
fnins-16-1044372 January 5, 2023 Time: 20:5 # 1

TYPE Original Research
PUBLISHED 11 January 2023
DOI 10.3389/fnins.2022.1044372

OPEN ACCESS

EDITED BY

Aviv Abraham Mezer,
Edmond and Lily Safra Children’s
Hospital, Israel

REVIEWED BY

Maria Ercsey-Ravasz,
Babe,s-Bolyai University, Romania
Roey Schurr,
The Hebrew University of Jerusalem,
Israel

*CORRESPONDENCE

Joshua Faskowitz
jfaskowi@iu.edu

SPECIALTY SECTION

This article was submitted to
Translational Neuroscience,
a section of the journal
Frontiers in Neuroscience

RECEIVED 14 September 2022
ACCEPTED 12 December 2022
PUBLISHED 11 January 2023

CITATION

Faskowitz J, Puxeddu MG,
van den Heuvel MP, Mišić B, Yovel Y,
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Network models of anatomical connections allow for the extraction of

quantitative features describing brain organization, and their comparison

across brains from different species. Such comparisons can inform our

understanding of between-species differences in brain architecture and

can be compared to existing taxonomies and phylogenies. Here we

performed a quantitative comparative analysis using the MaMI database

(Tel Aviv University), a collection of brain networks reconstructed from

ex vivo diffusion MRI spanning 125 species and 12 taxonomic orders or

superorders. We used a broad range of metrics to measure between-

mammal distances and compare these estimates to the separation of

species as derived from taxonomy and phylogeny. We found that within-

taxonomy order network distances are significantly closer than between-

taxonomy network distances, and this relation holds for several measures

of network distance. Furthermore, to estimate the evolutionary divergence

between species, we obtained phylogenetic distances across 10,000

plausible phylogenetic trees. The anatomical network distances were rank-

correlated with phylogenetic distances 10,000 times, creating a distribution

of coefficients that demonstrate significantly positive correlations between

network and phylogenetic distances. Collectively, these analyses demonstrate

species-level organization across scales and informational sources: we relate

brain networks distances, derived from MRI, with evolutionary distances,

derived from genotyping data.
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Introduction

Mammals come in a wide range of morphologies, with each
of roughly 6,000 species adapted to the diversity of the Earth’s
ecosystems. Accordingly, the brains of mammals vary in shapes,
sizes, and capacities to support different kinds of cognition and
behavior. Despite this variation in overall form and ecological
adaptations, all mammalian brains are organized into networks
that form complex webs of interacting neurons supporting
signaling and communication (Laughlin and Sejnowski, 2003;
Sporns et al., 2004). The principles that govern common features
of network architecture across species, as well as those feature
patterns that differentiate them, have the potential to shed
light on the link between neuroanatomy and function (Van
den Heuvel et al., 2016; Sousa et al., 2017; Ardesch et al.,
2019; DeCasien et al., 2022). Across species we can consider
quantitative markers of brain shape, cytoarchitectonics, and
histology to search for relationships that might illuminate the
evolutionary constraints placed on brain morphology. Along
these lines, features such as the ratio of gray matter to white
matter (Zhang and Sejnowski, 2000) or combinations of several
features, such as gyrification, neuronal density, and neuronal
tissue volumes (Herculano-Houzel et al., 2010; Mota et al., 2019)
have been shown to exhibit (often allometric) scaling relations
with brain size or volume. Another way in which to evaluate the
imprint of evolutionary constraints on brain architecture is to
comparatively study the networked pattern of neural wiring.

The mammalian brain can be conceptualized as a network
of interconnected components—an abstraction that allows
for the extraction of relevant features describing local and
global brain organization (Bassett and Sporns, 2017). Network
modeling allows for the wiring patterns of the brain to
be quantitatively characterized, making topological patterns
accessible to comparative analysis. Using such an approach, the
wiring cost of different mammals has been assessed (Cherniak,
1994; Kaiser and Hilgetag, 2006; Rivera-Alba et al., 2011),
suggesting a tradeoff between conservation of neural resources
and the promotion of neural communication (Bullmore and
Sporns, 2012; Van den Heuvel et al., 2016). Brain networks
have also been used to study how neuroanatomy scales with
size. A recent analysis of 14 primate species demonstrated that
the propensity for short connections to form was positively
correlated with brain volume, along with network properties
such as the clustering coefficient and characteristic path length
(Ardesch et al., 2021).

Several approaches to comparative neuroanatomy studies
involve the search for homologous connectivity patterns
(Balsters et al., 2020; Roumazeilles et al., 2022), examine
specific regions or systems for connectional differences (Rilling
et al., 2008; Rilling, 2014), or involve the creation of surface
maps that reveal inter-species relationships in regional size
and differentiation (Van Essen et al., 2019; Xu et al., 2020).
Common to these approaches is that pattern identification

must rely on pre-identified regions and/or a diffeomorphic
transformation between neuroanatomical maps. While this
is less of a barrier for studies comparing species with
similar brain architectures and established homology relations
(e.g., primates), it does present significant difficulties for
comparing vastly different mammals for which detailed areal
maps are not available, like a bat to a dolphin or a
zebra to a vole. Comparative studies that span multiple
taxonomic clades require an approach that is agnostic to
neuroanatomical homologies. One candidate approach is
network modeling.

In the present study, we take advantage of the recently
published MaMI (Mammalian MRI) database, a collection of
brain networks derived from hundreds of mammals, using
high-resolution ex vivo structural and diffusion magnetic
resonance imaging (Assaf et al., 2020; Suárez et al., 2022). The
mammals used for analyses here span 103 unique species and
cover 12 taxonomic orders (Figure 1), capturing the richness
of brain organization in mammals adapted to a wealth of
ecologies. Using this data, it has already been shown that
local graph features like the average clustering coefficient,
betweenness centrality, and closeness centrality vary across
taxonomic orders (Suárez et al., 2022). Yet across species, key
topological factors such as the proportion of short, medium,
and long connections are relatively consistent across species.
Furthermore, it has been shown that the mean shortest path
length, a purported marker of theoretical communication
efficiency in brain networks, scales across species (Assaf et al.,
2020). In this path-based analysis, it was proposed that intra-
hemispheric connectivity is modulated by the number of
commissural fibers to maintain similar overall connectivity
across species. Collectively, these comparative network analyses
emphasize that the topology of brain networks can serve to
differentiate mammals, even if other network features remain
constant.

Here, we seek to compare brain networks across mammalian
species, to demonstrate how differences in brain architecture
relate to mammalian classification. The quest to explore such
a question is enriched by the diversity of the MaMI database,
which provides examples of brains from several taxonomic
orders. Previous work has initially demonstrated that brain
networks within taxonomic order are less distant than between
orders (Suárez et al., 2022). Here, we reproduce this finding,
using a suite of network distance measures. We build upon
this idea and extend previous work by asking if the pattern
of brain network distances between mammals is similar
to the estimated phylogenetic distances between mammals
(Upham et al., 2019). In additional analyses, we account for
differences in scanner signal-to-noise ratio, brain volume, and
the spatial embeddedness of the brains when relating network
and phylogenetic distances. Finally, we describe the differences
between phylogenetic trees that correspond, strongly vs. weakly,
to the brain network distances.
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FIGURE 1

Phylogenetic tree of the mammals under investigation. Tree distances are derived from a consensus phylogeny estimate (Upham et al., 2019);
103 species names and 12 taxonomic orders are shown. For each taxonomic order label, the first number in parenthesis denotes the number of
unique species represented in the underlying tree branch (which sums to 103), whereas the second number denotes the number of specimens
for each order (which sums to 201).

Materials and methods

Image acquisition

For this study, we used data from the mammalian
MRI database (MaMI), a collection of 225 ex vivo diffusion
weighted brain scans (Assaf et al., 2020; Suárez et al.,
2022). These scans include 125 unique species and cover 12
taxonomic orders (clades): Cingulata, Afrotheria, Artiodactyla,
Perissodactyla, Carnivora, Chiroptera, Eulipotyphla, Primates,
Eutheria, Rodentia, Lagomorpha, Marsupialia. Detailed image
acquisition protocols can be found in Assaf et al. (2020). No
animals were deliberately euthanized for the present study. All
brains were collected based on incidental death of animals
in zoos in Israel or natural death collected in the wild and
with the permission of the national park authority (approval
no. 2012/38645), or its equivalent in the relevant countries.
Specimen brains were extracted from the skull and fixated before
scanning. Approximately 24 h before undergoing scanning, each
brain was placed in phosphate-buffered saline for rehydration.

Brains in the dataset differed in shape and size, necessitating
different imaging equipment due to scanning bore limitations.
Smaller brain (up to approximately 0.15 ml) images were
collected on a 7 Tesla 30/70 Biospec Avance Bruker system.
Larger brains (approximately >1000 ml) were collected on a 3
Tesla Siemens Prisma system. To reduce magnetic susceptibility
artifacts, brains were scanned while immersed in fluorinated
oil (Fluorine, 3M). Diffusion MRI data were acquired using
high angular resolution diffusion imaging (HARDI), which
consists of a series of diffusion-weighted, spin-echo, echo-
planar-imaging images of the whole brain field of view. Imaging
parameters for the 7T scanning acquisitions include: 60 gradient
directions, 3 B0 volumes, B-value = 1000 s/mm2, TR > 12000 ms
(depending on the number of slices), TE = 20 ms, big delta/little
delta = 10/4.5 ms. Imaging parameters for the 3T scanning
acquisitions include: 64 gradient directions, 3 B0 volumes,
B-value = 1000 s/mm2, TR = 3500 ms, TE = 47 ms, big delta/little
delta = 17/23 ms. Acquisition parameters were adjusted on a
per-animal basis so that pixel size was linearly scaled across
brains, ensuring that all scans were acquired with the same 2-
dimensional pixel grid (128 × 96). Based on brain size and
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shape, the number of image slices varied between 46 and 68. An
attempt was made to keep signal-to-noise ratio above 20 for all
brains. This resulted in a difference in acquisition times, which
approximated 48 h for small brains and 25 min for large brains.
Several validations on the effect of varying scanning parameters
were performed in Assaf et al. (2020). In this previous study the
authors demonstrated that the collected data correlated strongly
with externally acquired mouse data. These analyses support the
claim that the differing scan parameters were sensibly applied,
and that cross-species acquisition biases have been addressed to
the extent possible.

Brain network construction

Diffusion weighted data was pre-processed using
ExploreDTI (Leemans et al., 2009). Pre-processing included
anisotropic smoothing of image slices with a 3-pixel Gaussian
kernel, as well as motion, susceptibility, and eddy current
distortion correction. Fiber orientation direction was estimated
using the spherical deconvolution approach (Tournier et al.,
2004), allowing for the modeling of crossing fiber orientations
in each voxel. The maximum spherical harmonic order applied
was four. Following fiber orientation modeling, whole brain
tractography was performed using a seed point threshold of 0.2
and a half-pixel step length. This tractography method ensures
that approximately 90% of the streamline endpoints terminate
in the cortical and subcortical gray matter. Streamlines passing
through the cerebral peduncle and cerebellar connections were
filtered out of the tractography before network reconstruction.

A standard parcellation procedure was applied to the
tractography data of each mammal, to create an equal number
of nodes for each brain. For each image, the brain’s midline was
manually identified. For each hemisphere, streamline endpoints
in Euclidean space were parcellated into 100 regions using
k-means clustering (as implemented in MATLAB), considering
all fiber endpoints positions. Therefore, endpoints with similar
spatial termination patterns were more likely to be assigned
to the same cluster. Volumetric nodes were taken to be the
center of mass of the resultant 200 k-means-identified non-
overlapping regions, with 100 nodes per hemisphere. Note that
the parcellation strategy employed here differs from a random
partition of cortical volumes (Zalesky et al., 2010) or surfaces
(Ardesch et al., 2021). Structural connectivity weights were
taken to be the count of streamlines connecting volumetric
nodes, divided by the combined geometric mean volume of
these nodes (Faskowitz et al., 2018). Fiber length was taken to be
the average length of all the streamlines connecting nodes. The
Euclidean distance between nodes was taken to be the straight-
line distance between the center of mass of volumetric nodes.
Euclidean distances were computed in voxel units as opposed to
real-world units.

The parcellation approach described here can be repeated
using different initial conditions of the k-means clustering
algorithm, rendering slightly different 200-node parcellations
and resultant structural networks. For each mammal, 100 runs
of the parcellation procedure were carried out, resulting in 100
instantiations of the brain network for each animal. Each such
set represents an ensemble of plausible network representations
derived from the same underlying tractography data.

Network comparison without node
correspondence

Common practice in network neuroscience is to use a
parcellation in either stereotaxic space or fit to native space
to define network nodes (Eickhoff et al., 2018). Such an
approach allows for a straightforward comparison of individual
networks, as it is assumed that nodes correspond to the same
structural or functional regions across brains. In this case, brain
networks can be compared with straightforward operations such
as the correlation of two matrices’ upper-triangles, assuming
networks are undirected (Finn et al., 2015). In this study,
due to the heterogeneity of brains included in the database, a
common parcellation approach is not feasible (Ardesch et al.,
2021). Therefore, comparing brain networks necessitated a
network comparison methodology that does not require nodal
correspondence across brains. For this, we opted to use the
network portrait divergence (Bagrow and Bollt, 2019).

A network portrait is a representation of a network’s
geodesic, or shortest-path, distance distribution (Bagrow et al.,
2008). Briefly, a network portrait B can be constructed on an
unweighted network by taking a histogram of a binary matrix
thresholded at each shortest path length l ∈ {0, ..., L} where L is
the diameter of the network, and then stacking these histograms
to form a rectangular matrix B, where the entry Bl,k encodes the
number of nodes, n, who have k nodes at distance l. For weighted
networks, continuous distances need to be discretized into bins,
using a number of bins chosen a priori or based on a heuristic
histogram rule. The network portrait divergence is computed
by taking the Jensen–Shannon divergence between network
portraits. This approach can accommodate the comparison of
differently sized networks and does not necessarily require
node correspondence. The utilization of this distance measure
was motivated by the shortest path-based analyses conducted
previously on these data, which noted that mean shortest
path distance is weakly related to brain volume, displaying
merely a 40% linear increase over four orders of magnitude
of brain volumes (Assaf et al., 2020). Furthermore, this study
demonstrated a robust link between intra-hemispheric, mean
shortest path distance, and commissural ratio percentage, which
persisted across parcellation size and scanning resolution.
A method based on shortest paths was chosen as the primary
network comparison tool based on these previous findings
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demonstrating feature stability. Shortest paths on structural
brain networks can be interpreted as a proxy for polysynaptic
signaling capacity between regions (Avena-Koenigsberger et al.,
2018; Vázquez-Rodriguez et al., 2020). Alternative comparison
tools were also employed, to demonstrate robustness (see
below).

In the present study, network portraits were constructed
using 25 quantiles to discretize the continuous geodesic
distances. Bin size was held constant, as opposed to using a
binning heuristic, so that comparisons between all mammals
are comparable. Continuous geodesic distances were computed
by taking the inverse of structural edges to be between-
node distances and using the Brain Connectivity Toolbox
(BCT) (Rubinov and Sporns, 2010) function distance_wei_floyd
(Floyd, 1962).

Density-based thresholding

To ensure that reported results were not due to variation
in structural network density, which can influence common
brain network analysis measures (Van Wijk et al., 2010),
alternative versions of each mammalian brain network were
constructed after thresholding each network at a constant
density d = {0.05, 0.10, 0.15}. That is, for each density d,
first the maximum spanning tree was computed, retaining a
skeleton of the N − 1 largest edge magnitudes that form a
connected component. Then, edges not included in this skeleton
are added in order of descending edge weight, until a density of
d for the network is met. Note that the original edge weights
were retained for the supra-threshold edges. This procedure
ensures that thresholding does not fragment the network into
disconnected components (unless the original network is not a
single connected component to begin with).

Centroid extraction and outlier
removal

Mammalian brain networks were compared both within and
between mammals using the network portrait divergence to
identify excessively distant networks. First, for each mammal,
its 100 network instantiations were compared in a pairwise
manner, forming a 100-by-100 distance matrix. The rows of this
matrix were averaged, forming a list of average distances from
each instantiation to all other instantiations. Average distance
values greater than 3 scaled median absolute deviations (MAD)
from the median, identified with MATLAB function isoutlier,
were marked as outlier networks for removal. Of the remaining
brain networks, the network with the minimal average distance
to other instantiations was retained as the representative, or
centroid, network. Mammalian centroid brain networks were
compared to each other in a pairwise manner, forming a 225-
by-225 distance matrix. The rows of this matrix were averaged,

forming a list of average distances from each instantiation to
all other instantiations. Average distance values more than 3
MAD from the median were marked as outliers. Using the 12
taxonomic orders to define modules on the 225-by-225 distance
matrix, we computed the within-module degree z-score. Nodes
(i.e., mammals) that had within-module degree z-scores greater
than 3 were additionally marked as outliers, as this measure
would indicate the magnitude of deviation of distance values
within each module (see Supplementary Figure 1 for a
visualization of the differences between retained and outlier
data). These procedures for centroid extraction and outlier
removal were repeated separately for the non-thresholded and
the three thresholded versions of the data, creating four sets
of mammalian brain data for analysis. These sets of data
contain N = {201, 201, 201, 190} mammals, at thresholds
of d = {none, 0.05, 0.10, 0.15} respectively. The main text
includes analyses with the d = 0.10 dataset (Supplementary
Figure 6) so as to report findings that are not biased by varying
network densities (Van Wijk et al., 2010); analyses performed at
alternative thresholds d = {none, 0.05, 0.15} are reported in
Supplementary Information.

Alternative network comparison
methods

Additional network comparison operations were computed
with a suite of methods that do not require node correspondence
(Tantardini et al., 2019; Mheich et al., 2020; Wills and Meyer,
2020).

Generative model distance

One way to perform network comparison is to derive
topological descriptors from each network and in turn, compare
these measurements or statistics to each other. Such an approach
abstracts a network into a measurement distribution or set
of central tendency measures that can be compared in a
standardized way, even if the number of nodes differs between
networks. In Betzel et al. (2016), the distance between networks
was taken to be the maximum Kolmogorov-Smirnov (KS)
distance across the comparisons of the binary degree, binary
clustering coefficient, binary betweenness, and edge length
distributions. This distance can also be assessed as the mean KS
of these distributions (Faskowitz et al., 2018) and can be assessed
using the weighted variants of each topological measurement.

NetSimile

The NetSimile method utilizes topological and ego-network
(egonet) concepts to compare networks of different sizes
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(Berlingerio et al., 2012), where an egonet is defined by the
induced subgraph of a node and its neighbors. The method
requires the extraction of seven node-wise distributions for
each network: degree, clustering coefficient, average degree of
2-hop neighbors, average clustering coefficient of neighbors,
average egonet clustering coefficient, weight of egonet outgoing
edges, and summed degree of each egonet. From these seven
distributions, five features are taken from each distribution
(median, mean, standard deviation, skewness, and kurtosis)
forming a “signature” vector of each network of length 35.
Signature vectors are then compared by taking the Canberra
distance between them. As with the generative modeling
distance, weighted variants of the topological measures can be
taken.

Laplacian and adjacency spectral
distances

Spectral distances between graphs are taken by comparing a
sequence of eigenvalues derived from each network (de Lange
et al., 2014; Dodonova et al., 2016; Kurmukov et al., 2016;
Wills and Meyer, 2020). To take a spectral distance, first,
an eigen-decomposition is performed on either the network’s
Laplacian or adjacency matrix, sorted in order of magnitude,
and a predetermined k number of eigenvalues are retained
for comparison. For comparisons of the Laplacian-derived
eigenvalues, the k smallest values are retained, whereas for
comparisons of the adjacency-derived eigenvalues, the k largest
eigenvalues are retained. Comparisons can be made using the
full eigen-spectrum but are commonly taken when k� n, where
n is the number of nodes in a network (Wills and Meyer,
2020). The spectral distance can be taken as the Euclidean
distance between the spectra of length k. This method allows
for the comparison of differently sized networks without node
correspondence, if k is less than or equal to the number
of nodes in each network. In the current study, spectral
distances were taken by measuring the l2 metric (i.e., Euclidean
distance) between the spectrums at k = {5, 50, 100, 200}
for both adjacency and Laplacian-derived spectra. Note, when
comparing networks with disconnected nodes, the full spectra
comparison k = 200, was reduced to match the size of
the largest connected component of the smaller network (i.e.,
k = 199, if one node was found to be disconnected). Finally,
an additional distance measure was calculated by taking the
Jensen–Shannon divergence between the density-normalized
Laplacian spectra (De Domenico and Biamonte, 2016).

Phylogenetic distance estimation

Phylogenetic distances were estimated using a set of 10,000
complete phylogenetic trees inferred using a Bayesian approach

(Upham et al., 2019). Using a large set of plausible trees, rather
than a single consensus tree, allows for a better characterization
of the uncertainty associated with tree estimation (Huelsenbeck
et al., 2000). For each complete tree, pairwise distances between
species were computed by adding patristic distance along tree
branches using MATLAB’s pdist (phytree) function. Distance
matrices were then pruned to match the composition of
mammalian species contained within the MaMI database.

Generative model parameter
estimation

For each mammalian network we sought to estimate the
influence that space has on the formation of edges between
nodes, which might vary across species. After estimating
such a parameter, it could be used to as a covariate of no
interest (i.e., nuisance regressor) to account for differences in
spatial embedding. To operationalize spatial embeddedness, we
estimated a spatial wiring rule as a power-law function (Vertes
et al., 2012; Betzel et al., 2016) following the formula:

P (u, v) = E (u, v)η

where the probability of forming a connection between nodes
u and v, P (u, v), is given by the Euclidean distance between
the nodes E (u, v) raised to a free parameter, η. This parameter
can be conceptualized as quantifying the distance penalty
(negative setting for the exponent η) incurred as connections
increase in length. To estimate η for each network, the
maximum spanning tree was taken as a seed set of edges.
The η parameter was uniformly sampled 200 times between
the range −15 to 0 and for each candidate parameter,
a corresponding binary synthetic network was generated.
Synthetic networks were evaluated against the original network
using the binary generative modeling distance (maximum
KS) described previously. The least distant 10% of synthetic
networks were retained. Additionally, the bottom 20% of
synthetic networks were randomly sampled according to a
probability proportional to the inverse of network distance.
The overlap of these samples was used to gather candidate η

parameters. The minimum and maximum of this set formed
new lower and upper bounds defining a range from which one
can sample uniformly. This process was carried out five times,
to identify the value of the η parameter that is least distant
from the original network. After five iterations, a network’s η

parameter was taken to be the median value from the 20% of
least distant (i.e., lowest energy) synthetic networks. It should
be noted that in this analysis, the generated matrices are binary,
meaning that only edge-existence contributed to the estimation
of the spatial embeddedness.

Following previous work, from which our code is adapted
(Betzel et al., 2016), we elected to use a power-law relationship to
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operationalize spatial embeddedness. Alternative formulations
capturing the role of spatial distance in wiring probability and
density have been used in prior literature. For example, brain
network wiring can also be modeled using an exponential
distance rule, as has been employed in studies of mice (Oh
et al., 2014; Horvat et al., 2016), marmosets (Theodoni et al.,
2022), and macaques (Ercsey-Ravasz et al., 2013). To examine
the impact of using an exponential decay function in place
of a power law relationship, we have run the same generative
modeling procedure using an exponential function.

Results

Here we describe how distances between anatomical
networks reflect taxonomic and phylogenetic differences
between mammals. To achieve this, we computed the pairwise
distances between the brain networks of various mammals.
These distances, reflecting differences in neuroanatomical
topological patterns, can be related to divisions in mammalian
taxonomy and distances derived from phylogenetic trees.

Network distances concur with
taxonomic orders

The pairwise network portrait divergence was taken
between each mammalian structural brain network (Figure 2A).
These distances were averaged within blocks formed by the
12 taxonomic orders of mammals covered in this sample
(Figure 2B). For the purposes of within- and between-
block comparisons, the orders Cingulata and Eutheria were
excluded as the current version of the mammalian database
contains just one animal in each order. Between-block
distances were greater on average than within-block distances
(Figure 2C; Mann-Whitney U-test, p = 0.006). Between-
network distances were taken with alternative measures as
well. Fifteen alternative measures were applied, falling into
four categories: network feature histogram distances, Laplacian
spectral distances, adjacency spectral distances, and NetSimile.
For each measure, pairwise distances were calculated for each
mammalian brain network, and then rank correlated with each
other (Figure 2D; see Supplementary Table 1 for expansion
of distance measure names). This visualization demonstrates
the similarity between measures, which is largely organized by
conceptual class (as indicated by colors underlying the measure
names in Figure 2D). From this matrix, similarities outside of
conceptual class, such as between network portrait divergence
and the adjacency spectral distances, are also observable. For
comparing between- and within-block distance magnitudes
across measures, the distance matrix for each measure was
rank transformed and then compared, showing that between-
block distances were greater on average than within-block

distances (Figure 2E; Mann-Whitney U-test, p < 10−6).
In Supplementary Figure 2, these within- and between-
block distances are shown with alternative thresholds, and
in Supplementary Figure 3, the distances from each of the
alternative methods are shown distinctly.

Network distances relate to
phylogenetic distances

Here we ask how the pairwise network distances relate to
pairwise phylogenetic distances between mammals. In other
words, we ask if the pattern of interrelationships between brain
networks is like the pattern of interrelationships estimated from
evolutionary history.

The pairwise patristic distance was determined from 10,000
estimated trees provided as a reference data set by Upham et al.
(2019). The patristic distances were computed by summing the
traversed distance on the tree, between each mammal. From
Upham et al. (2019), a maximum clade credibility consensus tree
was downloaded (at the link)1 and used for display purposes
(Figure 3A) and to determine the taxonomy display ordering.
For each network distance measure, distances within each
taxonomic block were averaged; similarly, for each of the 10,000
phylogenetic trees, distances within each taxonomic block were
averaged. These block matrices were then rank correlated
(Figure 3B) and visualized as distributions of Spearman (rank)
correlation coefficient distributions (Figure 3C). Distributions
are colored by network distance measure category and were
only colored if the lowest 1% distribution value exceeded zero.
Only one measure, the weighted NetSimile distance, displayed
a distribution of correlation values that was mostly negative.
All other network distance measures had distributions with
significantly positive correlation coefficients. Measures from
the Laplacian spectral distance category display distributions
with generally large magnitudes; the Laplacian distance using
five dimensions achieved the highest correlation magnitudes.
In Supplementary Figure 4, these relationships are visualized
as two-dimensional histograms depicting the density of points
across all 10,000 correlations.

The MaMI database contains mammals of various brain
shapes and sizes, which could influence the comparison between
network and phylogenetic distances. The brain volumes of
the mammals in the database span four orders of magnitude
(Figure 4A). Importantly, we find that the spatial embedding of
these brain networks, as estimated by our generative modeling
approach, is highly correlated with brain volume (Spearman’s
ρ: −0.597, p < 10−6; Figure 4B). That is, estimating the
influence of spatial distances on edge formation, we found
that larger brains are more likely to form shorter connections

1 vertlife.org/phylosubsets/
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FIGURE 2

Network distances correspond to taxonomic order. (A) Network portrait divergence matrix (with dimensions 201-by-201) for all mammals,
organized by taxonomy into on-diagonal blocks (orange). (B) Average network portrait divergence within (orange) and between (yellow)
taxonomic blocks. (C) Within-order average distance is lower than between-order average distance (Mann-Whitney U-test, p = 0.006). (D) Rank
correlations between distance patterns produced by a variety of distance measures; bin: binary; wei: weighted; lap: Laplacian matrix; adj:
adjacency matrix; gen: generative distance; spec: spectral distance; js: Jensen–Shannon divergence; netsimile: NetSimile distance; net-pd:
network portrait divergence. (E) Aggregating all distance measures, the ranked within-order distance is lower than the ranked between-order
distance (U-test, p < 106).

(incur greater distance penalties), as indicated by a steeper
spatial power law term (more negative value of η) estimated
via a generative modeling framework (Betzel et al., 2016).
These two features, brain volume and the spatial generative
modeling parameter η, in addition to scan signal-to-noise
ratio (Supplementary Figure 5), were used as covariates of
no interest for computing a partial correlation between brain
network and phylogenetic distances (Figure 4C). These features
were compared in a pairwise manner by taking the geometric
mean between each pair of data points. This way, the data
could be averaged within blocks and used as covariates with
the same dimensionality as the distance measures. Note that
the geometric averaging of per-mammal features makes for
an unconventional partial correlation, necessitated by the
need to match the dimensionality of the pairwise distance
data. As before, brain network distances computed with the
Laplacian spectrum displayed correlations with the largest
positive magnitudes, with the five-dimension Laplacian spectral

distance again displaying the highest magnitudes. When co-
varying for the spatial bias, the distributions formed by
Jensen–Shannon divergence of the Laplacian spectrum and
the binary NetSimile distance fail to clear the zero threshold
and are thus colored gray in Figure 4C. In Supplementary
Figure 11, we demonstrate the effect of using just signal-to-noise
ratio as a covariate of no interest. Finally, in Supplementary
Figures 8–10, we visualize correlation distributions taken by
comparing the network and phylogenetic distances at the level
of edges, without averaging into block-wise values. In this
case, correlation coefficients are attenuated, which could be
due to measurement or estimation uncertainty at the edge-
level. However, many measures’ distributions still exceed the
zero threshold, even after considering the partial covariates of
signal-to-noise ratio, brain volume, and geometry. Furthermore,
we demonstrate that the choice of distance model used to
operationalize spatial embeddedness does not fundamentally
change the results of these analyses. For the purposes of
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FIGURE 3

Network distance correlates with phylogenetic distance. (A) Phylogenetic distance matrix (with dimensions 103-by-103) for all unique mammal
species, with taxonomy highlighted via orange on-diagonal blocks. (B) Schematic of the process for correlating brain network distance with
multiple phylogenetic distance estimates. (C) For each distance measure, the distribution of Spearman rank correlation coefficients is shown for
103 comparisons of block network distance to block phylogenetic distance; distributions are only colored if the bottom 1% correlation value
exceeds zero; distributions are colored by distance measure category.

estimating a rank ordering of spatial embeddedness across the
mammalian brains of the MaMI database, the two models
converge to highly similar trends (Supplementary Figure 7).
Using parameters based on an exponential distance rule, we
replicate the brain network and phylogenetic distance results in
Supplementary Figures 12, 13.

We can inspect the upper and lower tails of the network
portrait divergence correlation distribution to identify and
describe phylogenetic trees that both strongly and weakly covary
with brain network distances. To what extent would these trees
look different? To answer this question, the trees generating
both the top and bottom 1% of correlation distribution were
collated, corresponding to correlation magnitude ranges of
0.05–0.07 and 0.19–0.21, respectively. These distance matrices
were averaged to visualize the extent to which phylogenetic
distances correlate with brain network distances (Figure 5A).
The edge-level entries between these matrices are highly
correlated (Spearman’s ρ: 0.829, p < 10−6; Figure 5B), despite
being derived from the extreme ends of the correlation

distribution. By comparing the within-module degree z-score
distributions of these phylogenetic distance matrices (using the
taxonomy as the partition), we can visualize how differences are
expressed at higher z-scores (i.e., larger distance magnitudes;
Figure 5C).

Discussion

Here we study the difference in the connectional topology
of brains from a large sample of mammalian species, and
we demonstrate that distances between topologies relate to
both grouping of species into taxonomic orders and their
phylogenetic distances. Our central finding is that differences
in connectome-derived topological features are related to
distances between species derived from homologies in genetic
sequences, collated into a phylogenetic tree (Figure 1). These
findings are supported by applying numerous network distance
measures and exploring networks at different density thresholds.
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FIGURE 4

Accounting for potential confounds in network vs. phylogeny distance correlations. (A) Mammals log10 brain volume for each order; points
colored by brain volume magnitude. (B) Brain volume plotted against a generative spatial parameter, showing how larger brains’ connectivity
patterns are more influenced (more negative) by the distance between connections; points colored by brain volume magnitude. (C) Similar rank
correlation distribution plots as shown in Figure 3, but with signal-to-noise and brain volume (upper) or the generative spatial parameter (lower)
regressed out. Rank corr: spearman correlation; gen. param: spatial generative modeling parameter.

Importantly, we show that the relationship between network
and phylogenetic distance holds after accounting for several
potentially confounding variables.

Our work builds on and extends previous empirical
studies that have compared features of mammalian brain
architecture and connectivity. Previous studies have identified
the presence of similar areas and large-scale networks across

species exemplars (Lu et al., 2012; Balsters et al., 2020) and have
compared their network properties (Miranda-Dominguez et al.,
2014). Across exemplar networks from a mouse, fly, macaque,
and human, a consistent weight-to-distance relationship was
identified, which was further probed to suggest that long
distance connections across these brains increases functional
diversity (Betzel and Bassett, 2018). Several aspects of our
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FIGURE 5

Phylogenetic distances sampled from the top and bottom of the correlation distribution. (A) Average phylogenetic distances, at mammal level
(upper) and taxonomic block (lower) from both the top 1% and bottom 1% of the rank correlation distribution of the network portrait
divergence. (B) Correlation between the top and bottom phylogenetic distance matrices, showing generally strong rank correlation.
(C) Within-module degree z-score between the top and bottom phylogenetic distance matrices, showing that lower z-scores (below zero) are
generally similar, whereas larger z-scores have a greater spread.

work go beyond prior literature. While previous studies
have largely focused on small sets of “model organisms”
we perform a comparative analysis across many species and
specimens (Assaf et al., 2020; Suárez et al., 2022). Whereas
previous work on this database primarily establishes topological
commonalities between mammals, such as similar shortest path
length topologies and the preservation of distance-dependent
connectivity strength, the work here focuses on the pattern of
distances formed when comparing the mammals in a pairwise
manner.

Using network portrait divergence as a starting point,
we demonstrate that the distance within taxonomic order
is smaller than between orders (Figures 2B, C). Network
portrait divergence is derived using shortest paths (i.e., geodesic
distances), which can be conceptualized as a proxy for network
communication processes (Goñi et al., 2014). Therefore, we
could speculate that mammals within an order have brain
network topologies that support communication processes to a
similar extent. We additionally examine this effect using other
network distances that focus on the graph spectra or other
feature distributions (Figure 2D). Between-mammal network
distance patterns are then correlated with between-mammal
phylogenetic distance patterns (Figure 3), demonstrating a link
between brain networks and phylogenetic information. Notably,
we observe non-zero correlations for many of the distance

measures, which index a variety of network characteristics.
For example, the low-dimensional Laplacian spectra carry
information about a network’s community structure (de Lange
et al., 2014). The observation that the Laplacian spectral distance
relates the most to phylogenetic distance could indicate the
importance of community structure as a useful network feature
to discriminate between mammalian brain topologies. Since
these relationships hold across many distance measures, we
can feel more confident that these results are not an artifact
of a single feature. Additionally, these relations persist when
potential confounding factors, including scanning signal-to-
noise ratio, brain volume and geometry, are taken into account
(Figure 4). When replicating these analyses at the level of
edges, these relationships are attenuated, possibly indicating the
possible noisiness of making these comparisons at a more fine-
grained level. This scale of analysis could be the focus of future
work, especially considering that the difference between top and
bottom-correlating trees might be most apparent at the within-
taxonomic order level (Figure 5C). Additional future work is
needed to further identify the underlying factors that likely
drive these findings. Possible candidates include factors that
capture the different body plans, sensory and motor adaptations,
behavioral capacities, and ecological contexts of each species.

One of the most important factors influencing the layout
of anatomical/structural connections is the spatial separation
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between brain regions. Virtually all previous studies of
connection topologies, including studies carried out with
histological techniques such as tract tracing (Markov et al., 2014;
Coletta et al., 2020), have demonstrated that connection density
varies with the physical distance between neurons (intra-
regionally) (Ercsey-Ravasz et al., 2013; Horvat et al., 2016)
and between segregated cortical regions (Betzel et al., 2017).
Consistent with prior studies carried out on just a small sample
of model organisms, we find that a generative model applied
to brains from a wide range of mammalian different species
varies systematically with brain size. This finding supports
the notion that, as brain get bigger, connectivity becomes
progressively more expensive (Ringo et al., 1994) as the cost
of wiring (edges) increases faster than the expansion of gray
matter (nodes). The resulting drop in the density of long-
distance connections presents an increasingly severe challenge
to communication and information integration (Laughlin and
Sejnowski, 2003; Bullmore and Sporns, 2012). This challenge
merits future exploration and investigation. For example, one
universal aspect of mammalian cortical topology is the existence
of network communities, or modules, interlinked by long-
distance paths and highly connected hubs (Harriger et al., 2012;
Zamora-Lopez et al., 2016; Faskowitz and Sporns, 2020; Liu
et al., 2020; Swanson et al., 2020). Our approach can be extended
to leverage the detection of modules across different species and
taxa. Another future direction is the use of various measures
of network communication (Seguin et al., 2020) to investigate
possible differences in efficient communication strategies across
species.

Limitations and future directions

A fundamental challenge of comparative studies is the
necessity to match data derived from brains with differing
shapes, sizes, and overall morphology. Although a brain
network modeling approach is seemingly preferable for these
comparisons, there remain notable limitations. Establishing
regional neural correspondence across species and evolutionary
branching is a longstanding research question (Krubitzer,
2009; Kaas, 2011; Faunes et al., 2015), with new methods
emerging to identify homologies by computationally matching
anatomical patterns or fingerprints (Mars et al., 2018; Balsters
et al., 2020; Schaeffer et al., 2020; Warrington et al., 2022).
In the future, major progress will come from the creation of
a universal (pan-mammalian) parcellation or atlas covering
the entire cerebral cortex, and ideally extending to subcortical
regions as well, a challenge that was first anticipated and
initiated by Swanson and Bota (2010). Our current strategy
to meet this challenge, which involves the comparison of
stochastically generated parcellations (i.e., nodes) between
mammals, unfortunately also affects the interpretation of edge
weights and correspondence as well (Faskowitz et al., 2022).

Thus, we currently cannot precisely localize neuroanatomical
structures that drive differences in brain network distances.
The random parcellation framework applied here may not be
ideally suited to the underlying data in terms of scale (i.e.,
number of nodes) or delineation of similar functionally coherent
areas across brains (Brett et al., 2002; Passingham et al., 2002).
To partially mitigate this problem, we employed a scheme to
select the most representative network (i.e., least distant) from
multiple realizations of connectivity-based parcellation of each
mammal scan.

When analyzing scans performed on such a wide variety
of brains, data fidelity should be acknowledged as a limitation
when interpreting these results. To begin, it is crucial to
understand that MRI is unable to image neurons—only
anatomical information at the scale of millimeters voxels can
be reconstructed (although sub-voxel neuronal properties can
be estimated with specialized MRI techniques; Assaf et al.
(2008)). The reconstruction of white matter tracts via streamline
tractography is influenced by spatial embedding (Donahue et al.,
2016; Shen et al., 2019; Trinkle et al., 2021) and orientation
(e.g., curvature and crossing of fibers) of the anatomy (Jbabdi
and Johansen-Berg, 2011). As streamlines are propagated
through the white matter, errors can accumulate with length
and when encountering complex fiber geometries and multi-
direction crossings (Jeurissen et al., 2019). These difficulties
are inherent to the inverse problem that tractography aims
to solve, but there exist strategies that aim to enhance the
anatomical validity of the rendered streamlines. We employ
a white matter model that attempts to account for crossing
geometry and chose to only retain streamlines that terminate
in gray matter (Smith et al., 2012). Additionally, we have
further attempted to mitigate the spatial bias at the level of
MRI acquisition, by adjusting voxel size to roughly scale with
the brain volume for each mammal. Thus, the streamline
algorithm should propagate through white matter with a similar
number of steps, regardless of the real-world size of the brain.
Further validations of the acquisition strategies can be found in
Assaf et al. (2020). Streamline weights were normalized by the
geometric mean volume of its termination nodes, to account for
potential size differences of nodes within the randomly rendered
parcellations for each mammal. At the level of network analysis,
we employed a common edge-density threshold to demonstrate
that the obtained results were not simply byproducts of density
differences between species.

The MaMI database presents a unique opportunity to assess
brain network commonalities and differences across mammals
(Suárez et al., 2022), and to ask questions about what rules might
govern the topology of brains across varying sizes and layouts.
A key feature of brain networks is their spatial embedding
(Bullmore and Sporns, 2012; Stiso and Bassett, 2018), often
quantified by models estimating the probability of an edge
existing over fiber or Euclidean distance. Spatial embeddedness
can be operationalized and modeled with a power law
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(Betzel et al., 2016) or with an exponential decay function
(Ercsey-Ravasz et al., 2013; Oh et al., 2014; Horvat et al., 2016;
Theodoni et al., 2022). Here, we adopted both approaches in a
computational generative model and we conclude that for the
purposes of estimating a rank ordering of spatial embeddedness,
the two models converge to highly similar trends using the
MaMI data (Supplementary Figure 7). However, the present
analyses by themselves do not support the veracity of one
model over another. In future work, the MaMI database could
serve as a resource for directly comparing spatial embedding
models for brain networks. Along these lines, future work
could also focus on the estimation of connectivity magnitude
(i.e., edge weight), given spatial embeddedness. The present
generative modeling analysis is limited to the use of binary brain
networks. This approach could be expanded to further model
edge weight distributions, such as in the weighted stochastic
block model (Faskowitz et al., 2018), which might interact
with the spatial embeddedness or position of network nodes.
Overall, the present manuscript demonstrates that differential
spatial embedding does not completely explain the relationships
between brain network and phylogenetic distances. The topic
of spatial embedding remains an important area for future
research, especially in the context of brain evolution.

Conclusion

To conclude, we compared brain networks from over 100
unique mammalian species and demonstrate how comparing
these networks can relate to both taxonomic divisions and
phylogenetic distance between mammals. Not only are within-
order distances smaller than between-order distances, but
these network distances positively correlate with estimated
phylogenetic distances as well. By comparing imaging-
derived brain network information and DNA-sequence-based
phylogenetic information, our analyses span vastly different
data modalities. This study paves the way for future research on
linking specific topological configurations with differences in
species-level traits.
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