussian, and Gaussian
Naïve Bayes (GaussionNB) was used for classification. The
Bayes’ formula is as follows:

P (Y | X) =
P (X|Y)∗ P(Y)

P(X)

Furthermore, considering the instability and sampling bias
due to a single split of the dataset, we repeated the above
process 100 rounds (nested loop) to obtain 100 accuracy,
sensitivity, specificity, and AUC values, which are shown as
means ± standard deviations. The flow of the nested loop is
shown in Figure 1. The performance of classification of each
classifier was evaluated by mean accuracy, mean sensitivity,
mean specificity, mean balanced accuracy, and mean AUCs. The
corresponding formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specitivity =
TN

TN + FP

Balanced accuracy =
Sensitivity+ Specitivity

2

TP, TN, FP, and FN refer to true positive, true negative, false
positive, and false negative values, respectively. Accuracy refers
to the proportion of all samples that are correctly identified.
Sensitivity is also known as the true positive rate (TPR),
which is the proportion of all truly positive samples identified
as positive. Specificity is the proportion of all truly negative
samples identified as negative. Balanced accuracy was defined as
the average of sensitivity and specificity in each group. The AUC
value is the area under the ROC curve and the coordinate axis.
The closer the area is to 1, the stronger the recognition ability is.
To test the significance of model performance, the permutation
test was used to assess whether the accuracy and AUC values
were significantly higher than chance (Shi et al., 2022a).
Specifically, the class labels (1:ET, 0:HCs) of the data were
shuffled 1,000 times and then conducted the above classification
procedure to obtain the permutated accuracy and AUCs. The

p-value was calculated by the probability of permutated accuracy
and AUCs greater than the actual accuracy and AUCs. If the
p-value was less than 0.05, it could be demonstrated that the
classifier has a reliable classification performance.

Statistical analyses

The demographics and clinical characteristics statistical
processing and analyses were performed with SPSS. All ML
analyses were based on scikit-learn in Python 3.8.8. For
demographics and clinical characteristics, the Kolmogorov-
Smirnov test was used to assess the normality of continuous
variables, continuous and normally distributed variables were
analyzed with two-sample t-tests, non-normally distributed
variables were analyzed with the Mann-Whitney U-test, and
sex was tested by chi-squared test, P < 0.05 demonstrated
a significant difference. Finally, a Partial Pearson correlation
was conducted to detect relationships between the selected
features and the clinical tremor characteristics in the ET group
with Bonferroni multiple comparison corrections (age, gender,
education, head-motion parameters, and the scores on HDRS-
17, HARS-14, and MMSE as covariates).

Results

Demographics and clinical
characteristics

Demographic and clinical data of all participants are
summarized in Table 1. The ET group had a lower score on
the MMSE than the HCs group (P = 0.0003). There were no
significant differences in age, gender, education, handedness,
cigarette smoking, and the score on HDRS-17 and HDRS-14
between ET and HCs groups (P > 0.05). In addition, there was
no significant difference in scrubbing volumes (P = 0.2437) and
the mean FD estimates of power (P = 0.5562) between the two
groups.

The significant discriminative features

During the given range of sparsity thresholds, both
participants with ET and HCs showed small-world properties in
the functional brain network with γ > 1 and λ≈1. Firstly, after
feature screening by the Mann-Whitney U-test and LASSO,
features with a frequency of more than 80 times in the
100 outer loops were regarded as features with a significant
discriminative ability to distinguish ET from HCs, a total of 13
features. The brain region information, frequency, and feature
weight of the 13 features were presented in Figure 2A and
Supplementary Table 1, the feature with the highest frequency
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FIGURE 1

Flowchart for building a classification model. After 100 nested loops, the mean values of the accuracy, balanced accuracy, the area under the
receiver operating characteristic curve, sensitivity, and specificity of the models were generated. GS-10CV, grid-search strategy with 10-fold
cross-validation.

was the degree centrality located in the left post occipital, and
the feature with the highest weight was the global efficiency with
a 0.20 threshold and a weight of 0.1825. The other significant
discriminative features were mainly located in the cerebellum,
sensorimotor, occipital, cingulo-opercular (CON), and default
mode network (DMN). Specifically, as shown in Supplementary
Table 2, patients with ET were characterized by decreased degree
centrality and nodal local efficiency in the cerebellum, increased
degree centrality and nodal local efficiency in the sensorimotor
network and occipital, increased nodal clustering coefficient in
the bilateral ACC, and decreased nodal efficiency in the left
middle insula. Meanwhile, the significant features include the
global efficiency with a 0.20 threshold, which has a higher value
in ET than in HCs. Figure 2B shows the increase or decrease of
topological measures in different brain regions in ET compared
with HCs.

Classification

The classification performance of each classifier is shown in
Table 2 and Supplementary Table 3. The LR classifier achieved
the best classification performance with 85.03% mean accuracy
and 85.00% mean balanced accuracy and 83.97% sensitivity
and a mean AUC of 0.924 among the four ML algorithms.
The RF achieved the classification performance with 84.85%

mean accuracy and 84.85% mean balanced accuracy and 84.73%
mean sensitivity and a mean AUC of 0.922. The SVM achieved
the classification performance with 84.65% mean accuracy and
84.63% mean balanced accuracy and 84.03% mean sensitivity
and a mean AUC of 0.922. The GaussionNB achieved the
classification performance with 76.31% mean accuracy and
76.28% mean balanced accuracy and 75.57% mean sensitivity
and a mean AUC of 0.830. The results of the permutation test
showed that the accuracy and AUC values were significantly
higher than chance (P < 0.001 for all loops). Figure 3 shows the
ROC curves in the training and testing set for the four classifiers.

Correlation between selected 13
features and clinical tremor
characteristics

The Partial Pearson correlation analysis revealed that 3
discriminative features were significantly associated with the
clinical tremor aspects, and Figure 4 shows the results of the
correlation analysis. The degree centrality with a 0.35 threshold
in the left med cerebellum and nodal local efficiency in the left
med cerebellum were negatively correlated with the TRS parts
A&B scores (P < 0.001, r =−0.5134 and−0.4986, respectively),
and the degree centrality in the right precentral gyrus was
positively correlated with the TRS parts A&B scores (P < 0.001,
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TABLE 1 Demographic and clinical features of ET and HCs.

Measure ET HCs Statistics P-value

Demographic

Sample size 101 105 NA NA

Age (years) 46.49± 14.75 45.03± 13.14 T = 0.75 0.4547

Gender (M:F) 48:53 61:44 Z =−1.51 0.1296

Education (years) 12.45± 4.33 12.59± 4.76 T = 0.23 0.8197

Handedness (R/L) 101:0 105:0 Z = 0.00 1.0000

Cigarette smoking 37/64 30/75 Z =−1.23 0.2180

Clinical of tremor

Tremor of onset (years) 34.76± 11.01 NA NA NA

Tremor of duration (years) 11.72± 8.42 NA NA NA

Positive family history NA NA NA

Positive 34 NA NA NA

Negative 67 NA NA NA

Alcohol sensitivity NA NA NA

Positive 40 NA NA NA

Negative 51 NA NA NA

NA 10 NA NA NA

Tremor medication NA NA NA

Propranolol 27 (40.93± 19.07 mg) NA NA NA

Tremor symmetry NA NA NA

R = L 81 NA NA NA

R < L 7 NA NA NA

R > L 13 NA NA NA

Tremor frequency 6.86± 2.55 NA NA NA

TRS-parts A&B 23.60± 8.53 NA NA NA

TRS-part C 12.81± 7.89 NA NA NA

TETRAS 21.16± 7.28 NA NA NA

TET-ADSL 12.69± 6.08 NA NA NA

Clinical of psychology and cognitive

HDRS-17 2.06± 1.09 2.17± 1.40 T =−0.64 0.5234

HARS-14 2.69± 1.00 2.66± 1.86 T = 0.17 0.9640

MMSE 28.44± 1.36 29.10± 1.20 T =−3.69 0.0003

Head movement

FD_power 0.10± 0.06 0.01± 0.06 T = 0.59 0.5562

Scrubbing volumes 15.21± 7.95 16.61± 9.12 T =−1.17 0.2437

ET, essential tremor; HCs, healthy controls; HDRS-17, 17-item Hamilton Depression Rating Scale; MMSE, Mini-Mental State Examination; HARS-14, 14-item Hamilton Anxiety Rating
Scale; TRS, Fahn-Tolosa-Marin Tremor Rating Scale.

r = +0.4432). There was no significant correlation between other
topological features and other clinical tremor characteristics in
ET patients.

Discussion

In this study, we first combined multiple ML algorithms
with brain network topological metrics to identify ET from HCs,
and three main results were gained. First, all of the four ML
algorithms could achieve good classification performance, and

the LR algorithm is the best. Second, the 13 topological metrics
(12 nodal and 1 global) acted as significant discrimination
features and were mainly located in cerebellar-motor and
non-motor cortical networks. Third, some brain network
topological metrics could be used to explain partially tremor
clinical features.

In our study, four common classifiers were used to
construct models and obtained excellent results in both training
and testing sets, especially the model constructed by LR
(penalty = L1) was considered the best model with the highest
mean AUC of 0.924 in the testing set. The LR classifier is
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FIGURE 2

The top 13 selected features were obtained after the Mann-Whitney U-test and LASSO and the corresponding feature weight (feature weight
was arranged from positive to negative) (A). A represents a threshold-independent selection. NLe, nodal local efficiency; DC, degree centrality;
NCp, nodal clustering coefficient; Ne, nodal efficiency. Five different colors represent different subnetworks (green-cerebellum, blue-occipital,
pink-cingulo-opercular, orange-sensorimotor, gray-DMN). The brain regions correspond to the 13 features selected by the Mann-Whitney
U-test and LASSO and the alterations of topological metrics (B). Red represents a significantly increased topological metric value in ET
compared with HCs and blue represents a significantly decreased topological metric value in ET compared with HCs (P < 0.01). The larger the
ball, the higher the frequency.

TABLE 2 Classification performance of multiple classifiers in the testing dataset.

Model Testing dataset

mACC (%) mb-ACC (%) mSEN (%) mSPE (%) mAUC

SVM 84.65± 4.83 84.63± 4.85 84.03± 7.65 85.22± 6.40 0.922

LR 85.03± 4.49 85.00± 4.49 83.97± 6.87 86.03± 6.69 0.924

RF 84.85± 4.98 84.85± 4.98 84.73± 6.79 84.97± 6.71 0.922

GaussionNB 76.31± 6.21 76.28± 6.21 75.57± 8.78 77.00± 8.81 0.830

Data are shown as means ± standard deviations. mACC, mean accuracy; mb-ACC, mean balanced accuracy; mSEN, mean sensitivity; mSPE, mean specificity; mAUC, mean area under
receive operator curve. SVM, support vector machine; RF, random forest; LR, logistic regression; GussianNB, guassian naïve bayes.

a statistical modeling technique that estimates the probability
of a dependent variable relating to a set of independent
variables through the sigmoid function (Ya et al., 2022), which
has the advantages of simple implementation, good model
interpretability, high numerical stability, and it is not easy
to overfit. Among them, the penalty = L1, also called Lasso
regularization, plays a key role by resetting the non-significant
feature coefficients to zero. Meanwhile, other models also
achieved mean AUCs over 0.8 with different advantages. For
example, SVM incorporates several advantageous properties to
reduce overfitting and deliver good generalization performance
despite a small sample size (Mo et al., 2019; Shi et al., 2022b),
RF has strong adaptability to the data on account of ensemble
strategy and the prediction accuracy is relatively accurate
(Chong-Wen et al., 2022), and NB performs well on small-scale
data and has stable classification efficiency. However, this is only
a preliminary and small-scale study, and the generalizability of
the model across different groups, cultures, and ethnicities needs
to be further verified before our model can be applied to clinical
work.

Although the underlying physiological mechanism reflected
by GT analysis is not very clear, most researchers accepted
that the GT analysis has a great advantage in comprehensively

characterizing the topological properties of the brain complex
network (Benito-León et al., 2019b; Xu et al., 2020; Li et al.,
2021), and these merits are not only confined to a lot of metrics
such as global and nodal topological properties but also could
be used to explore brain network pathogenesis mechanisms in
neurological and neurodegenerative diseases. Consistent with
the above studies, our results revealed that these brain network
topological metrics can serve as significant discrimination
features to identify ET from HCs, and the correlation analysis
showed that some brain network topological metrics could
be used to explain partially clinical tremor features. Previous
studies revealed that the nodal and global topological metrics
such as the changes in small-world or global efficiency are
associated with ET patients, and our results showed that the
nodal topological metrics and Eglobal with a 0.20 threshold
acted as the significant discrimination features to identify
ET from HCs. These aspects seemed to suggest our results
were consistent with previous studies. However, it is worth
noting that our results outperform existing research on GT
combined with ML on ET. The results may have several possible
explanations. First, the etiological, clinical, pathological, and
therapeutic heterogeneity of ET may cause a variety of results
among different research groups. Adoption of strict inclusion
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FIGURE 3

Receiver operating characteristic curve (ROC) of the four classifier models based on the topological features in the training dataset (blue) and in
the testing dataset (red). (A) SVM: support vector machine; (B) LR: Logistic Regression; (C) RF: Random Forest; (D) GuassionNB: gaussian naïve
bayes.

criteria may help to gain a result that has more homogenization
and repeatability, and the 2018 Movement Disorders Consensus
Criteria were adopted to ensure gain a more homogenesis ET
group in our study. Second, the small sample studies tend to
gain changeful results, and compared to previous studies (not
more than 60 ET patients, usually about 40 ET patients), our
sample is the largest (101 ET and 105 HCs). Third, the methods
of previous studies were the traditional univariate analysis,
and the strict multiple comparisons problems prevented taking
advantage of all topological metrics information, especially
considering the global and nodal topological properties in every
single threshold. ML algorithms could automatically capture
meaningful information from high-dimensional data to build
a stable classification model based on the individual level (Lei
et al., 2020), and these merits give a way to use all topological
metrics in our study. Finally, the results showed that the metrics
under a single threshold also have significant discriminative
ability. It is shown that research on a single threshold is
meaningful, which is also an extension and refinement of
existing research. In conclusion, our results further support GT
as a promising and powerful method for identifying underlying
brain network topological pathogenesis mechanisms in ET.

In our study, the significant discrimination features were
mainly located in the cerebellar-motor network, including

the cerebellum, precentral gyrus, SMA, and right pre-
SMA. Growing evidence from histopathology, neuroimaging,
neurobiology, and electrophysiological have pointed out that
the cerebellar-motor cortices network played a vital role in
tremor genesis and propagation (Fang et al., 2015, 2016; Louis,
2018; Lan et al., 2021). Meanwhile, using Rs-fMRI analysis
methods, studies revealed that changes in ALFF, ReHo, seed-
based functional connectivity, and brain global functional
connectivity in the cerebellar-motor cortices pathways were
associated with tremor in ET patients (Fang et al., 2013; Buijink
et al., 2015; Zhang et al., 2022). Again, using GT based on
traditional mass univariate analyses also explored that the
changes of nodal topological properties in the classical tremor
network were involved in ET patients (Benito-León et al., 2019b;
Li et al., 2021). Therefore, we believed that our results were
consistent with the above-mentioned classical tremor network
theory in ET, and further enrich this tremor network theory that
the nodal topological properties also served as the significant
discrimination features to identify ET from HCs.

Furthermore, the significant discrimination features were
also located in cerebellar-non-motor networks, such as the
nodal clustering coefficient, degree centrality, and nodal local
efficiency in the anterior cingulate cortex, left post occipital,
and right occipital. It seems difficult for us to understand that
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FIGURE 4

Results of Partial Pearson correlation analysis between the topologic metrics values of significant discriminative features and the TRS A&B
scores in ET patients. Bonferroni multiple comparison corrections, corrected P < 0.05/20*(20–1)/2. (Left) The cluster of the significant
discriminative features. (Middle) Mean and standard deviations of the significant discriminative features across subject groups (orange-ET,
green-HCs) as a function of network sparsity and the mean topologic metric values of significant discriminative features with group differences
across the sparsity from 0.05 to 0.50 between ET patients and HCs. ***P < 0.001. (Right) Scatterplots for the correlation analysis in patients with
ET. NLe, nodal local efficiency; DC, degree centrality; zNLe, z-transformed nodal local efficiency; zDC, z-transformed nodal degree centrality;
Thres07, the threshold of 0.35; aDC, the AUC values of degree centrality; zTRS A&B scores, z-transformed Fahn-Tolosa-Marin Tremor Rating
Scale parts A and B scores; ET, essential tremor; HCs, healthy controls.

the significant discrimination features were extended out of
the classical tremor network and involved in the cerebellar-
non-motor pathway. There are several possible explanations
for the above aspects: First, most researchers accepted that ET
was a cerebellum-caused disease (Louis, 2018). The functional
heterogeneity of the cerebellum gives a reasonable interpretation
that the dysfunction is not confined to cerebellar-motor circuits
but also extended to cerebellar-non-motor cortical pathway
(Louis and Faust, 2020; Mavroudis et al., 2022). Second,
strict inclusion criteria without gross cognitive impairment,
depression, and anxiety were adopted to gain a highly
homogeneous ET cohort in our study. However, these strict
inclusion criteria could not remove the development of the
above non-motor symptoms in the future, and even get rid
of a compensatory state to prevent the development of these
non-motor symptoms.

And then, in our study, we found that there was no
difference in head movement parameters (Friston 24 head
motion parameters and FD_power) between the ET patients
and HCs. This seems very strange for a group of patients with
a movement disorder and we speculated that the following
reasons may be a reasonable explanation: Firstly, almost all
researchers accept that ET is a heterogeneous disease with a
lot of motor and non-motor symptoms (Benito-León et al.,
2019b; Li et al., 2021), and besides with tremor in upper limbs
also with a tremor in head, jaw, and legs, and tremor in the
head seems to cause excessive head movement in ET patients.
However, the 2018 Movement Disorders Consensus Criteria
redefined that ET is a movement syndrome characterized by
isolated tremor of bilateral upper limbs for at least 3 years,
and isolated focal tremor in other anatomical distributions (e.g.,
head, jaw, and legs) did not meet the diagnosis of ET (Bhatia
et al., 2018), so the patients with an isolated focal tremor in the
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head were not included in this study. Secondly, tremors in the
upper limbs may cause excessive head movement in ET patients
like other movement disorders such as Parkinson’s disease.
However, the tremor in Parkinson’s disease is a resting tremor,
which is different from the tremor in ET, and the tremor of
ET is characterized by action and postural tremor. Meanwhile,
the patients are lying on the examining table without action
and postural changes during MRI scanning. Therefore, our
results further strengthen the tremor theory of ET that ET is a
movement disorder disease characterized by action and postural
tremor rather than resting tremor in Parkinson’s disease.

Finally, although the current study has some strengths,
several limitations need to be acknowledged. First, all subject
data were collected in the First Affiliated Hospital of Chongqing
Medical University (single-center). The generalization and
robustness of the proposed models need to be further verified on
the larger and multicenter samples in future studies. Secondly,
studies showed that the combination of multimodal neuroimage
data could significantly improve the classification performance
and provide more information from different views than a single
model. In the future study, we hope to classify and explore
the pathological mechanisms of ET by combining multimodal
neuroimage data, such as FC, ReHo, ALFF, or structural MRI.
Finally, due to the lack of objective pathophysiological markers,
the diagnosis of ET mainly depends on clinical symptoms
and nervous system examination, and misdiagnosis is very
common. Therefore, in our study, all patients with ET already
had annual follow-ups for more than 3 years to minimize the
risk of misdiagnosis.

Conclusion

Using multiple ML algorithms combined with brain
network topological metrics to identify ET from HCs achieved
good classification performance. The global and nodal
topological metrics served as significant discriminative features,
and these features were mostly located in the classical tremor
network and cerebello-non-motor networks. These findings
help to not only understand the brain network topological
pathogenesis mechanisms in ET patients but also establish the
potential non-invasive diagnostic image markers.
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