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Autism Spectrum Disorder (ASD) is a developmental condition characterized

by social and communication differences. Recent research suggests ASD

affects 1-in-44 children in the United States. ASD is diagnosed more

commonly in males, though it is unclear whether this diagnostic disparity

is a result of a biological predisposition or limitations in diagnostic tools,

or both. One hypothesis centers on the ‘female protective effect,’ which

is the theory that females are biologically more resistant to the autism

phenotype than males. In this examination, phenotypic data were acquired

and combined from four leading research institutions and subjected to

multivariate linear discriminant analysis. A linear discriminant model was

trained on the training set and then deployed on the test set to predict group

membership. Multivariate analyses of variance were performed to confirm

the significance of the overall analysis, and individual analyses of variance

were performed to confirm the significance of each of the resulting linear

discriminant axes. Two discriminant dimensions were identified between the

groups: a dimension separating groups by the diagnosis of ASD (LD1: 87%

of variance explained); and a dimension reflective of a diagnosis-by-sex
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interaction (LD2: 11% of variance explained). The strongest discriminant

coefficients for the first discriminant axis divided the sample in domains with

known differences between ASD and comparison groups, such as social

difficulties and restricted repetitive behavior. The discriminant coefficients

for the second discriminant axis reveal a more nuanced disparity between

boys with ASD and girls with ASD, including executive functioning and

high-order behavioral domains as the dominant discriminators. These results

indicate that phenotypic differences between males and females with and

without ASD are identifiable using parent report measures, which could

be utilized to provide additional specificity to the diagnosis of ASD in

female patients, potentially leading to more targeted clinical strategies and

therapeutic interventions. The study helps to isolate a phenotypic basis for

future empirical work on the female protective effect using neuroimaging,

EEG, and genomic methodologies.

KEYWORDS

autism spectrum disorder, phenotypic analysis, multivariate statistics, classification,
diagnostic

Introduction

Autism Spectrum Disorder (ASD) is a developmental
disability characterized by social and communication deficits
(Elsabbagh and Johnson, 2007). Recent research suggests ASD
affects 1 in 44 children in the United States (Christensen et al.,
2018); this number has increased in recent years for several
possible reasons: screening has improved, prevalence of ASD
may in fact be increasing, and diagnostic capabilities may
have improved. ASD diagnoses are usually confirmed when
a child is quite young, and it is generally understood that
earlier diagnoses and interventions result in more favorable
social outcomes for those affected by ASD (Itzchak, 2011).
Evidence suggests that ASD is diagnosed more commonly
in males (Halladay et al., 2015; Irimia et al., 2017), though
it is unclear whether this diagnostic disparity is a result of
a biological predisposition or limitations in referral patterns,
screening devices, and diagnostic tools, or all of these combined.
One hypothesis centers around the ‘female protective effect,’
which is the theory that females are biologically more resistant to
the autism phenotype than males, to the point where they must
be more severely affected to be classified as ASD by our current
diagnostic standards (Robinson et al., 2013; Gockley et al.,
2015; Zhang et al., 2020). To disambiguate this phenomenon,
phenotypic survey batteries have become standard in autism
research to better understand what behavioral and other
measurable characteristics differentiate neurotypical children
from their ASD counterparts. Indeed, previous research suggests
that girls require a stronger manifestation of autistic traits to
meet diagnostic criteria, which in turn suggests that girls are
more likely to have ASD and not be diagnosed than boys

(Ratto et al., 2018). Additional research has found that girls with
ASD do exhibit a distinct behavioral profile, particularly in terms
of ability to adapt behavior based on social context (Hiller et al.,
2014), desire to be liked by others (Hiller et al., 2016), and
ability to mesh within a same-sex social group (Dean et al.,
2014; McQuaid et al., 2021). Aside from proposed biological
mechanisms, phenotypic analyses may be able to identify which
behavioral domains are most implicated in ASD diagnoses and
whether redundancy and inefficiency can be identified within
these measurement tools.

The phenotypic measures examined here were carefully
selected to effectively capture the behavioral expression of
these participants. The phenotype battery includes assessments
of intelligence, executive function, language, and social skills
(detailed further in the section “Materials and methods”). These
domains provide a robust baseline by which we can differentiate
behavioral characteristics between ASD and neurotypical
participants, and between ASD males and ASD females.

The data discussed in this report is from a multimodal,
longitudinal study on ASD uniquely suited to identify the cause
of this apparent diagnostic discrepancy. The study consists
of neuroimaging, EEG, genomic, and phenotypic data; as an
initial assessment, only the phenotypic data is examined here.
Eventually a large-scale multimodal analysis will be performed
on these data to realize the full potential of this unique
dataset, but a preliminary phenotypic analysis should provide a
meaningful foundation on which future analyses can build. The
following report is the initial attempt at classification analysis
comprising all of the subscales of the phenotypic measures
used in the study.
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Materials and methods

Participants

Phenotypic data were acquired across four satellite
institutions: (1) the Center for Translational Developmental
Neuroscience, Child Study Center, Yale School of Medicine,
New Haven, CT (n = 85 participants); (2) the Nelson Laboratory
of Cognitive Neuroscience, Boston Children’s Hospital, Harvard
Medical School, Boston, MA (n = 57 participants); (3) the
Center on Human Development & Disability, Seattle Children’s
Hospital, University of Washington School of Medicine, Seattle,
WA (n = 125 participants); (4) Staglin IMHRO Center for
Cognitive Neuroscience, David Geffen School of Medicine,
University of California, Los Angeles, CA (n = 113 participants).
The study was undertaken in agreement with US federal law
(45 CFR 46) and has been approved by the Institutional Review
Boards at each of the participating data acquisition sites.
Participants were recruited to be within a limited age range
(range: 8–18 years old), and the diagnostic and sex ratios were
intended to be balanced, including 203 ASD participants (92
female) and 177 typically developing (TD) control participants
(85 female) for a total of N = 380 participants (177 female).
Informed consent was obtained from all participants and from
their legally authorized representatives.

Inclusion/Exclusion criteria

Diagnosis and inclusion of the ASD participants was
based on having a prior clinical or research diagnosis of
ASD, the Autism Diagnostic Interview (ADI) and the Autism
Diagnostic Observation Schedule (ADOS-3 and 4). For ADI
inclusion, participants must have scored: greater than 8 on
the communication subtotal; greater than 6 on the behavioral
subtotal; greater than 1 on the social affect subtotal; greater
than 18 on the sum of the previous three subtotals. For ADOS
inclusion, ASD participants must have scored higher than 3
on the comparison score (used to compare across Modules 3
and 4). Both requirements needed to be satisfied for inclusion.
For the comparison group, participants had no previously
reported autism symptoms via parent report on the Social
Reciprocity Scale (T-score < 60) or the Social Communication
Questionnaire (raw score < 11), as well as no clinical impression
of ASD. The comparison group was also devoid of diagnosis
or behaviors suggestive of schizophrenia or any other learning,
developmental, or psychiatric disorder. We previously report
sex differences in developmental milestones and diagnostic
variables in this sample of autistic youth (Harrop et al., 2021).
All participants were required to score higher than 70 on
the Differential Ability Scale composite measure of conceptual
ability (an IQ proxy).

Exclusion of ASD participants was based on the presence
of non-ASD-related genetic, neurological, or psychiatric
comorbidity, including use of benzodiazepine, barbiturate, or
anti-epileptic medication. Exclusion for the control participants
included diagnosed, referred, or suspected ASD, schizophrenia,
learning or intellectual disability, any other developmental
or psychiatric disorders, and any first- or second-degree
relative with ASD.

Recruitment and data collection

Participants were screened by reliably trained clinicians
by telephone and in-person to ensure inclusion and exclusion
criteria were met. The phenotypic measures that required
clinician administration were collected in-person; these include:
Differential Ability Scales-II (DAS) (Elliott et al., 2018),
Vineland Adaptive Behavior Scales-II (VABS) (Sparrow et al.,
2012), Clinical Evaluation of Language Fundamentals (CELF)
(Semel et al., 2003). Phenotypic measures that were parent-
report were completed at home by the family; these include:
the Social Responsiveness Scale (SRS) (Constantino, 2013),
Repetitive Behaviors Scale – Revised (RBSR) (Bodfish et al.,
2014), the Child Behavior Checklist (CBCL) (Achenbach and
Rescorla, 2000), and the Behavior Rating Inventory of Executive
Function (BRIEF-2) (Gioia et al., 2017). In all, 35 predictors were
included in this analysis. A full accounting of the demographic
and clinical characteristics of the dataset can be found inTable 1.

The DAS is designed to assess intellectual functioning in
school-aged children across several domains: verbal reasoning,
non-verbal reasoning, and spatial reasoning. The Special Non-
verbal Composite was used instead of the general non-verbal
reasoning standard score because it has been shown to more
accurately reflect the wide range of verbal capabilities for those
affected with ASD (Riccio et al., 1997; Thurman and Hoyos
Alvarez, 2020). For this analysis the standardized scores for each
of these domains were used.

The VABS is designed to measure adaptive behavior
skills required for day-to-day life. It has been used to help
diagnose and classify developmental disorders, notably in
those affected by ASD. VABS data was collected by parent
report and is analyzed here using the standard scores of
the main three domains: Communication, Socialization, and
Daily Living Skills.

The BRIEF-2 is a measure designed to assess executive
function in children and adolescents. It is comprised of three
overarching indices (behavior regulation, emotional regulation,
and cognitive regulation) with several domains within each
index. The domains included in this analysis are the following:
inhibit, monitor, shift, emotional control, initiate, working
memory, plan/organize, and organization of materials. The
overall indices were not included in order to achieve a more
granular phenotypic analysis.
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TABLE 1 Demographic and clinical characteristics of the data.

ASD female ASDmale TD female TDmale Total

Age 151.62 (34.74) 151.54 (35.65) 156.50 (38.22) 159.55 (32.73) 154.61 (35.38)

Age at diagnosis 95.80 (148.38) 84.01 (135.15) 89.16 (140.37)

ADI-R: A Total 18.33 (6.29) 19.04 (5.80) 18.72 (6.02)

ADI-R: Bv Total 15.51 (4.65) 16.07 (4.60) 15.82 (4.62)

ADI-R: C Total 5.86 (2.70) 6.19 (2.70) 6.04 (2.70)

ADI-R: D Total 2.97 (1.18) 3.43 (1.22) 3.22 (1.22)

ADOS-3: Overall Total 9.75 (4.19) 13.88 (3.76) 12.50 (4.23)

BRIEF Emotional Control 62.16 (12.07) 61.63 (11.62) 43.75 (7.68) 44.43 (7.28) 53.50 (13.36)

BRIEF Inhibit 66.13 (14.06) 62.35 (13.18) 43.46 (4.49) 45.43 (7.77) 54.83 (14.63)

BRIEF Initiate 66.03 (11.62) 66.35 (11.40) 45.90 (7.46) 46.42 (9.11) 56.77 (14.22)

BRIEF Monitor 67.91 (11.61) 64.46 (11.49) 43.16 (7.64) 44.36 (8.91) 55.55 (15.09)

BRIEF Organization Materials 58.81 (10.37) 57.01 (11.81) 49.14 (10.26) 49.12 (8.85) 53.73 (11.30)

BRIEF Plan/Organize 68.56 (12.50) 65.05 (10.95) 46.55 (7.94) 45.47 (8.49) 56.92 (14.54)

BRIEF Shift 68.20 (13.16) 69.73 (13.38) 43.43 (6.17) 44.06 (7.83) 57.13 (16.61)

BRIEF Working Memory 68.35 (11.76) 67.15 (11.78) 46.86 (8.32) 46.87 (9.08) 57.89 (14.72)

CBCL Aggressive 59.93 (9.45) 57.96 (8.32) 51.17 (2.51) 51.19 (2.79) 55.25 (7.73)

CBCL Anxious 63.46 (10.43) 59.68 (8.47) 52.69 (4.90) 52.28 (4.69) 57.20 (8.89)

CBCL Attention 68.32 (11.49) 64.35 (9.37) 52.06 (3.49) 51.99 (3.83) 59.51 (10.72)

CBCL Rulebreak 56.94 (6.21) 55.47 (6.24) 51.64 (2.89) 51.13 (2.40) 53.90 (5.44)

CBCL Social Problems 64.88 (9.42) 63.25 (8.37) 51.28 (2.40) 51.59 (4.14) 58.07 (9.29)

CBCL Somatic Complaints 59.69 (8.77) 57.49 (7.05) 53.69 (5.38) 53.39 (6.44) 56.16 (7.48)

CBCL Thought 65.75 (9.43) 64.19 (8.84) 52.37 (4.35) 52.08 (3.91) 58.94 (9.60)

CBCL Withdrawn 64.26 (11.26) 61.91 (8.78) 52.85 (4.25) 52.59 (3.82) 58.15 (9.33)

CELF Formulate Sentences 9.32 (3.78) 8.09 (3.70) 11.66 (1.82) 11.48 (2.69) 9.99 (3.50)

CELF Recall Sentences 8.95 (3.78) 8.00 (3.84) 11.24 (2.77) 10.93 (2.56) 9.64 (3.59)

DAS Special Non-verbal 99.40 (19.52) 101.33 (18.08) 108.81 (14.22) 110.64 (16.30) 104.71 (17.84)

DAS Spatial Reasoning 98.53 (18.45) 100.19 (17.01) 107.72 (13.10) 109.74 (15.56) 103.78 (16.87)

DAS Verbal Reasoning 101.92 (21.13) 101.10 (20.06) 110.89 (15.27) 112.14 (18.79) 106.15 (19.66)

RBS-R Compulsive 3.28 (3.53) 3.10 (4.00) 0.43 (0.87) 0.45 (1.47) 1.89 (3.18)

RBS-R Restricted 2.16 (2.20) 3.41 (2.77) 0.06 (0.29) 0.24 (0.94) 1.58 (2.37)

RBS-R Ritualistic 4.72 (4.44) 4.30 (3.68) 0.29 (0.92) 0.49 (2.00) 2.55 (3.73)

RBS-R Sameness 7.78 (8.22) 7.25 (6.24) 0.57 (1.39) 0.87 (2.93) 4.29 (6.41)

RBS-R Self-Injurious 1.64 (2.07) 2.09 (3.08) 0.12 (0.36) 0.15 (0.50) 1.06 (2.15)

RBS-R Stereotyped 3.20 (3.16) 3.14 (3.37) 0.12 (0.57) 0.22 (1.06) 1.75 (2.87)

SRS Awareness 72.21 (11.22) 69.99 (11.41) 46.65 (8.35) 46.66 (10.89) 59.40 (16.14)

SRS Cognition 73.31 (10.33) 69.69 (10.18) 44.82 (6.00) 45.33 (9.46) 58.80 (16.10)

SRS Communication 75.57 (10.82) 71.74 (10.88) 46.28 (6.83) 45.42 (9.53) 60.29 (16.98)

SRS Motivation 70.42 (13.40) 66.30 (12.43) 48.06 (9.51) 46.92 (9.57) 58.30 (15.47)

SRS Restricted/Repetitive 75.16 (11.85) 71.31 (11.59) 45.99 (5.94) 46.17 (8.38) 60.40 (16.77)

Vineland Communication 77.44 (13.02) 74.36 (9.36) 100.16 (14.29) 95.86 (12.86) 86.04 (16.64)

Vineland Living Skills 78.12 (14.71) 74.56 (11.94) 98.45 (13.87) 94.25 (14.63) 85.46 (17.08)

Vineland Socialization 72.41 (12.53) 72.20 (10.69) 100.91 (13.01) 99.80 (12.47) 85.25 (18.48)

The SRS measures autistic traits across five domains: Social
Awareness, Social Cognition, Social Communication, Social
Motivation, and Restricted Repetitive Behaviors. This measure
was specifically designed to help understand the impairments
present in ASD relative to neurotypical individuals.

The CELF is designed to evaluate language and
communication skills. It consists of several independent

subscales, but unfortunately due to large amounts of missing
data in our sample only two have been included in this analysis:
recalling sentences and formulating sentences standard scores.
These two domains should provide a reasonable representation
of language ability (Klem et al., 2015).

The RBSR is a measure designed specifically for use in
the ASD population. It measures the quality and quantity of
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TABLE 2 Confusion matrix from the linear discriminant analysis on the test data.

Actual

ASD female ASDmale TD female TDmale Totals

Predicted ASD Female 14 8 1 2 25

ASD Male 8 19 0 0 27

TD Female 1 0 9 4 14

TD Male 0 0 11 17 28

Totals 23 27 21 23 94

TD, typically developing control.

repetitive behavior in children with ASD, which is a fundamental
aspect of the ASD phenotype. The six subdomains included
in this analysis are the following: stereotyped behavior, self-
injurious behavior, compulsive behavior, ritualistic behavior,
sameness behavior, and restricted behavior. Raw scores were
used since this measure does not provide standard scores.

The CBCL is designed to measure symptoms of emotional
and behavioral problems in children and adolescents. The
eight narrow-band syndrome scale T-scores were included in
this analysis: Anxious Behavior, Withdrawn Behavior, Somatic
Complaints, Social Problems, Thought Problems, Attention
Problems, Rule Breaking Behavior, and Aggressive Behavior. We
had previously reported sex differences in aggression in autistic
male and female youth (Neuhaus et al., 2022).

Statistical analysis

Any measures missing more than 10 percent of the sample
data points were removed from this analysis; these include
the CELF-Receptive Word Classes, and CELF-Expressive Word
Classes. For any remaining missing data, the Predictive Mean
Matching data imputation method was implemented since
the missing data was assumed to be missing at random.
Data imputation was performed in R using the Multivariate
Imputation via Chained Equations (MICE) and Visualization
and Imputation of Missing Values (VIM) packages.

Participants were classified into four nominal classes: ASD
male, ASD female, non-autistic male, and non-autistic female.
Participants were randomly split into training and testing
groups (75% training, 25% testing), and cross-validation was
repeated ten times to ensure balance in the splits. A linear
discriminant model was trained on the training set and then
deployed on the test set to predict group membership.

Multivariate analyses of variance were performed to confirm
the significance of the overall analysis, and individual analyses
of variance were performed to confirm the significance of
each of the resulting linear discriminant axes. All analyses
were performed using the R statistical programming language
utilizing the following packages: Classification and Regression
Training (caret), and Modern Applied Statistics with S (MASS).

The visualization of results was performed using the tidyverse
and ggplot2 packages.

Results

Table 2 shows the resulting confusion matrix from the initial
linear discriminant analysis. The overall classification accuracy
on the test set was 62.766%. Table 3 shows the classification
statistics by class. Sensitivity (true positive rate) for the ASD
groups was 65.22% for ASD females and 59.26% for ASD males;
sensitivity for the control groups was 57.14% for the control
females and 69.57% for the control males. Precision (positive
predictive value) for the ASD groups was 55.56% for ASD
females and 72.73% for ASD males; precision for the control
groups was 57.14% for control males and 66.67% for control
females.

Three distinct linear discriminant axes (LD1, LD2, and
LD3) resulted from this analysis. LD1 explains 87.16% of the
between-class variance, LD2 explains 11.25% of the between-
class variance, and LD3 explains the remaining 1.58%. Note
that whether a coefficient is positive or negative corresponds
to the direction in which a measure weight “pulls” the
different groups; for example, high scores (and therefore high
dysfunction) in the CBCL Social Problems subdomain result
in the overall distribution being split between the ASD group

TABLE 3 Individual class statistics from the linear discriminant
analysis.

ASD
female
(N = 23)

ASD
male

(N = 27)

TD
female
(N = 21)

TD
male

(N= 23)

Sensitivity 60.87% 70.37% 42.86% 73.91%

Specificity 84.51% 88.06% 93.15% 84.51%

Precision 56.00% 70.37% 64.29% 60.71%

Prevalence 24.47% 28.72% 22.34% 24.47%

Balanced Accuracy 72.69% 79.22% 68.00% 79.21%

F-1 Score 58.33% 70.37% 51.43% 66.67%

Sensitivity = true positive rate, specificity = true negative rate, precision = positive
predictive value. Overall accuracy = 62.77%.
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FIGURE 1

Linear discriminant axis 1 plotted against linear discriminant axis 2.

FIGURE 2

Linear discriminant axis 1 plotted against linear discriminant axis 3.

and the control group. This phenomenon is illustrated in
Figures 1–3. The strongest discriminant coefficients for LD1
included the following measures in order of absolute value:

CBCL Social Problems (−0.515), SRS Restricted/Repetitive
Behavior (−0.478), Vineland Socialization (0.456), BRIEF
Shift (−0.438), and CBCL Aggressive (0.430). The strongest

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.1040085
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1040085 November 10, 2022 Time: 16:1 # 7

Jacokes et al. 10.3389/fnins.2022.1040085

FIGURE 3

Linear discriminant axis 2 plotted against linear discriminant axis 3.

discriminant coefficients for LD2 included the following
measures in order of absolute value: RBSR Restricted Subscale
(−1.113), BRIEF Shift (−0.974), SRS Cognition (0.772),
BRIEF Initiate (−0.598), and BRIEF Plan/Organize (0.521).
The strongest discriminant coefficients for LD3 included
the following measures in order of absolute value: SRS
Communication (−1.437), BRIEF Plan/Organize (−0.891),
BRIEF Inhibit (0.839), Vineland Communication (−0.688), and
SRS Restricted/Repetitive Behavior (0.664). A full accounting of
these values can be found in Table 4. Cohort-wise comparisons
of the raw values of the most relevant predictors can be found in
Figures 4–12.

A multivariate analysis of variance was conducted on the
data to confirm the significance of the results of the LDA;
the results of this analysis indicated highly significant results
(Wilks’ lambda = 0.13065, F(105, 1025) = 9.501, p < 0.001). The
individual analyses of variance for each linear discriminant axis
were also significant (LD1: F = 684.4, p < 0.001; LD2: F = 172.0,
p < 0.001; LD3: F = 32.08, p < 0.001). Figures of the linear
discriminant axes plotted against each other can be found in
Figures 1–3.

Discussion

Overview

The multivariate results of the present study indicate the
diagnostic groups are linearly discernible by two key dimensions

present in the phenotypic test battery: (1) a dimension
separating groups by ASD diagnosis (LD1: 87% of variance
explained) and (2) a dimension representing a diagnosis-by-
sex interaction (LD2: 11% of variance explained). As evident in
Figures 1, 2, there is a clear separation between the ASD and
control group (LD1 axis), and there appears to be separation
between the male and female ASD participants in Figure 1
(LD2 axis) but no such separation between male and female
control participants. These results are confirmed in the class
statistics table (Table 3), which displays sensitivity, specificity,
and F-1 Score for each class. These are discussed in more detail
below. A final dimension was not found to add to the ability
to distinguish between the groups (LD3: 1.58% of variance
explained) and so can be discounted. This provides compelling
evidence for phenotypic differentiability between ASD males
and ASD females.

Advantages of a linear discriminant
analysis

While any number of statistical models or machine learning
approaches could have been adopted and applied in the analyses
of the data included in this study, many suffer from a lack of
omnibus tests of inferential statistical significance. Moreover,
the contributions of individual variables to measuring between-
group differences are often difficult to assess or even have
access to in certain machine learning approaches. This is not
to say that such methods are deficient or inappropriate; rather,
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TABLE 4 Linear discriminant coefficients by measure for the linear
discriminant analysis.

Measure name LD1 LD2 LD3

BRIEF Emotional Control −0.20297 −0.39486 0.05349

BRIEF Inhibit 0.19281 0.18188 0.83851

BRIEF Initiate −0.03451 −0.59808 0.12022

BRIEF Monitor −0.26000 0.40408 0.52330

BRIEF Organization
Materials

0.34038 −0.00612 0.07616

BRIEF Plan/Organize −0.21075 0.52126 −0.89132

BRIEF Shift −0.43757 −0.97355 −0.26616

BRIEF Working Memory −0.10153 −0.24019 −0.33680

CBCL Aggressive 0.42970 0.44375 −0.05251

CBCL Anxious −0.02151 0.33984 0.26392

CBCL Attention 0.02869 0.16301 0.27304

CBCL Rulebreak 0.04911 −0.08144 −0.31350

CBCL Social Problems −0.51466 −0.28194 −0.18579

CBCL Somatic Complaints 0.13999 0.01249 −0.18741

CBCL Thought −0.11405 0.00873 −0.26736

CBCL Withdrawn 0.00195 0.06899 0.53452

CELF Formulate Sentences 0.28644 0.29849 0.19315

CELF Recall Sentences −0.22209 0.21152 −0.48370

DAS Special Non-verbal −0.33844 −0.19544 −0.23069

DAS Spatial Reasoning 0.14317 0.09762 0.32755

DAS Verbal Reasoning 0.07768 −0.18595 0.39518

RBS-R Compulsive −0.01179 0.32377 0.17877

RBS-R Restricted −0.15597 −1.11277 −0.34308

RBS-R Ritualistic −0.03040 −0.07301 0.21968

RBS-R Sameness 0.39078 0.40646 0.04211

RBS-R Self-Injurious −0.05025 −0.19514 0.08560

RBS-R Stereotyped 0.05553 0.09712 −0.08916

SRS Awareness −0.11398 −0.17528 0.00108

SRS Cognition −0.32790 0.77152 0.56659

SRS Communication −0.32547 0.30805 −1.43705

SRS Motivation 0.21668 0.29158 −0.32940

SRS Restricted/Repetitive −0.47764 0.26858 0.66440

Vineland Communication 0.16077 0.25030 −0.68800

Vineland Living Skills −0.08184 0.30665 −0.31959

Vineland Socialization 0.45609 −0.22276 0.39264

Numbers highlighted in bold represent squared discriminant eigenvector coefficients
greater than |0.15|.

probabilistic, non-linear, or other methods may not necessarily
provide actionable information having clinical utility. In
contrast, despite its multivariate nature, linear discriminant
analysis provides a parsimonious and interpretable means
for characterizing differences between groups, leveraging the
covariance structure existing between sets of variables, which
can be tested for statistical significance, and, finally, where the
relative contributions of variables can be determined.

Thus, from a utility perspective, the linear discriminant
analysis reported here likely has greater clinical applicability.

Illustrating the sensitivity to a significant sex-by-diagnosis
interaction may inform initial clinical assessment, identify those
factors driving such differences, and which may be useful
for customizing any therapeutic strategies specific to females
suspected of an ASD diagnosis. Whereas machine learning
and other modern approaches can help computers distinguish
between groups, here we emphasize the potential for human
interpretable analyses which optimize clinical utility.

Classification metrics

The detailed class-wise statistics in Table 3 illustrate
important context for this analysis. Sensitivity and precision
both refers to the ability of the model to correctly identify
members of a specific class but with different denominators:
sensitivity is the true positives divided by the sum of true
positives and false negatives, and precision is the true positives
divided by the sum on true positives and false positives. The
disparate sensitivity and precision values between the diagnostic
groups reveal that, indeed, the linear discriminant model is
highly accurate at distinguishing ASD from typically developing
control participants. Also of note is the fact that the model was
not as accurate differentiating the control males from control
females as it was differentiating between ASD males and females,
which indicates that these variables contribute only to the sex-
wise differences in the ASD group. Additionally, ASD females
were less likely to be correctly classified compared to ASD
males, which likely reflects the male-tending bias of many of the
phenotypic assessments used for assessing ASD.

Contributing variables

The top discriminant variables in LD1 are the variables
that exemplify the well-known differences between the ASD
and neurotypical groups, such as difficulties with social
interactions (CBCL social problems, Vineland Socialization),
emotional control (CBCL Aggressive), and differences in
effective communication (DAS Special Non-verbal, SRS
Communication) (Elsabbagh and Johnson, 2007; Halladay
et al., 2015). The difference in diagnostic group is apparent
graphically in Figures 1, 2, the images that include LD1 as an
axis.

Sex-by-diagnosis interaction

A particularly relevant finding of this analysis exists with
the strongest coefficients from LD2, since this is the axis
along which the divide between ASD males and ASD females
was the clearest. Specifically, these include several BRIEF-2
indices (Shift; Plan/Organize; Monitor; Emotional Control) as
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FIGURE 4

RBS-R Restricted Subscale.

FIGURE 5

RBS-R Sameness Subscale.

well as two RBS-R subdomains (Restricted; Sameness). The
presence of these measures in the linear discriminant axis most
implicated in ASD male-female separation suggests they may
be important in the detection of ASD based on behavioral
measures alone. Indeed, when a second, confirmatory linear
discriminant analysis was run using only these predictors
(squared LD2 coefficient > 0.15; highlighted in bold in Table 4),
the discriminant axes and plots were comparable to the original
analysis with the full array of predictors. They also may provide
insight into the sex differences present in the ASD phenotype.
Additional analysis is likely required to better determine how

the BRIEF-2 and RBS-R subscales discriminate between the
groups of interest. It is important to note that of these two
measures, the BRIEF-2 is sex-normed and the RBS-R is not; this
could have impacted the relative strength of the RBS-R subscales
separating males from females, but it strengthens the results
that suggest the BRIEF-2 is identifying latent traits specific to
a sex-by-diagnosis disparity.

The overall strongest discriminator in the sex-by-diagnosis
axis was the RBS-R Restricted Behaviors subscale. The Sameness
subscale from the RBS-R assessment was also among the top
discriminants in the sex-by-diagnosis axis. This is an interesting
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FIGURE 6

BRIEF Shift Subscale.

FIGURE 7

BRIEF Initiate Subscale.

finding because previous research has indicated that repetitive
behaviors can be subdivided into restrictive/repetitive sensory
motor behaviors and insistence on sameness behaviors (Cuccaro
et al., 2003; Bishop et al., 2013), which in other publications
have been classified as low-order (restricted) and high-order
(sameness) behaviors (Turner, 1999). Restricted behaviors can
include dyskinesia, convulsions, and repeated manipulation of
objects, while sameness behavior refers to a general insistence
on routine consistency (Tian et al., 2022). The discriminant
coefficients indicate these two subscales are representative of

opposite group membership, where greater deficits in restricted
behaviors are associated with ASD males and greater deficits in
sameness behaviors are associated with ASD females.

Of the four BRIEF-2 subscales that most contributed to
the ASD male-female discrimination, the Shift subscale was the
strongest. This scale measures cognitive flexibility, or the ability
to transition from one mental occupation to another (Gioia
et al., 2000). The directionality of the Shift subscale coefficient in
LD1 suggests that ASD participants exhibit far more dysfunction
in this area than controls, which is corroborated by previous
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FIGURE 8

BRIEF Plan/Organize Subscale.

FIGURE 9

BRIEF Monitor Subscale.

findings (Gioia et al., 2002; Blijd-Hoogewys et al., 2014).
However, the directionality of this coefficient in LD2 suggests
that ASD females exhibit less dysfunction in this area than ASD
males (this finding contradicts earlier research, which suggests
the opposite (White et al., 2017). The fact that this subscale was
also a strong discriminator in the sex-by-diagnosis interaction
axis may represent a clue as to the cause of the sex-based
diagnostic disparity, as an inability to shift freely from activities
or situations may be quite obvious to an observer. For example,
some items on the BRIEF-2 that contribute to the Shift subscale
include questions about being disturbed by a change of teacher

or thinking too much about the same topic. Being able to mask
this deficit could impact the decision to diagnose a child with
ASD.

Clinical implications

Males are diagnosed up to five times more frequently than
females having ASD. Reasons posited for this effect involve
the notion that females may require a greater environmental
burden in order to cross the threshold normally seen in ASD
males. Likewise, such a burden may have neurological and/or
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FIGURE 10

BRIEF Emotional Control Subscale.

FIGURE 11

CBCL Aggressive Subscale.

genomic determinants. Examination of neuropsychological
and behavioral assessments via detailed multivariate analysis
illustrated that while typically developing males and females
are indistinguishable, males and females diagnosed with ASD
were clearly separable. Assessments maximally contributing to
this sex-by-diagnosis interaction were reflective of executive
function, cognitive, and emotional control as well as restricted
behaviors. This suggests that, of the broad range of assessments
included in the presence analysis, the BRIEF-2 and RBS-R
may be particularly sensitive to these sex-driven differences.
Neuropsychologists utilizing sub-scales of these metrics, in

particular, may be able to better fine-tune options for clinical
therapeutic strategies specific to females suspected of being on
the Autism spectrum.

Future directions

The multimodal richness inherent in this dataset would
be enhanced through the inclusion of neuroimaging and
genomic data. Doing so would provide further evidence for
a sex-based differences in the ASD phenotype as it relates
to neurological and genomic contributions. Previous research
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FIGURE 12

SRS Cognition Subscale.

has indicated strong evidence for genetic differences between
ASD male and ASD females (Jack et al., 2021), which lends
credence to the female protective effect hypothesis and may
provide another avenue to analyze these data. Additional
and intensive classification analyses, such as bagged random
forests and support vector machines, focused on more targeted
phenotypic variables could also help to refine the results of
this preliminary analysis. Evidence from the ASD literature
suggesting multimodal diagnosis methods can be more effective
than the gold-standard survey methods by including such
neurological tools as EEG biomarkers though these techniques
are still being developed and are not sufficiently robust for
definitive diagnosis (Tanu, and Kakkar, 2019). While measures
employed here were able to be classified effectively with a
parametric model is encouraging for future multimodal analyses
on neuropsychological assessments, non-parametric methods
could be advantageous for successful classification using time-
dependent data. Indeed, deep learning techniques deployed on
EEG signal for ASD classification in other studies have achieved
high accuracy and represent path toward automated ASD
diagnosis (Wadhera et al., 2021), although the interpretability
of deep learning models remains limited. Finally, this sample
consists of highly verbal, average IQ ASD participants and most
measures are parent-reported, which could have impacted the
generalizability of the results. Using gender identity in addition
to biological sex is another potential future direction, and
our continued research has been diligent about collecting this
information.

Final conclusion

A phenotypic battery of neuropsychological and behavioral
assessments subjected to multivariate linear discriminant

analysis revealed diagnosis, as well as sex-by-diagnosis related
dimensions which distinguished ASD from typically developing
control participants. Main drivers of the latter were sub-scales of
the BRIEF-2 and RBS-R, both of which are measures pertaining
to contextual behavior. These phenotypic assessments, in
particular, may reflect useful means by which to tailor
therapeutic interventions and clinical approaches specifically
aimed at addressing ASD in females.
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