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Introduction: People living in highland areas may have factors that allow

them to adapt to chronic hypoxia, but these physiological mechanisms remain

unclear. This study aimed to investigate the brain mechanism in a cohort of

adult residents of Tibet, a well-known plateau section in China, by observing

di�erences in brain structure and function in non-plateau populations.

Methods: The study included 27 Tibetan and 27 non-plateau region

residents who were matched in age, sex, and education. All participants

underwent high-resolution three-dimensional T1weighted imaging (3D-T1WI)

and resting-state functional magnetic resonance imaging (rs-fMRI) scans on a

1.5 Tesla MR. Gray matter volumes and regional spontaneous neuronal activity

(SNA) were calculated and compared between the two groups.

Results: When comparing graymatter in people living in high altitudes to those

living in the flatlands, the results showed positive activation of gray matter in

local brain regions (p < 0.05, false discovery rate (FDR) corrected), in the right

postcentral [automated atomic labeling (aal)], left postcentral (aal), and right

lingual (aal) regions. Comparing the people of high altitude vs. flat land in the

brain function study (p < 0.05, FDR corrected), positive activation was found in

the right superior motor area (aal) and left superior frontal (aal), and negative

activation was found in the right precuneus (aal).

Conclusion: In high-altitude individuals, larger regional gray matter volumes

and higher SNA may represent a compensatory mechanism to adapt to

chronic hypoxia.
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Introduction

Hypoxia is a common phenomenon and is characterized

by a decrease in oxygen content in cells or tissues relative to

normal levels (Zhang et al., 2022). The brain is highly sensitive

to changes in oxygen content because the central nervous system

is highly oxidized (Otero-Losada et al., 2019; Burtscher et al.,

2021; Li et al., 2021). The effects of hypoxia on the nervous

system are related to the severity of systemic hypoxia and

the differential expression patterns of neurogenesis factors at

maturity (Johnston, 1995; Schneider et al., 2012; Chen and

Gaber, 2021).

Acute hypoxia usually presents obvious neurological

symptoms, which are of concern to us, whereas the effects of

chronic hypoxia on the body do not appear immediately and

are often overlooked. Some studies have pointed out that elderly

people living for a long time in a low-oxygen environment have

a higher incidence of Alzheimer’s disease than in a plain area,

which suggests that environmental factors have an important

impact on the onset of cognitive impairment (Ma et al.,

2014). The hypoxia symptoms, such as anxiety, depression,

and cognitive impairment, have been reported mainly in the

migrant population, but less so in the locals living on the plateau

(Tibetans). Mammals have evolved physiological mechanisms

to cope with hypoxia, including increased ventilation, cardiac

output, vascular growth, and the number of circulating red

blood cells (McClelland and Scott, 2019; Lee et al., 2020; Biller

et al., 2021). Compared with people living in plain areas,

Tibetans exposed to changes in the acute oxygen environment

have an obvious cerebral hemodynamic regulation mode (Wu

and Kayser, 2006; Xing et al., 2019). Hypoxia activates a variety

of epigenetic mechanisms in the fetal brain, increasing the

vulnerability of the offspring to neurodevelopmental disorders

(Li et al., 2006; Butt et al., 2021). Acute and chronic hypoxia

elicits many responses at the cellular level, with an overall

decline in oxygen consumption with age. The adjustment of

the adaptive mechanisms that arise in the brain is unclear. The

anti-oxidative stress theory proposed by scholars to protect

the cognitive function of people at high altitudes remains

uncertain, and the extent to which chronic hypoxia affects the

body is unclear.

Voxel-based morphometry (VBM) is a hypothesis-free,

whole-brain, voxel-by-voxel analytical method that attempts to

compare imaging data between populations (Melonakos et al.,

2011). It is a technology used to analyze brain structures

(Richardson et al., 2011; Herrera and González-Candia, 2021).

It was used to generate 3D high-resolution T1 images that

were used for segmentation to obtain gray matter, white matter,

and cerebrospinal fluid images to analyze brain microstructure

(Bashir et al., 2019). The amplitude of low-frequency fluctuation

(ALFF) is used for resting-state functional magnetic resonance

imaging (fMRI) performed by the Data Processing and Analysis

of Brain Imaging (DPABI) software to detect blood flow changes

associated with neural activity in different tasks by detecting

local blood-oxygen level signals (Vanasse et al., 2018).

By gaining an in-depth understanding of the mechanisms

of various hypoxia patterns, we hoped to reduce the impact

on the human body and find the beneficial aspects of hypoxia

in humans. In our study, 54 healthy adults were enrolled and

underwent magnetic resonance imaging (MRI) for structural

and functional studies. The aim of this study was to investigate

the effects of chronic hypoxia on the brains of healthy

individuals to understand the mechanism of the brain’s response

to hypoxia.

Materials and methods

Participants and procedures

There were 27 participants (11 men) in the high-altitude

group (HA) enrolled in the study, aged 35–45 years (mean: 38.65

± 5.4). The average schooling year of HA was 12.04± 0.6 years.

The control group (CG) consisted of 27 (13 men) medical staff

who had been in Tibet for <2 weeks, aged 28–45 years (mean:

41.77 ± 6.4) years, with an average schooling year of 12.52 ±

3.0 years. All participants were informed of the purpose and

procedures of the study, and informed consent was obtained

from all participants.

The HA had lived at an altitude of over 2,800m for

more than 30 years. The CG had lived in the flatlands of

Tibet for less than 2 weeks. The inclusion criteria were as

follows: (1) right hand; (2) no respiratory symptoms and

cardiopulmonary diseases, history of diabetes, and hypertension;

(3) no abnormal brain structure found on routine seriesMRI; (4)

no history of neurological disease or cognitive decline; (5) Mini-

Mental State Examination (MMSE) score >28; and (6) test for

oxyhemoglobin saturation (SpO2) and hemoglobin (Hb).

MRI data equipment

All subjects underwent brain MRI scans using a GE Medical

Systems 1.5T-scanner (GE, Signa, USA) at the Department of

Diagnostic Imaging in Linzhi People’s Hospital of Tibet with

an 8-channel head coil in 2018. When routine protocols used

to scan the brain had no organ disease, high-resolution T1-

weighted images (BRAVO) with good contrast between gray and

white matter were collected. The following image parameters

were included: TR = 12.5ms, TE = 5.2ms, flip angle = 5o,

slice thickness =1mm, TI = 1100ms, 130 slices, matrix =1

× 1 × 1 mm3, field of view =240 × 240mm. The gradient

echo-planar imaging (EPI) sequence was blood oxygen level-

dependent (BOLD) for resting-state functional MRI as follows:

TR = 3,000ms, TE = 40ms, flip angle = 90o, 33 slices, slice
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thickness = 3mm, resolution =64 × 46 × 5 mm3, time-point

128, the field of view= 240× 240 mm.

Image processing

All data processing was performed on the Matlab version

R2013a platform (nl.mathworks.com/products/matlab/) (Yan

et al., 2016; Chen et al., 2022).

Brain volume (BRAVO) imaging was subjected to voxel-

based morphometry (VBM) analysis and was performed using

Statistical Parametric Mapping (SPM8, The Wellcome Center

for Human Neuroimaging, London, UK; http://www.fil.ion.ucl.

ac.uk/spm) running under MATLAB software (The Mathworks,

Inc., Natick, MA, USA). All 3D-T1 images were corrected for

rough bias, affine registered to a template image in the Montreal

Neurology Institute (MNI) space, and then segmented into white

matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)

maps. The segmented images were spatially normalized by high-

dimensional diffeomorphic anatomical registration using the

DARTEL algorithm. Finally, all normalized images of regional

gray matter volume were smoothed with an 8-mm full-width

at half maximum (FWHM) Gaussian kernel to improve the

signal-to-noise ratio.

BOLD imaging was performed using DPABI (http://rfmri.

org/dpabi). First, the first 10 s were removed to allow the

magnetization to reach a steady state. The following main steps

were included: (1) slice timing to head motion correction;

(2) realignment; (3) normalization to the MNI coordinate

space with 3 Ã−3 Ã−3 mm3; (4) linear detrending; (5)

band-pass filtering (0.01–0.08Hz); and (6) nuisance signals,

which regressed out the signal including white matter and

cerebrospinal fluid. Subsequently, spatial smoothing with a 6-

mm FWHM isotropic Gaussian kernel was performed to reduce

the noise.

Neuropsychiatric test

TheMini-Mental State Examination (MMSE) score includes

orientation, memory, attention, calculation, recall ability, and

language ability. The total possible score was 30 points. A score

of <27 points indicated cognitive dysfunction.

Statistical analysis

All demographic and clinical data were analyzed using

IBM SPSS Statistics 25. A two-sample t-test was used to

compare age, education, pulse oximetry [SpO2 (%)], MMSE

score, and hemoglobin level. To determine the differences

betweenHA and CG, two-sample t-tests were performed on gray

matter and function images: voxel-level, p < 0.05; cluster size

TABLE 1 Demographic, clinical data of the HA and CG.

HA CG p-value

Age (years) 38.65± 5.4 41.77± 6.4 0.079

Gender (male, female) 11, 40.7%, 16, 59.2% 13, 48.1%, 14, 51.9% –

Education (years) 12.04± 0.6 12.52± 3.0 0.554

Hb (mg) 169± 14.6 135± 16.8 <0.000

SpO2 (%) 93± 2.5 98.0± 0.92 <0.000

MMSE score 29.22± 0.6 29.65± 0.6 0.067

All data were recorded as mean± standard deviation (SD).

>200; voxel number = 5,000; and false discovery rate (FDR)

correction. Spearman’s correlation analysis was conducted to

observe the relationship between the clinical hemoglobin level

and activation in the VBM and ALFF values. The statistical

significance level was set at p < 0.05.

Results

Demographic and clinical characteristics

The clinical and demographic characteristics of the

participants are presented in Table 1, which are included in the

analysis. The MMSE test scores of all participants were >29.

Of the total participants, 25 men (92.6%) graduated from high

school or above. There was no significant difference in age,

education, and MMSE scores between the HA and CG. The

SpO2 value was 93 ± 2.5% and the Hb value was 169 ± 14.6mg

in HA; the SpO2 value was 98.0 ± 0.92% and the Hb value was

135 ± 16.8mg in CG (Figure 1). The values of Hb and SpO2

(%) were significantly different between the HA group and CG

(p < 0.05) (Table 1).

VBM between HA and CG

The VBM analysis revealed a significantly increased volume

of gray matter in HA compared to CG in the bilateral

somatosensory cortex (Brodmann 3, left, t = 4.88; right, t =

4.26, FDR corrected, cluster size number >200, p < 0.05) and

the vision cortex (Brodmann 18, t= 4.26, FDR corrected, cluster

size number >200, p < 0.05; Figure 2, Table 2). This showed a

uncorrelation between changes in gray structure and Hb.

ALFF between HA and CG

When the functional area with HA was compared to CG,

there was positive activity in the Brodmann 6 and Brodmann 8

regions of the brain in the upper motor cortex, in the Brodmann

18 region (Figure 3, Table 3).
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FIGURE 1

Hb and SpO2 in HA and CG show that the Hb is higher in HA than in CG, but the SpO2 (%) is lower. (A) Display the hemoglobin higher in high

altitude group. (B) Display the SpO2 higher in control group.

FIGURE 2

Gray matter structure cluster area di�ers from HA to CG and uncorrelates with Hb. The volume is significantly higher with the people of HA than

CG. The color yellow represents the brain regions that positively activate gray matter. Correlations with Hb: Right lingual (r = 0.17, p = 0.40);

right postcentral (r = 0.25, p = 0.21); left postcentral (r = 0.30, p = 0.12).

Discussion

Tibetans are known to have high hemoglobin levels,

a hallmark feature of adaptation to high-altitude exposure

(Chen et al., 2022). Previous studies have suggested that Hb

concentration is closely related to the severity of leukoaraiosis

and is an independent factor with a positive correlation

(Long and Xiuli, 2012; Tang et al., 2012). However, plateau and

plain residents have completely different adaptations to hypoxia

(Yonglan, 2021). In this study, we found that graymatter volume

decreased in parts of the cerebral cortex in HA, which were

the bilateral postcentral cortex and the right lingual cortex.

The results showed that compared with the CG group, the

right superior motor area and left superior frontal cortex ALFF
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TABLE 2 VBM analysis of significant GM cluster in HA vs. CG.

Brain region BA Cluster size (mm3) t MNI

X Y Z

Left postcentral (aal) 3 466 4.88 −45.5 −34 57

Right postcentral (aal) 3 409 4.26 39 −28 57

Right lingual (aal) 18 403 4.32 21.6 −90.3 −13.5

t: peak value; MNI: coordinates established for MRI images of the normal human brain. The coordinates x, y, and z refer to the anatomical location.

FIGURE 3

ALFF cluster area and the correlation with Hb, dark red with a significantly increased value, and dark blue with a significantly decreased value; the

color bar represents the t-score. ALFF value correlation with Hb in Spearman. Correlation diagrams display the right superior motor area (aal; r =

0.01, p = 0.96). Left frontal superior (aal; r = 0.03, p = 0.87); right precuneus (aal; r = 0.09, p = 0.63).

TABLE 3 Between-group di�erences in the function area.

Brain region BA Cluster size t MNI

X Y Z

Right superior motor area (aal) 6 140 3.50 16 14 57

Left superior frontal cortex (aal) 8 153 3.60 −9 55 52

Right precuneus (aal) 18 52 −4.08 12 −51 18

R, right; L, left; BA, Brodmann area; MNI, coordinates established for MRI images of the normal human brain; AlphaSim correction, cluster size number > 200; pvalue > 0.01.

increased in the HA group, and the right precuneus decreased.

These results uncorrelated with low Hb levels.

The lingual gyrus is the occipital visual cortex that

processes visual information. It is at the core of visual

analysis and plays an important role in visuospatial perception.

Somatosensory systems have commonalities with auditory and

visual cortical functional units and conduction pathways, and

mutual compensatory functions exist among the three (Zhang

et al., 2018). Each retinal point responds to a portion of its

visual cortex; hypoxia is an important factor and is related to
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the longer time that hypoxia factors act on the body (Guoen and

Rili, 2021; Haoyu and Qing, 2021; Zhang, 2021). In our results,

both gray matter and ALFF were activated in the right lingual

gyrus of the HA, suggesting that the structure and function

have changed in the visual area of the brain. Yin et al. (2017)

believed that ALFF decreased in the right lingual gyrus of normal

adults 2 years after the migration to high altitudes, compared

with that before migration. Experts point out that long-term

living in high-altitude environments can cause retinal diseases

due to chronic hypoxia, high ultraviolet radiation, strong wind

and sand stimulation, and vitamin deficiency, such as macular

degeneration and optic nerve damage that impair visual function

(El Chehab et al., 2012; Runjia et al., 2013; Jing et al., 2019).

This can explain the gray matter and functional changes in

the occipital lingual gyrus in the high-altitude population in

our study.

Postcentral is the first motion sensory area, which mainly

collects sensory input from the limbs, reflecting that the

sensitivity of that population was affected. It is related to tactile

(pain, temperature, touch, pressure, and position) information

of the entire body. The functional region of the occipital

lobe is closely associated with the postcentral region; it is

involved in attention and visuospatial perception, and there

are a variety of nerve conduction pathways. In our study,

there was a large decrease in gray matter in the lingual gyrus,

consistent with previous studies (Li and Li, 2020). This helps

us understand the mechanism of visual impairment in people

at high altitudes. Meanwhile, the cluster of the postcentral gyrus

was also obviously activated, perhaps because of various tactile

changes in the body to adapt to the extreme high-altitude

environment or occipital interaction with the regulation of

postcentral gyrus function.

Functional studies have implicated the superior frontal

cortex, including the supplementary motor area (SMA) and

pre-supplementary motor area (preSMA), in movement and

cognitive control (Caixia et al., 2014). Brodmann 8 is involved

in controlling saccadic movement (Zhang et al., 2012). It plays

an important role in receiving visual information from space

and organizing eye motor commands toward it, which is related

to the function of the retina (Watanabe, 2017). In high-altitude

migrants, bilateral visual cortex mirror functional connectivity

was significantly increased, which was positively correlated

with hemoglobin concentration (Lanzilotto et al., 2013). The

superior motor area in Brodmann type 6 is the premotor cortex.

The supplementary motor area is involved in the planning

and execution of intentional movements. Our studies were

conducted on Brodmann 6 using ALFF processing, suggesting

that exercise capacity is affected in high-altitude people. Chen

et al. (2016) found that hypoxia reduces exercise capacity, which

is related to the quantity of Hb and the affinity of Hb-O2. Jay et

al. (2022) suggested that the motility of people at high altitudes

is inversely correlated with the concentration of Hb. The higher

the Hb value, the lower the motility. Some studies suggest that

people from high-altitude areas migrate to low-altitude areas,

and their athletic ability is better than that of residents living

in low-altitude areas, which is related to the genetic variation

of Tibetans in high-altitude areas (Tatum et al., 2015). Although

the correlation between motility and Hb values was not analyzed

in this study, the changes in cortical function associated with

exercise in structural and functional studies were consistent with

those of previous studies. The neural connection between them

needs to be further evaluated.

In recent years, the precuneus has received considerable

attention in the study of neural functions. It is believed that this

cortex plays a central role in a wide range of highly integrated

tasks, including visuospatial imaging, episodicmemory retrieval,

and self-processing. Brodmann 18 is the visual cortex, which,

when impaired, causes several visual disorders, including visual

field defects, metamorphopsia, and different kinds of visual

agnosia (Chuanming et al., 2006; Bianba et al., 2014; Kawachi,

2017). Functional analysis of our study revealed that the right

precuneus was negatively activated in ALFF, suggesting that the

high-altitude population has weakened visual functions in this

aspect, which is consistent with the structural analysis results.

Conclusion

This study showed consistent changes in the structure and

activity of the sensorimotor regions. The eyes and visual control

areas have the same time-frequency, showing that the high-

altitude population differs from the plain population in terms

of athletic ability and vision in the physiological state. These

differencesmay be related to changes in brain function caused by

living conditions and the environment. There were no obvious

clinical manifestations of cognition in our study, which may

be affected by the volunteers being young at a high living and

education level.

The next study will evaluate the white matter fibers of

this group of people to perform functional connectivity (FC)

analysis to understand the coordination between white matter

pathways and functional areas. A limitation of this study might

be the small number of participants. Second, all cases were

tested at high altitudes; although we performed a simple mental

quantification test, we could not rule out that mild hypoxia

may cause short-term asymptomatic damage to the brain of the

control group.
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