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Multi-slice (MS) super-resolution reconstruction (SRR) methods have been

proposed to improve the trade-o� between resolution, signal-to-noise ratio

and scan time in magnetic resonance imaging. MS-SRR consists in the

estimation of an isotropic high-resolution image from a series of anisotropic

MS images with a low through-plane resolution, where the anisotropic

low-resolution images can be acquired according to di�erent acquisition

schemes. However, it is yet unclear how these schemes compare in terms of

statistical performance criteria, especially for regularized MS-SRR. In this work,

the estimation performance of two commonly adopted MS-SRR acquisition

schemes based on shifted and rotated MS images respectively are evaluated in

a Bayesian framework. The maximum a posteriori estimator, which introduces

regularization by incorporating prior knowledge in a statistically well-defined

way, is put forward as the estimator of choice and its accuracy, precision,

and Bayesian mean squared error (BMSE) are used as performance criteria.

Analytic calculations as well as Monte Carlo simulation experiments show that

the rotated scheme outperforms the shifted scheme in terms of precision,

accuracy, and BMSE. Furthermore, the superior performance of the rotated

scheme is confirmed in real data experiments and in retrospective simulation

experiments with and without inter-image motion. Results show that the

rotated scheme allows regularized MS-SRR with a higher accuracy and

precision than the shifted scheme, besides being more resilient to motion.

KEYWORDS

magnetic resonance imaging, super-resolution, optimal experimental design,

Bayesian estimation, image reconstruction
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1. Introduction

Multi-slice (MS) super-resolution reconstruction (SRR)

methods have been proposed to improve the inherent trade-off

between spatial resolution, signal-to-noise ratio (SNR), and scan

time in magnetic resonance imaging (MRI) (Greenspan, 2008;

Plenge et al., 2012; Poot et al., 2012; Van Dyck et al., 2020; Askin

Incebacak et al., 2021; Vis et al., 2021) and to replace direct 3D

acquisitionmethods when these are not effective or possible, as is

often the case, for example, in T2-weighted imaging (Greenspan,

2008; Plenge et al., 2012). MS-SRR consists in estimating a

3D isotropic high-resolution (HR) image, hereafter referred to

as MS-SRR image, from a series of anisotropic MS images

with a low through-plane resolution, where each of the low

resolution MS images is acquired in a distinct fashion to ensure

that the acquired dataset contains complementary resolution

information about the HR image to be reconstructed (Van Reeth

et al., 2012).

Two MS-SRR acquisition strategies are commonly applied

that have been demonstrated to fulfill this requirement.

According to these strategies, the MS images are acquired with

(i) sub-voxel shifts in the through-plane direction (Greenspan

et al., 2002), (ii) slice orientations rotated around a common

frequency (Shilling et al., 2008, 2009) or phase-encoding axis

(Poot et al., 2012; Van Steenkiste et al., 2015, 2016). These

acquisition strategies were first compared in the same works in

which the MS-SRR rotated acquisition scheme was proposed

(Shilling et al., 2008, 2009). In Shilling et al. (2009), the shifted

and rotated MS-SRR acquisition schemes were compared in

terms of the mean squared error (MSE) and sharpness of the

MS-SRR image using simulation and real data experiments,

respectively. In these experiments, iterative algorithms based

on the projection onto convex sets (POCS) method (Stark

and Oskoui, 1989) were adopted that converge to a Maximum

Likelihood solution of the non-regularized MS-SRR problem.

Results with the rotated scheme showed a sharper MS-SRR

image with a lower MSE than the shifted scheme. However,

since MS-SRR estimation involves solving an ill-conditioned

inverse problem, unregularized estimators, although unbiased,

often have an unacceptably high variance. Furthermore, when

unregularized estimators are used, small modeling errors may

lead to reconstruction artifacts that prevent the MS-SRR image’s

diagnostic use (Khattab et al., 2020). These artifacts can be

minimized by regularizing theMS-SRR problem, as qualitatively

shown by Shilling et al. (2008). Nevertheless, up to now, to

the authors’ knowledge, no statistical evaluation of MS-SRR

acquisition strategies has been performed that takes account of

the effect of regularization.

In this paper, a Bayesian framework is proposed that allows

such an evaluation. Analytical expressions are derived for the

accuracy, precision, and Bayesian mean squared error (BMSE)

of the maximum a posteriori (MAP) estimator of the MS-SRR

image, where the MAP estimator is put forward since it imposes

regularization by incorporating prior knowledge of the MS-SRR

image in a statistically well-defined way (Kay, 1993). The derived

measures are then used as performance criteria to evaluate

and compare the two MS-SRR acquisition strategies described

above. The results of this evaluation are validated in Monte

Carlo simulations and real data experiments. Furthermore,

the impact of patient motion on the estimation performance

of the acquisition protocols is investigated with retrospective

simulations. The proposed analysis in a Bayesian framework,

which is novel in super-resolution reconstruction, aims to

pave the way toward optimal experiment design that allows to

determine the optimal MS-SRR image acquisition strategy on

a rigorous statistical basis. A preliminary version of this study,

based on analytical calculations and numerical simulations only,

was published as a proceedings paper (Nicastro et al., 2021).

2. Materials and methods

2.1. Theory

2.1.1. MS-SRR forward model

Let r ∈ RNr×1 represent the noiseless HR magnitude image

to be reconstructed, withNr the number of voxels. Furthermore,

let sn ∈ RNs×1, with n = 1, ...,N, be the n-th noiseless MS

magnitude image, consisting of Ns voxels with an anisotropic

voxel-size characterized by the anisotropy factor (AF), which is

defined as the ratio of the through-plane resolution to the in-

plane resolution. Next, let θn = (txn , tyn , tzn ,φxn ,φyn ,φzn ) be a

rigid transformation parameter vector, where txn , tyn , tzn are the

translation parameters, expressed in mm, and φxn ,φyn ,φzn the

rotation angles around axis x, y, and z, respectively, expressed in

degrees (◦), with the center of rotation matching the center of

the image. Then, sn can be modeled as:

sn(r) = DBM(θn)r, (1)

with M ∈ RNr×Nr , B ∈ RNr×Nr , and D ∈ RNs×Nr

linear operators that describe a geometric transformation,

space-invariant blurring, and down-sampling, respectively. The

motion operator M applies the rigid transformation defined by

θn. The blurring operator B models the point-spread function

(PSF) of the MRI acquisition method. For MS acquisition

methods, the PSF can be assumed separable and therefore

modeled as the product of three 1D PSFs that are applied in

the three orthogonal directions aligned with the MR image

coordinate axes. The 1D PSFs in the in-plane directions

(frequency- and phase-encoding) are modeled by a periodic

sinc while the 1D PSF in the through-plane direction (slice-

encoding) can be well-approximated by a Gaussian function

having a full-width half maximum equal to the slice thickness

(Van Reeth et al., 2012). The down-sampling operator D

decimates the image in the slice-encoding direction by the factor

AF by keeping only every AF-th voxel.
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The MS images can be represented as a matrix-vector

multiplication s(r) = Ar, where s = [sT1 , ..., s
T
N ]

T ∈ RNNs×1

and A = [AT
1 , ...,A

T
N ]

T ∈ RNNs×Nr , with An = DBM(θn) ∈
RNs×Nr . For an efficient implementation of the operators, we

adopted the set of shears transformations method proposed

by Poot et al. (2010).

2.1.2. MAP estimator

Let s̃ ∈ RNNs×1 be the vector containing the voxel intensities

of the acquired MS images. Since these MS images are disturbed

by noise, s̃ is modeled as a random variable. MS-SRR involves

the estimation of the HR image r from the MS images s̃. In

this work, we follow a Bayesian estimation approach, in which

the HR image r to be estimated is viewed as a realization of

a random variable with distribution p(r). This so-called prior

distribution p(r), being the joint distribution of the elements

{ri}Nr
1 of r, summarizes our initial state of knowledge about r

before any images are acquired. After the images s̃ are acquired,

our knowledge about r has increased and is now summarized

by p(r|s̃), which is known as the posterior probability density

function (PDF) of r given s̃. According to Bayes’ theorem, p(r|s̃)

can be expressed as

p(r|s̃) = p(s̃|r)p(r)

p(s̃)
, (2)

where p(s̃|r) is the conditional PDF of s̃ given r and p(s̃) is a

normalization constant. When p(s̃|r) is viewed as a function of

r for a fixed data set s̃, it is called the likelihood function. The

conditional PDF p(s̃|r) of the magnitude images s̃ can be derived

from the MS-SRR forward model described in Equation (1) and

the assumed noise statistics.

Nowadays, parallel imaging is commonly adopted in MRI

clinical practice to reduce scan time, allowing to reconstruct

the magnitude MR image from sub-sampled acquisitions of

the k-space from multiple coils. Generalized autocalibrating

partially parallel acquisitions (GRAPPA) (Griswold et al., 2002)

and sensitivity encoding (SENSE) (Pruessmann et al., 1999) are

the two most often used parallel imaging approaches. When

GRAPPA is adopted in combination with the spatially matched

filter (SMF) technique (Walsh et al., 2000), or when SENSE

is adopted, the reconstructed magnitude images s̃ follow a

Rician distribution (Walsh et al., 2000; Aja-Fernández et al.,

2014). Additionally, when the SNR is larger than 3, the Rician

distribution can be well approximated by aGaussian distribution

(Gudbjartsson and Patz, 1995). Under these assumptions and

assuming all voxel intensities to be statistically independent and

the standard deviation of the noise σ to be temporally and

spatially invariant, p(s̃|r) can be expressed as follows:

p(s̃|r) ∝ exp

(
− 1

2σ 2

∥∥s̃− s(r)
∥∥2
2

)
. (3)

Furthermore, the prior distribution p(r) can be modeled as

a stationary Gaussian Markov random field (MRF) (Bardsley,

2013). This corresponds to the assumption of a multivariate

Gaussian prior of the form:

p(r) ∝ exp

(
−1

2
(r − r)TK−1(r − r)

)
, (4)

which is parameterized by its mean r ∈ RNr×1 and precision

(inverse-covariance) matrix K−1 ∈ RNr×Nr . This precision

matrix, which is sparse and positive definite, encodes statistical

correlations between the intensity of an HR image voxel and

that of its neighboring voxels. Let r∂ i ∈ RNn×1 be the voxel

intensities from the neighborhood surrounding the i-th HR

voxel, where Nn is the number of neighborhood voxels, and

∂ i represents the neighborhood voxels’ indices. Following the

conditional auto-regression approach proposed by Besag (1974),

we first define for each voxel ri its neighborhood conditional

PDF p(ri|r∂ i ) as the conditional PDF of the intensity ri of the

i-th HR voxel given the intensities of its neighboring voxels

r∂ i . Then, we assume all neighborhood conditional PDFs to be

Gaussian and of the form:

p(ri|r∂ i ) ∝ exp


−λ2

2


ri −

∑

j∈∂ i

αjrj



2

 , (5)

where α = {αj}Nn
1 ∈ RNn×1 is the vector of the so-called

field potentials, or regression coefficients. Indeed, it follows from

Equation (5) that the i-th HR image voxel intensity can be

described by an auto-regressive model:

ri =
∑

j∈∂ i

αjrj + ui, (6)

where ui is a sample from a white Gaussian noise process with

variance λ2. Furthermore, it can be demonstrated (Rue and

Held, 2005) that Equation (5) holds if and only if the prior p(r)

takes the form of Equation (4) with:

K
−1
i,j = λ2

{
1, i = j,

−αj j ∈ ∂ i.
(7)

The maximum a posteriori (MAP) estimator r̂ can then

be obtained by maximizing p(r|s̃) with respect to r. Hence, by

combining Equations (2) and (4), we obtain:

r̂ = argmax
r

ln p(r|s̃)

= argmin
r

(
1

2σ 2
‖s̃− Ar‖22 +

1

2
(r − r)TK−1(r − r)

)
. (8)

Note that the MAP estimator (Equation 8) corresponds with

a regularized least squares estimator, which has the following

closed-form solution:

r̂ =
(
σ−2ATA+ K−1

)−1 (
σ−2AT s̃+ K−1r

)
. (9)
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2.1.3. Bayesian MSE

The BMSE of the MAP estimator described by Equation (9)

is proposed as a performance criterion to compare the shifted

and rotated MS-SRR acquisition schemes. Before deriving the

BMSE, let us first define the component-wiseMSE of r̂ for a fixed

value of r as:

MSE (r)j = Es̃|r
[(
r̂ − r

) (
r̂ − r

)T]
j,j
, (10)

with Es̃|r[·] the expectation operator over the conditional PDF

p(s̃|r).
The MSE described by Equation (10) can be decomposed as

the sum of a variance term and a squared bias term (van den Bos,

2007):

MSE (r)j = 6j,j +
[
β (r) βT (r)

]
j,j
, (11)

where 6 ∈ RNr×Nr and β ∈ RNr×1 are the covariance matrix

and the bias vector of r̂, which are element-wise defined as:

6i,j = Es̃

[(
r̂ − Es̃[r̂]

) (
r̂ − Es̃[r̂]

)T]
i,j

(12)

and

β (r)j = Es̃[r̂]j − rj, (13)

respectively. It can be shown straightforwardly that for the MAP

estimator defined in Equation (9), the variance component and

the bias component of the MSE assume the following closed-

form expressions:

6 = σ−2QATAQ, (14)

β (r) = QK−1 (r − r) , (15)

with

Q =
(
σ−2ATA+ K−1

)−1
. (16)

Next, the component-wise BMSE of r̂ is obtained as (Kay,

1993; Ben-Haim and Eldar, 2009):

BMSEj ≡ Er,s̃

[(
r̂ − r

) (
r̂ − r

)T]
j,j

= Er

[
Es̃|r

[(
r̂ − r

) (
r̂ − r

)T]]
j,j
= Qj,j, (17)

with Er,s̃[·], Er[·], and Es̃|r[·] the expectation operators over the

joint PDF p(r, s̃) = p(s̃|r)p(r), the prior distribution p(r), and the
conditional PDF p(s̃|r), respectively. Note that it follows from

Equations (10), (11), and (17) that, similar to theMSE, the BMSE

can be decomposed into two terms:

BMSEj = Er [6]j,j + Er

[
β (r)βT (r)

]
j,j

= 6j,j + Er

[
β (r) βT (r)

]
j,j
, (18)

where the first term corresponds with the variance (Equation 12)

of the MAP estimator (Equation 9), which does not depend on r,

and the second term corresponds with the expected value of the

squared bias of the MAP estimator, where the expected value is

taken over the prior distribution p(r). It can be shown that this

second term assumes the following closed-form expression:

Er

[
β (r) βT (r)

]
= QK−1Q. (19)

2.2. MS-SRR protocols comparison

The comparisonwas conducted taking into account different

combinations of AF and numbers of acquired MS images N for

the MS-SRR protocols, but keeping the same scan time for all

the experiments. Assuming an interleaved fast spin-echo (FSE)

protocol, the acquisition time tacq is given by (Bernstein et al.,

2004):

tacq ≈ N · TR · ⌈ FOVse

PIacc · ETL · resse
⌉

= N · TR · ⌈ FOVse

PIacc · ETL · resip · AF
⌉, (20)

where TR is the repetition time, ⌈·⌉ is the round-up operator,

FOVse is the field of view in the slice-encoding direction, PIacc

is the parallel imaging acceleration factor, ETL the echo-train

length, and resse the slice thickness, where AF = resse/resip,

with resip being the in-plane voxel size. TR, FOVse, PIacc,

ETL, and resip were kept fixed for all protocols. Furthermore,

the ratio N/AF was set equal to 2. This choice ensures that

all acquisition protocols require the same scan time, while at

the same time the MS-SRR estimation problem is not under-

determined (N/AF ≥ 1) (Shilling et al., 2009), and the k-space

is efficiently sampled when the MS images are acquired with the

rotated scheme
(
N > π

2 AF
)
(Van Steenkiste et al., 2015).

The acquisition protocols included in the comparison

are summarized in Table 1. An HR protocol representing a

conventional HR MS acquisition with AF = 1 was included

as a reference and repeated twice to equal the scan time of

the SR protocols. In the SRrot protocols, the acquired images

were rotated around the phase-encoding axis so that the phase-

encoding axis is the same for all the MS images. The rigid

transformation parameter vector for the n-th acquired MS

image assumes the form θn = [0, 0, 0, 0,φyn , 0] and θn =
[0, 0, tzn , 0, 0, 0] for the SRrot and SRsh protocols, respectively.

For the SRrot protocols, the rotation angles around the phase-

encoding axis φy = {φyn }Nn=1 were equidistantly chosen in

the open interval [0, 180), with steps of 180/N, whereas, for

the SRsh protocols, the shifts along the slice-encoding direction

tz = {tzn }Nn=1 were equidistantly chosen in the closed interval

[−AF (N − 1)/(2N), AF (N − 1)/(2N)], with steps of AF/N.

The acquisition geometries of the MS-SRR shifted and rotated
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TABLE 1 MS-SRR acquisition protocols included in the comparison.

Protocols AF N tz, φy σsim[10
−3] σ̂ [10−3] ŜNR

∗
tacq/N tacq

HR∗∗ 1 2 – 27.02 27.02 7.16 4m 24s 8m 48s

SRsh2 2 4 tz = [−0.75,−0.25, 0.25, 0.75] mm 13.51 – – – –

SRsh3 3 6 tz = [−1.25,−0.75,−0.25,

0.25, 0.75, 1.25] mm 9.01 – – – –

SRsh4 4 8 tz = [−1.75,−1.25,−0.75,−0.25,

0.25, 0.75, 1.25, 1.75] mm 6.75 7.23 26.74 1m 39s 13m 12s

SRrot2 2 4 φy = [0, 45, 90, 135]◦ 13.51 – – – –

SRrot3 3 6 φy = [0, 30, 60, 90, 120, 150]◦ 9.01 – – – –

SRrot4 4 8 φy = [0, 22.5, 45, 67.5,

90, 112.5, 135, 157.5]◦ 6.75 7.96 24.29 1m 39s 13m 12s

Each MS-SRR acquisition protocol is defined by the transformation parameter vector tz = {tzn }Nn=1 or φy = {φyn }Nn=1 , where tzn describes a translation in the slice-encoding axis and φyn

describes a rotation around the phase-encoding axis, respectively, applied to the n-th MS image. Furthermore, the standard deviation of the noise used in both the computation of the

BMSE-based metrics and in the Monte Carlo simulation experiments σsim , the standard deviation of the noise σ̂ and the ŜNR value estimated from the acquired MS images and used in

the retrospective simulation experiments, the acquisition time per MS image tacq/N and the total acquisition time tacq are reported. The protocols adopted in the real data experiments are

indicated in bold.

*ŜNR values were calculated using the white matter tissue as a reference.

**The MS images were acquired with a limited FOV in the slice-encoding direction due to hardware constraints.

FIGURE 1

Acquisition geometries of the MS-SRR shifted and rotated schemes: AF = 2, N = 4, and resip = 1 mm.

schemes for the case of AF = 2, N = 4, and resip = 1 mm are

represented in Figure 1.

2.2.1. MS-SRR protocols comparison in terms
of BMSE

A simplified 2D framework is proposed to compare the MS-

SRR protocols in terms of the BMSE and its separate squared

bias and variance components by exploiting the inherent

1D acquisition geometry of the shifted scheme and the 2D

acquisition geometry of the rotated scheme (Figure 1). The

proposed framework allows to evaluate the MS-SRR problem in

2D by restricting the analysis to a single slice along the phase

encoding direction and neglecting the blurring component in

the same direction. This simplification is expected to reduce the

computational complexity and memory consumption without

influencing the results of our comparison, since this blurring

affects all protocols equivalently.

2.2.1.1. 2D training and validation datasets

The prior hyperparameters α, r, and λ, introduced in

Section 2.1.2, were learned from a training dataset composed

of 100 noiseless HR 2D T2-weighted magnitude brain images

of resolution 1 × 1 mm2 and size 217 × 217. These images

were simulated from 10 of the 20 3D anatomical brain models

available in the Brainweb database (Cocosco et al., 1997) as

follows. Each anatomical model consists of a set of discrete

3D tissue membership volumes, one for each tissue class:
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background, cerebrospinal fluid, gray matter, white matter, fat,

muscle, skin, skull, blood vessels, connective tissue, dura mater,

and bone marrow. T2-weighted brain volumes were generated

from the 3D anatomical models by applying the spin-echo decay

model (Jung and Weigel, 2013):

ri = ρi

(
1− e

− TR
T1i

)
e
− TE

T2i , (21)

where ri is the i-th voxel intensity, TE is the echo-time, and

ρi, T1i, and T2i are the i-th voxel proton density, longitudinal

relaxation, and transverse relaxation values, fixed for each tissue

to the mean value of its respective distribution at 3T reported

by Sabidussi et al. (2021). TR and TE were independently

sampled for each image within the training dataset from

uniform distributions with ranges [10, 14] s and [80, 120] ms,

respectively. A series of 2D slices of resolution 1 × 1 mm2

was then simulated from three orthogonal acquisition planes

(sagittal, transverse, and coronal), by down-sampling and then

slicing the T2-weighted volumes. The thus obtained images,

representing independent realizations of r, and characterized

each by a unique morphology, orientation and contrast,

compose the 2D training dataset. The same approach was used

to simulate theNv = 100 additional 2D T2-weighted magnitude

brain images that compose the 2D validation dataset from the 10

remaining anatomical brain models.

2.2.1.2. 2D MRF prior hyperparameters

The prior hyperparameters α, r, and λ were estimated

from the image voxels within the 2D training dataset and their

respective 2D neighborhoods of size p × p, with p =
√
Nn. The

parameters α and λ were estimated by solving the Yule-Walker

equations using a least-squares estimator (Eshel, 2011). The

kernel size of the voxel neighborhoods was defined by testing

increasing odd values of p, starting from p = 3, until a stable

estimate of λ was found. We defined the estimate λ̂ of λ to be

stable if the relative difference of λ̂ for the current value of pwith

respect to the value of λ̂ for the previous value of pwas<1%. The

condition was met for p = 11. All the elements of the prior mean

r were set equal to the mean intensity of the images within the

training dataset, thus ensuring the prior is translation-invariant.

2.2.1.3. Quantitative metrics

The BMSE and its separate variance and squared bias

components were computed using the closed-form expressions

introduced in Section 2.1.3. For each acquisition protocol, since

the SNR is expected to increase proportionally with the slice

thickness, the standard deviation of the noise σsim was set to

match σ̂ /AF, where σ̂ is the standard deviation of the noise

estimated from the (pre-processed) MS images acquired in the

real data experiments using the HR protocol. The real data

experiments and the estimation of the standard deviation of

noise σ̂ from the acquiredMS images will be further described in

Section 2.2.3.1. The values of σsim and σ̂ are reported in Table 1.

Voxel-wise BMSE-based metrics were calculated as follows:

BRMSEj =
√
Qj,j, (22)

SDj =
√

σ−2
[
QATAQ

]
j,j, (23)

BRMSBj =
√[

QK−1Q
]
j,j, (24)

where BRMSE ∈ RNr×1, SD ∈ RNr×1, and BRMSB ∈
RNr×1 are the Bayesian Root Mean Squared Error, Standard

Deviation, and Bayesian Root Mean Squared Bias, respectively,

and with K−1 (and hence Q, see Equation 17) defined using

the prior hyper-parameters values estimated as described in

Section 2.2.1.2. In this work, the estimation performance of

different acquisition schemes is compared using the measures

SD and BRMSB to separately quantify their estimation

precision and accuracy, respectively, while the BRMSE, which

incorporates both measures, is put forward as the decisive

performance criterion.

2.2.2. Monte Carlo validation

2.2.2.1. Monte Carlo simulations

Monte Carlo experiments were performed to assess the

generalizability of the BMSE-based metric results to brain

images outside the training dataset (i.e., to ensure that the

estimated prior did not overfit the brain image samples within

the training dataset). To this end, Nv = 100 ground truth 2D

HR images were extracted from a validation dataset generated

as described in Section 2.2.1.1 and composed of brain images

having different morphologies and contrasts than those within

the training dataset.

First, noiseless MS images were simulated for the protocols

HR, SRrot4 and SRsh4 using the MS-SRR forward model

described by Equation (1). Next, the images were corrupted with

additive white Gaussian noise, where the standard deviation of

the noise for each image was chosen to correspond with its

value assumed in the computation of the BMSE-based metrics.

The conjugate gradient (CG) method (Hestenes and Stiefel,

1952) was used to solve the minimization problem described

by Equation (8). The CG method optimization procedure is

initialized at 0 ∈ RNr×1 and stopped when the ratio between

the 2-norm of the derivative of the cost function evaluated at the

current iteration and at the initialization point is <10−4.

2.2.2.2. Quantitative metrics

Monte Carlo estimates of the BMSE and its separate variance

and squared bias components were computed, where the mean

was calculated over Ne = 50 noise realizations for each of
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the Nv = 100 ground truth images included in the validation

dataset, yielding:

B̂MSEj = 6̂j,j +
1

Nv

Nv∑

nv=1

[
β̂

(
r(nv)

)
β̂
T

(
r(nv)

)]
j,j
, (25)

6̂j,j =
1

NeNv

Nv∑

nv=1

Ne∑

ne=1


r̂

(ne,nv)
j − 1

Ne

Ne∑

n′e=1

r̂
(n′e,nv)
j



2

, (26)

β̂
(
r(nv)

)
= 1

Ne

Ne∑

ne=1

r̂(ne,nv) − r(nv), (27)

with r(nv) the nv-th ground truth image, and r̂(ne,nv) the ne-

th MS-SRR estimate of r(nv). Next, the Monte Carlo estimates

of the BMSE-based metrics defined in Equations (22–24) were

computed as:

B̂RMSEj =
√
B̂MSEj, (28)

ŜDj =
√

6̂j,j, (29)

B̂RMSBj =

√√√√√ 1

Nv

Nv∑

nv=1

[
β̂

(
r(nv)

)
β̂
T (

r(nv)
)]

j,j
. (30)

2.2.3. Real data and retrospective simulation
experiments

2.2.3.1. Real data acquisition

Real data experiments were conducted for the acquisition

protocols HR, SRrot4, and SRsh4 on a healthy volunteer after

written informed consent in accordance with local ethics.

The magnitude MS images were acquired in an interleaved

fashion using a T2-weighted 2D FSE sequence on a Siemens

Magnetom Prisma 3T system. TR/TE was set to 12,150/97 ms.

The resolution was 1 × 1 × 1 mm3 for the HR protocol and

1×1×4mm3 for the SRrot4 and SRsh4 protocols. The FOVwas

256× 256× 192 mm3 for the SR protocols, while it was reduced

to 256 × 256 × 128 mm3 for the HR protocol, since 128 was

the maximum number of slices for acquisition allowed by the

system. The acquisition time for a single MS image tacq/N and

the total acquisition time tacq for all the protocols are reported

in Table 1. The HR protocol scan time is approximately equal to

2/3 of the SR protocols scan time, as only 2/3 of the field of view

of the SR protocols is covered. GRAPPA with an acceleration

factor of 2 was adopted in combination with the SMF technique,

which is provided as “adaptive combine” on the employed MRI

scanner. Two repetitions of the experiment (test-retest) were

performed for each protocol.

2.2.3.1.1. Image preprocessing

The preprocessing stage is composed of two steps:

(i) intensity-normalization of the acquired MS images, (ii)

correction of the acquired MS images for inter-image motion.

The purpose of the first step is to allow the use of the

prior hyper-parameters values estimated from the synthetic

training dataset on the acquired MR data. To this end, the

voxel intensities of the MS-SRR image estimated from the

acquired MS images have to be in the same range as the

voxel intensities of the images within the synthetic training

dataset. This can be achieved by normalizing the intensity of

the acquired MS images, since the MS-SRR image preserves the

intensity range of the images from which it is estimated. The

intensity-normalization was performed using the white matter

(WM) tissue as a reference. Four regions of interest (ROIs)

were selected in the WM region of each of the acquired MS

images for all the protocols. The mean WM intensity value was

computed by averaging all the voxel intensities within the ROIs.

A scaling factor was then applied so that the so-computed mean

WM intensity matched the WM intensity value predicted by

the model (Equation 21) used to generate the images within the

training dataset. Examples of the intensity-normalized acquired

MS images are represented in Figure 2.

In the second step, all the acquired MS images from both the

test and retest dataset were jointly corrected for rigid motion by

using an iterative approach, presented in Figure 3. First, a MS-

SRR image was estimated from all theMS images simultaneously

by solving Equation (8) using the CG method, where the

initialization point and stopping criterion were set as in Section

2.2.2. Then, a multi-scale 3D rigid registration between each MS

image and the MS-SRR image was performed using the function

“mrregister” from the MRtrix3 toolbox (RRID : SCR_006971;

Tournier et al., 2019), and the affine transformation matrix of

each MS image was updated. The procedure is iterated until the

condition ||r̂i− r̂i−1||2 < tol(1+||r̂i||2) was met, where r̂i is the

MS-SRR image estimated from all the acquiredMS images in the

i-th iteration, || · ||2 is the 2-norm operator, and the optimization

tolerance tol was set to 0.01.

2.2.3.1.2. Standard deviation of the noise and SNR

For each pair of pre-processed test-retest MS images, the

standard deviation of the noise σn and the signal-to-noise ratio

SNRn were estimated for each protocol from the WM ROIs

previously selected in the image pre-processing step as described

in Section 2.2.3.1.1. The “difference method” described in

Dietrich et al. (2007) was applied, yielding:

σ̂n = 1√
2
σdiffn

, (31)

ŜNRn =
1
2µsumn

σ̂n
, (32)
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FIGURE 2

Examples of intensity-normalized acquired MS images: views from orthogonal planes of one of the MS images from the test dataset, for each

protocol. The MR image coordinate system is reported in the first column, where FE, PE, and SE, represent the frequency-encoding (x-axis),

phase-encoding (y-axis), and slice-encoding (z-axis) directions, respectively. For each MS image, the corresponding rigid transformation

parameter vector θ is shown.

FIGURE 3

Workflow of the model-based iterative registration algorithm for joint motion correction of the MS images.
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with σdiffn
the standard deviation of the n-th difference image

in the ROIs and µsumn the mean signal intensity value of the

n-th sum image in the ROIs. Finally, the N estimates of the

noise standard deviation and SNR were averaged to obtain

single overall estimates σ̂ and ŜNR for each protocol, which are

reported in Table 1.

2.2.3.1.3. 3D training dataset

The 3D training dataset, composed of 100 HR 3D T2-

weighted brain images, was simulated from the 20 anatomical

brain models available in the Brainweb database. Similarly to

as described in Section 2.2.1.1 for the 2D case, T2-weighted

brain volumes with different contrasts were generated from the

anatomical models according to Equation (21) and subsequently

down-sampled to a resolution of 1× 1× 1 mm3.

2.2.3.1.4. 3D MRF prior hyperparameters

The prior hyperparameters for the real data experiments

were learned from a training dataset composed of 100 noiseless

HR 3D T2-weighted magnitude brain images of resolution 1 ×
1 × 1 mm3. The generation of this 3D training dataset is

described in Section 1 of the Supporting Information. The prior

hyperparameters α, λ, and r were estimated from the image

voxels within the 3D training dataset and their respective 3D

neighborhoods using the approach described in Section 2.2.1.2.

For the estimation of α and λ, a neighborhood size of 11×11×11

was selected, again using the same approach as in Section 2.2.1.2.

2.2.3.2. Retrospective simulation experiments

The real data experiments described in Section 2.2.3 were

replicated in retrospective simulations, using as ground truth

the MS-SRR image estimated from all the pre-processed

acquired MS images from all the protocols simultaneously.

The acquisition process was simulated for the protocols HR,

SRrot4 and SRsh4 using theMS-SRR forward model in Equation

(1). The simulated images were corrupted with Rician noise.

Additionally, patient motion was simulated as abrupt inter-

image motion by modifying the rigid transformation parameter

vector of the n-th MS image as follows (Ramos-Llordén et al.,

2017):

θ ′n = θn + dn, (33)

where θn is the original rigid transformation parameter vector,

θ ′n is the motion-corrupted rigid transformation parameter

vector, and dn ∈ R6×1 is a vector-valued, zero mean, Gaussian

random variable with covariance matrix C = σ 2
motI, with

σmot the standard deviation of each of the elements of dn and

I ∈ R6×6 the identity matrix. Different levels of motion were

simulated by sampling σmot in the closed interval [0, 1]mm/◦,
with steps of 0.01mm/◦ between [0, 0.1], which will be referred

to as the minor motion range, and with steps of 0.1 between

(0.1, 1], which will be referred to as the major motion range,

where σmot = 0mm/◦ represents the motion-free scenario. The

standard deviation of the noise and the prior hyper-parameters

were set as in the real data experiments.

2.2.3.3. Quantitative metrics

The MS-SRR images were estimated for each protocol and

for each repetition of the experiment (Ne = 2, test-retest)

in both real data and retrospective simulation experiments by

solving Equation (8) using the CG method from the acquired

and retrospectively simulated MS images, respectively, where

the initialization point and stopping criterion were set as in

Section 2.2.2. In the retrospective simulations, the MSE and its

separate variance and squared bias components were estimated,

where the mean was calculated over Ne = 2 repetitions of the

experiment:

M̂SEj = 6̂j,j +
[
β̂ (r) β̂

T
(r)

]
j,j
, (34)

6̂j,j =
1

Ne

Ne∑

ne=1


r̂(ne) − 1

Ne

Ne∑

n′e=1

r̂(n
′
e)



2

, (35)

β̂ (r) = 1

Ne

Ne∑

ne=1

r̂(ne) − r, (36)

with r the ground truth image, and r̂(ne) the ne-th MS-SRR

estimate of r. MSE-based metrics were computed as:

R̂MSEj =
√
M̂SEj, (37)

ŜDj =
√

6̂j,j, (38)

R̂MSBj =
√[

β̂ (r) β̂
T

(r)

]

j,j
. (39)

where RMSE ∈ RNr×1, and RMSB ∈ RNr×1 are the Root Mean

Squared Error, and RootMean Squared Bias, respectively.RMSE

is a combined measure of accuracy and precision, while RMSB

quantifies the estimation accuracy only. The median RMSE,

SD, and RMSB values were computed from the voxel values of

each respective map within a brain mask. The brain mask was

calculated using the Brain Extraction Tool (BET) of the FSL

toolbox (RRID : SCR_002823; Woolrich et al., 2009) from the

MS-SRR image estimated from all the pre-processed MS images

acquired adopting the HR protocol simultaneously. In the real

data experiments, only the estimation precision SD could be

assessed due to the absence of a ground truth.
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FIGURE 4

Boxplots of BRMSE, SD, and BRMSB computed for each protocol inside an ROI (left) and the respective parametric maps (right) for the protocols

HR, SRrot4, and SRsh4. For each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th

percentiles, respectively, and the outliers are plotted individually using the “+” marker symbol (MATLAB, 2020). Each box has a sample size of

35,629 voxels. For each map, the median value computed inside an ROI is reported. The ROI was defined as the part of the field of view

common to all the acquired images of all the acquisition protocols, which corresponds with the area inside the circle plotted in the maps.

3. Results

3.1. MS-SRR protocols comparison in
terms of BMSE

The BRMSB, SD, and BRMSE maps computed

using the closed-form expressions (Equations 22–24)

and their distributions inside an ROI are reported

in Figure 4, where the ROI was defined as the part

of the FOV that is common to all the MS images of

all the MS-SRR acquisition protocols included in the

comparison. The median values were computed for each

distribution and reported below the respective maps and in

Table 2.

BRMSB quantifies the estimation accuracy of the protocols,

where a lower BRMSB value corresponds with a higher

estimation accuracy. It follows from Figure 4 that the SRrot

protocols provide a slightly lower BRMSB value than the

reference protocol, whereas the BRMSB value provided by the

SRsh protocols is substantially larger than that of the HR

reference protocol. For the SRsh protocols, BRMSB increases

for increasing values of AF up to a factor of 2.7 difference

between SRsh4 and HR, while it slightly decreases with AF for

the SRrot protocols. SD quantifies the estimation precision of

the protocols, where a lower SD value corresponds with a higher

precision. Both the SRrot and SRsh protocols provide a lower

SD than the reference protocol HR, with the SRrot protocols

outperforming the SRsh protocols. For the SRrot protocols, the

SD decreases for increasing values of AF up to a factor of 1.7

difference between SRrot4 and HR, while it slightly increases

with AF for the SRsh protocols. On balance, the accuracy

and precision components together result in higher BRMSE

values for the SRsh protocols and substantially lower BRMSE

values for the SRrot protocols, compared to the reference

protocol HR. For the SRsh protocols, BRMSE increases for

increasing values of AF up to a factor of 1.7 difference between

SRsh4 and HR. For the SRrot protocols, on the other hand,

BRMSE decreases with AF up to a factor of 1.5 difference

between SRrot4 and HR. In conclusion, the SRrot protocols

outperform the competing protocols in terms of BRMSE, SD,

and BRMSB.

3.2. Monte Carlo validation

Monte Carlo estimates of the BMSE-based metrics

computed using the expressions in Equations (25–

30) for the protocols HR, SRrot4, and SRsh4 are

presented in Figure 5. The median values computed

inside the ROI are reported below the maps as well

as in Table 2, where the ROI corresponded with the

one visualized in Figure 4. These median values are

in agreement with the median values computed from

the BRMSB, SD, and BRMSE maps that were reported

in Section 3.1.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.1044510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Nicastro et al. 10.3389/fnins.2022.1044510

TABLE 2 Quantitative comparison results for the HR, SRsh4, and

SRrot4 protocols.

HR SRsh4 SRrot4

Analytical calculations (2D)

BRMSB 0.0111 0.0288 0.0095

SD 0.0163 0.0139 0.0095

BRMSE 0.0197 0.0320 0.0134

Monte Carlo simulations (2D)

B̂RMSB 0.0113 0.0278 0.0097

ŜD 0.0160 0.0136 0.0093

B̂RMSE 0.0198 0.0310 0.0135

Real data experiment (3D)

ŜD 0.0121 0.0148 0.0084

Retrospective simulations—no motion (3D)

R̂MSB 0.0167 0.0262 0.0138

ŜD 0.0062 0.0047 0.0043

R̂MSE 0.0197 0.0272 0.0156

Retrospective simulations—minor motion (3D)

R̂MSB 0.0184 0.0357 0.0158

ŜD 0.0100 0.0145 0.0076

R̂MSE 0.0245 0.0462 0.0203

Retrospective simulations—major motion (3D)

R̂MSB 0.0584 0.1725 0.0622

ŜD 0.0377 0.1396 0.0371

R̂MSE 0.0855 0.2854 0.0850

The first section of the table reports the median values of the BMSE-based metrics,

computed adopting the respective closed forms derived in Section 2.1.3. The second

section reports the medianMonte Carlo estimates values of the BMSE-basedmetrics. The

third section reports the median SD values estimated from real data experiments. The last

section reports the median RMSB, SD, and RMSE values estimated from retrospective

simulations experiments for different levels of inter-image motion (no motion: σmot = 0,

minor motion: σmot = 0.1, and major motion: σmot = 1). The lowest value for each

metric, which indicates the protocol with the best estimation performance in terms of

that metric, is reported in bold.

3.3. Real data and retrospective
experiments

3.3.1. Real data experiments

Orthogonal views of the MS-SRR image estimated for each

protocol from the acquired MS images of the first repetition of

the experiment are reported in Figure 6. Reconstruction artifacts

in the slice-encoding direction are noticeable in the MS-SRR

image estimated from the shifted MS images. The SD maps

calculated for each protocol from the MS-SRR images of the

two repetitions of the experiment are reported in Figure 7 and

Table 2. The median SD was computed from the voxels inside a

brain mask for each protocol, computed as described in Section

2.2.3.3. It follows from Figure 7 that SRrot4 provides the highest

estimation precision among the acquisition protocols included

in the comparison, followed by the HR protocol and the SRsh4

protocol, in descending order.

3.3.2. Retrospective simulation experiments

Orthogonal views of the MS-SRR image estimated for each

protocol from the retrospectively simulated MS images are

reported in Figure 8 in the absence of inter-image motion

(σmot = 0 mm/◦) and in the presence of minor (σmot = 0.1

mm/◦) and major (σmot = 1 mm/◦) levels of inter-image

motion. In the absence of inter-image motion, the MS-SRR

images from the HR, SRsh4, and SRrot4 protocols are visually

comparable. In the presence of a minor level of inter-image

motion, inter-slice intensity artifacts can be found in the SRsh4

MS-SRR image, whereas the HR and SRrot4 MS-SRR images

are not visibly impacted. In the presence of a major level of

inter-image motion, the motion artifacts for the SRsh4 MS-

SRR image become so severe that they impede the delineation

of the underlying brain structures. Inter-slice intensity artifacts

and blurring artifacts caused by motion also start to appear

in the HR and SRrot4 MS-SRR images, respectively, but they

are not as severe as the artifacts present in the SRsh4 MS-SRR

image. Figure 9 shows the median values within a brain mask

of the RMSB, SD, and RMSE maps that were computed for

the protocols HR, SRsh4, and SRrot4 in the absence of motion

and for the minor and major motion ranges. In the absence of

inter-image motion, the relative performance of the different

protocols with respect to each other in terms of RMSB, SD

and RMSE is as predicted by the BMSE-based analysis that

was reported in Section 3.1. However, in the minor motion

range, the estimation precision for SRsh4 significantly decreases

(i.e., SD increases), leading SRsh4 to be outperformed by HR

in terms of estimation precision for σmot ≥ 0.04 mm/◦, as
observed in the real data experiments. The SRrot4 protocol

showed instead consistent performance in the minor motion

range, outperforming SRsh4 and HR in terms of the RMSB, SD,

and RMSE. Finally, in the major motion range, SRrot4 showed

a lower estimation accuracy (i.e., higher RMSB) than the HR

protocol for σmot ≥ 0.3 mm/◦, whereas SRrot4 kept showing a

higher estimation precision (i.e., lower SD) than HR, leading to

overall comparable results for SRrot4 and HR in terms of RMSE.

4. Discussion

In this work, a Bayesian framework was proposed to

compare two commonly adoptedMS-SRR acquisition strategies,

i.e., the rotated scheme and the shifted scheme, in terms of their

estimation performance. This comparison is novel since it allows

to include the effect of prior knowledge-based regularization,

thereby extending previous work of Shilling et al. (2008, 2009),

which focused on non-regularized MS-SRR.

It was shown that the MAP estimator provides higher

accuracy and precision, and a lower MSE when applied to

data acquired with the rotated scheme than when applied

to data acquired with the shifted scheme or the reference

scheme that consists of a conventional HR MS acquisition,
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FIGURE 5

Monte Carlo simulation results for the protocols HR, SRrot4, and SRsh4. In the first two rows, r(nv ), s̃(ne ,nv )n , and r̂
(ne ,nv ) represent the nv-th image

from the validation dataset, the n-th noise-corrupted MS image simulated using the nv-th image from the validation dataset as ground truth in

the ne-th repetition of the experiment, and the MS-SRR image estimated from s̃
(ne ,nv ), respectively. In the last three rows, the Monte Carlo

estimates B̂RMSB, ŜD, and B̂RMSE are shown. For each map, the median value computed inside an ROI is reported. The ROI was defined as the

part of the field of view common to all the acquired images of all the acquisition protocols, which corresponds with the area inside the circle

plotted in the maps.

where the acquisition time for all schemes was equal. This

finding was based on analytical calculations of BMSE-based

metrics (cfr. Figure 4 and Table 2), which were confirmed by

Monte Carlo simulations (cfr. Figure 5), and was supported

by real-data experiments (cfr. Figures 6, 7 and Table 2).

Furthermore, both real data experiments and retrospective

simulation results highlighted a higher resilience to motion

for the rotated and reference schemes compared to the shifted

scheme (cfr. Figures 8, 9).

A possible explanation for the superior performance of

the rotated scheme compared to the shifted scheme is that

it allows a more effective sampling of the k-space. Indeed,

since a rotation in image space results in a rotation in the

frequency domain, the narrow slice selection band is oriented
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FIGURE 6

Real data results: MS-SRR images. The views from orthogonal planes of the MS-SRR images estimated from the test dataset for each protocol

are shown.

FIGURE 7

Real data results: SD maps. The views from orthogonal planes of the SD map for each protocol are shown, and the median value computed

inside a brain mask for each SD map is reported.
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FIGURE 8

Retrospective simulation results: MS-SRR images. The views from orthogonal planes of the ground truth image, which corresponds to the

MS-SRR image estimated from all the pre-processed acquired MS images from all the protocols simultaneously, and the MS-SRR images

estimated from the test dataset for each protocol in the absence of motion (σmot = 0 mm/◦) and in the presence of motion levels equal to the

upper bounds of the minor (σmot = 0.1 mm/◦) and major (σmot = 1 mm/◦) motion ranges are shown.
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FIGURE 9

Retrospective simulation results: R̂MSB, ŜD, and R̂MSE median values. The median values were calculated for each parameter from the respective

parameter map within a brain mask in the absence of motion (σmot = 0) and in the presence of minor (0 mm/◦ ≤ σmot ≤ 0.1 mm/◦) and major

(0.1 mm/◦ ≤ σmot ≤ 1 mm/◦) levels of inter-image motion. The bottom row shows a zoomed plot corresponding to the indicated area.

in a different direction of the frequency spectrum of the MS-

SRR image to be reconstructed for each MS image. As a result,

the dataset acquired with the rotated scheme contains high

spatial frequencies in all dimensions. Conversely, when the

shifted scheme is adopted, each MS image samples the same

part of the k-space, and the MS-SRR estimation relies only

on recovering the aliased frequency content by increasing the

sampling density in the slice-encoding direction. Additionally,

the superior performance of the rotated scheme compared to the

reference scheme confirms the conclusions of Plenge et al. (2012)

that, by adopting the rotated MS-SRR scheme, it is possible to

achieve an improved trade-off between acquisition time, spatial

resolution, and estimation precision compared to MS protocols

based on HR acquisitions.

The quantitative agreement among the median values of

the BMSE-based metrics and their respective Monte Carlo

estimates observed in Table 2 suggests that the statistics of the

images of the validation dataset were well described by the prior

distribution whose parameters were estimated from the images

of the training dataset, even though the images of the validation

dataset may have a different contrast and morphology than the

images of the training dataset. This shows that the validity of

the BMSE-based analysis in this work extends to a more general

class of brain images than those used for training. It should

be noted that the visual differences between the BRMSB and

BRMSE maps in Figure 4 and their respective Monte Carlo

estimates B̂RMSB and B̂RMSE in Figure 5 were expected since

the brain images within the validation dataset represent only a

specific subset of the images described by the prior. Indeed, the

B̂RMSB and B̂RMSE maps visually resemble the superposition

of brain slices from the sagittal, axial, and transversal planes that

compose the validation dataset.

Contrary to what was predicted by the BMSE-based metrics,

a lower estimation precision for the shifted scheme was

found compared to the reference scheme in the real data

experiments results. This discrepancy can be attributed to the

high sensitivity to motion of the shifted scheme compared

to the other acquisition schemes. Indeed, we have observed

from the retrospective simulations how even a small amount

of motion (e.g., residual uncorrected motion among the MS

images after the registration step) can lead to a significant

decrease in precision (i.e., increase in SD) for the shifted

scheme, which in turn leads the reference scheme to outperform

the shifted scheme in terms of estimation precision (Figure 9,

σmot ≥ 0.04). Additionally, the retrospective simulations

show the shifted scheme MS-SRR images to be more severely

impacted by motion artifacts than the rotated and reference

schemes MS-SRR images, especially in the presence of major

levels of motion (Figure 8). These motion artifacts can be

mitigated by increasing the amount of regularization, but at
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the cost of reduced sharpness (i.e., lower resolution) of the

MS-SRR image.

The presented results provide new insights for the

optimization of the acquisition design of MS-SRR experiments.

For example, in recent works (Hutter et al., 2017; Bastiani et al.,

2019; Christiaens et al., 2021), super-resolution diffusion MRI

frameworks based on the MS-SRR shifted scheme have been

proposed to address neonatal MRI-specific issues, which include

the high occurrence of image artifacts induced by the presence

of severe motion. Our results suggest that using the rotated

scheme instead of the shifted scheme in these frameworks would

increase the resilience to such motion artifacts and lead to more

accurate and precise MS-SRR estimates.

In this study, the image registration was performed (or

assumed to be performed, in the case of the BMSE analytical

calculations and MC simulations) as a preprocessing step prior

to the actual MS-SRR step. Alternatively, MS-SRRmethods have

been proposed in the literature that allow the joint estimation of

motion parameters along with the MS-SRR image in a unified

approach (Shen et al., 2007; Fogtmann et al., 2012; Rezayi

and Seyedin, 2017; Beirinckx et al., 2020, 2022). The impact

of combining MS-SRR with integrated motion estimation on

the accuracy and precision of the MS-SRR image needs further

research but is not expected to change the main conclusions of

this work.

Furthermore, the use of the proposed BMSE metrics was

limited to the comparison of the shifted and rotated MS-SRR

acquisition schemes. However, it may well be that there exists an

optimal set of acquisition parameters for anMS-SRR experiment

beyond these conventional schemes. In future work, we intend

to further exploit the proposed Bayesian framework to find

the optimal acquisition settings that minimize the estimation

error of the MS-SRR image in a statistically well-defined way

(Fedorov, 1972, 2010; Chaloner and Verdinelli, 1995). Finally,

we intend to extend this approach to MS quantitative SRR (MS-

qSRR), which differs from conventional MS-SRR in that HR 3D

isotropic parametric maps are estimated instead of a weighted

image (Van Steenkiste et al., 2015, 2016; Bano et al., 2019;

Beirinckx et al., 2022).

This paper addressed the question: “What is the optimal

acquisition strategy for regularized MS-SRR MRI in terms of

estimation accuracy and precision? To shift or to rotate?.” To

answer this question, a Bayesian framework was developed to

compare two commonly applied MS-SRR acquisition schemes,

denoted as the shifted and rotated scheme, respectively. In the

shifted scheme, the MS images are shifted by different sub-

pixel distances in the through-plane direction, whereas in the

rotated scheme, the slice orientations are rotated around the

phase-encoding axis by different angles. The rotated scheme

was shown to outperform the shifted scheme in terms of the

accuracy, precision, and mean squared error of the Bayesian

MAP estimator. Furthermore, it was shown to be more robust

to motion artifacts. Finally, unlike the shifted scheme, the

rotated scheme showed an improved trade-off between scan

time, spatial resolution, and estimation precision compared to

a conventional MS protocol based on direct HR acquisition.

The proposed Bayesian framework could be further exploited

in optimal experimental design studies to find the acquisition

settings of an MS-SRR experiment that minimize the estimation

error in a statistically well-defined way.
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