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Recently, a lot of research has been conducted on diagnosing neurological

disorders, such as autism spectrum disorder (ASD). Functional magnetic

resonance imaging (fMRI) is the commonly used technique to assist in the

diagnosis of ASD. In the past years, some conventional methods have been

proposed to extract the low-order functional connectivity network features

for ASD diagnosis, which ignore the complexity and global features of the

brain network. Most deep learning-based methods generally have a large

number of parameters that need to be adjusted during the learning process. To

overcome the limitations mentioned above, we propose a novel deep-broad

learning method for learning the higher-order brain functional connectivity

network features to assist in ASD diagnosis. Specifically, we first construct the

high-order functional connectivity network that describes global correlations

of the brain regions based on hypergraph, and then we use the deep-broad

learning method to extract the high-dimensional feature representations

for brain networks sequentially. The evaluation of the proposed method is

conducted on Autism Brain Imaging Data Exchange (ABIDE) dataset. The

results show that our proposed method can achieve 71.8% accuracy on

the multi-center dataset and 70.6% average accuracy on 17 single-center

datasets, which are the best results compared with the state-of-the-art

methods. Experimental results demonstrate that our method can describe the

global features of the brain regions and get rich discriminative information for

the classification task.
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autism spectrum disorder, high-order functional brain network, broad learning
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Introduction

Autism spectrum disorder (ASD) is a neurologically
heterogeneous disorder that is difficult to diagnose. The main
characteristics of ASD patients are social interaction disorders
and neurodevelopmental disorders of stereotyped behavior.
The life expectancy of ASD patients is much lower than
that of normal controls (NC) (Perkins and Berkman, 2012).
The current psychiatric diagnosis for ASD refers only to
symptomatic behavioral observations (DSM-5/ICD-10), which
may be misdiagnosed (Nickel and Huang-Storms, 2017).
However, the cause and pathogenesis of ASD are unclear. There
is an urgent need to identify biomarkers associated with brain
imaging data to assist medical diagnosis.

Recently, various non-invasive brain imaging techniques
such as magnetic resonance imaging (MRI), positron emission
tomography (PET), and functional magnetic resonance imaging
(fMRI) are widely used in the study of neurodegenerative
diseases such as ASD. In particular, several studies in recent
years have shown that using the blood oxygen level-dependent
(BOLD) signal as a neurophysiological indicator can effectively
identify potential biomarkers in ASD patients (Dekhil et al.,
2018). Many studies have been conducted based on low-
order brain functional connectivity obtained from fMRI, which
reflects the correlation relationship between signals from
paired brain regions (Liang et al., 2012; Li et al., 2014). Due
to the spontaneous aberrations generated in the functional
connectivity status of brain disease patients (Hahamy et al.,
2015), there is a significant variability compared to NC.

Many studies explore the low-order brain functional
connectivity to diagnose ASD. Stacked multiple sparse
autoencoders (SSAE) is applied to learn the discriminative
feature representation of low-order brain functional
connectivity and subsequently diagnose ASD (Kong et al.,
2019). Dekhil et al. (2018) construct an ASD diagnostic system
consisting of sparse autoencoders and spatially activated
regions, which similarly learn low-order brain functional
connectivity features. Wang et al. (2020) propose a multi-
site domain adaptation method based on low-order brain
network for ASD diagnosis. Wang et al. (2022) propose a
multi-site clustering and nested feature extraction method
for fMRI-based ASD detection. However, current methods
only reflect correlations between pairs of brain regions. The
connections between brain regions are complex, and studies
that only reflect pairwise relationships between brain regions
are still limited. In contrast to the traditional approaches to
characterize lower-order brain functional connectivity (Yu
et al., 2017; Li et al., 2019), high-order feature representation
of brain connectivity can characterize complex patterns of
interactions between multiple brain regions and correlations
across brain regions. Feng et al. (2020) regard the second-
order functional connectivity network as a higher-order brain
network, in which brain connectivity patterns are only obtained

by repeatedly computing first-order correlations between pairs
of brain regions, and some features may be lost in the process
of repeated computing. Gao et al. (2020) exploit clustering
of functional connectivity time series to reveal high-order
relationships among multiple regions of interest (ROIs), but
global brain functional connectivity features have not been
considered.

To overcome the above-mentioned drawbacks and to form
high-order feature information that can characterize the global
structure of the brain, we introduce the hypergraph structure
to inscribe the high-order brain functional connectivity.
Hypergraph (Ktena et al., 2018) is a novel tool for inscribing
high-order structures, and the features of the hypergraph
structure are distinguished from the traditional graph structure
features. Unlike normal graphs, hypergraphs are composed of
nodes and hyperedges. One hyperedge can connect two or
more nodes. Hypergraph learning is flexible and powerful in
modeling complex data dependencies such as brain networks. It
has received more attention that using hypergraph to describe
the brain connection pattern can more accurately describe
the complex high-order connection relationship of the brain
network.

Due to the complex features of brain networks, several
recent studies use deep learning-based approaches to diagnose
patients with autism spectrum disorders (Ktena et al., 2018; Gao
et al., 2020; Yao et al., 2021). For example, Eslami et al. (2019)
propose a self-encoder-based model for ASD classification.
Heinsfeld et al. (2017) use two stacked denoising autoencoders
to identify ASD patients from fMRI data. Xing et al. (2019)
propose a novel convolutional neural network with elemental
filters for the diagnosis of ASD. Huang et al. (2021) use Long
Short-Term Memory Networks (LSTM) for the classification
of ASD patients. Guo et al. (2017) and Khodatars et al.
(2021) propose a deep neural network model for the study
and diagnosis of ASD patients. Zhang et al. (2022) propose a
feature selection method based on variational autoencoder pre-
training using a multilayer perceptron for ASD classification.
Jiang et al. (2020) propose a hierarchical GCN framework
to learn brain network graph feature embeddings while
considering both network topology information and subject
associations. However, all these deep learning-based methods
and graph neural network-based methods are based on low-
order brain functional connectivity networks for subsequent
feature extraction and classification, which have non-negligible
drawbacks. Firstly, there are limitations in using low-order
brain network features to represent brain connectivity patterns.
Secondly, the models based on deep learning will become more
complex as the number of model layers increases, the training
process is time-consuming and the deep network features are
not scalable. The number of parameters to be learned is huge,
and it often faces the problem of insufficient single-center
data, resulting in overfitting. It is not until the emergence of
the Broad Learning System (BLS) (Chen and Liu, 2018) that

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1046268
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1046268 November 16, 2022 Time: 14:28 # 3

Hao et al. 10.3389/fnins.2022.1046268

traditional artificial intelligence methods are revolutionized.
It represents a step towards building more effective machine
learning methods that can further extend models based on deep
learning methods and improve the learning efficiency of the
models (Chen and Liu, 2018; Gong et al., 2022). Recently, some
studies have introduced BLS and its variant algorithms into
medical image analysis (Han et al., 2020), providing an effective
tool for diagnosing AD in MRI images. However, there are no
studies based on BLS to diagnose ASD in fMRI. Benefiting from
the superiority of BLS, we use it for further feature selection and
classification.

Compared with traditional deep learning-based diagnostic
models, our proposed deep-broad learning method can learn
complex and high-dimensional brain connectivity network
features more accurately. We use the functional connectivity
and hypergraph structure of fMRI to characterize the high-order
connectivity characteristics of the brain. The feature learning
process is further extended by using the structure fused by the
autoencoder and the BLS, and an efficient and accurate brain
network learning structure is obtained. The main contributions
of this paper are summarized as follows:

Firstly, we construct a high-order brain functional
connectivity network of the functional connectivity structure
of fMRI based on hypergraph structure, which improves the
ability of traditional brain functional connectivity networks to
express brain structure.

Secondly, we propose a novel combinatorial deep-broad
learning method to extract high-dimensional discriminative
features of high-order brain functional connectivity networks.

Compared with other ASD classification models, our model
not only takes into account the global functional connectivity
features of the brain but also provides a feature-learning
classification module with fewer parameters using BLS.

The purpose of this paper is to propose an effective model
for portraying the global functional connectivity structure of the
brain. The BLS further enhances the feature learning capability
and computational speed of deep learning models for ASD
diagnosis. The rest of the paper is structured as follows. In
section 3, we introduce the dataset materials and the details of
our proposed method. In section 4, we perform an experimental
evaluation and experimental analysis of the proposed method.
In section 5, we summarize the work presented in this paper.

Materials

In this study, we use 505 patients with ASD and 530
healthy controls from 17 sites in the ABIDE- I [ABIDE
(http://fcon_1000.projects.nitrc.org/indi/abide/)] dataset for
our experiments. Our study uses data pre-processed by the
C-PAC pipeline (Agastinose Ronicko et al., 2020) with the
following pre-processing processes: motion correction, slice
timing correction, removal of interfering signals, low-frequency

drift and voxel intensity normalization. ABIDE provides a
variety of ROI segmentation options. In this study, we use 200
uniform ROIs generated by the spatially constrained spectral
clustering algorithm (Craddock et al., 2012).

Method

We propose a deep-broad learning method to explore high-
order brain functional connectivity network features for ASD
classification. The specific structure of the model is shown in
Figure 1. The model consists of four parts. (1) Firstly, the low-
order brain functional connectivity network is constructed by
calculating the time-series Pearson correlation matrix of the
fMRI data. It is used to portray the low-order local features of
the brain shown in Figure 1 as Lo-FCN. (2) We introduce the
hypergraph structure to construct high-order brain functional
connectivity network to inscribe the global features of the brain
shown in Figure 1 as Ho-FCN. (3) Initial feature learning
of high-dimensional high-order brain functional connectivity
network is performed using an autoencoder. (4) Finally, the
initial features learned by autoencoder are fed into the BLS for
further learning and classification. The details of each step will
be given in the following sections.

Construction of high-order brain
functional connectivity network

We obtain the high-order brain functional connectivity
network based on time series of fMRI and coactivation level
signals based on hypergraph to effectively characterize the
global brain connectivity pattern. Specifically, we first calculate
the correlations between pairs of brain regions using Pearson
correlation coefficients, which are widely used to calculate the
functional connectivity of fMRI (Liang et al., 2012; Baggio et al.,
2014; Zhang et al., 2017), as shown in Equation (1). u and
v represent the time series of two ROIs, the length of each
series is T, u and v represent the average values of the time
series u and v, respectively. Calculating the pairwise correlation
of all time series will get the paired brain regions correlation
matrix CorrM × M , where M is the number of ROIs, so as to
obtain the low-order brain functional connectivity network.

ρuv =

∑T
t = 1 (ut−u) (vt−v)√∑T

t = 1 (ut−u)2
√∑T

t = 1 (vt−v)2
(1)

Each element in the low-order brain functional connectivity
matrix depicts the correlation between local pairwise ROIs.
When the paired ROIs are highly correlated, the element
value approaches 1, and when the paired brain interval is
inversely correlated, the element value is close to -1. Since
pairwise relationships between brain regions only characterize
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FIGURE 1

The illustration of our proposed method.

local features of the brain, we use the hypergraph to represent
correlations in the interaction of multiple brain regions rather
than pairwise correlations, resulting in a hypergraph-based
high-order brain network. Specifically, we first recall the basics
of hypergraph (Schölkopf et al., 2007), where we denote
a hypergraph as G = {V,E,W}, the set of hypergraph
vertex of the hypergraph V =

{
v1,v2, ..., vn

}
represents the

n brain regions, hyperedge E =
{
e1,e2, ..., em

}
represents

the correlation between brain regions, each hyperedge is
assigned a weight w (ei) , 1 ≤ i ≤ M. The weight vector
of a hyperedge is expressed as W =

{
we1 ,we1 , ...,wem

}
.

The hypergraph structure can be represented simply as
an association matrix H ∈ {0, 1}|V| × |E|, each element in H
indicates whether the vertex v is in the hyperedge e,denoted

as H (v, e) =

{
1 if v ∈ e
0 if v /∈ e

. The elements in the association

matrix represent the probability value of the importance of the
node to the hyperedge. Based on the constructed association
matrix, the degree of the hypergraph node and the degree
of the hyperedge can be obtained, which are expressed as:
d (vi) =

∑
ej∈ε wejHij for 1 ≤ i ≤ N, δ

(
ej
)
=

∑
vi∈v Hij for

1 ≤ j ≤ M. The degree matrix of the hypergraph vertex and
the hyperedge are described as Degreee ∈ R|E|×|E| and Degreev ∈
R|V|×|V|. De ∈ R|E|×|E|and Dv ∈ R|V| × |V| are the diagonal
matrices containing the hypergraph vertex and the hyperedge.
In graph theory, the graph Laplacian matrix plays an important
role in graph learning. Based on the graph Laplacian matrix,
by calculating its eigenvalues and eigenvectors, According
to previous research (Schölkopf et al., 2007), we can perform
a spectral analysis of the graph. For simple graphs, the
graph Laplacian is defined as 4 = D− A, D is the diagonal
matrix of vertex degrees, and A is the adjacency matrix,
while for hypergraphs, the graph Laplacian is defined as

4 = Dv −HWDe
−1HT . The normalized Laplace matrix is

4 = I − D
−

1
2

v HWDe
−1HTD

−
1
2

v . We summarize the symbols
and definitions in Table 1.

In order to obtain a hypergraph-based high-order brain
functional connectivity network, we construct the hypergraph
using the method proposed by the previous work (Schölkopf
et al., 2007). We treat each hypergraph node as a brain region
and use each brain region as a central region to calculate the
Euclidean distance between the selected central region and other
brain regions. Specifically, we first take each vertex (ROI) as
a center node and calculate the Euclidean distance between
the center and other vertices. Then we construct a hypergraph
by connecting the center and its K nearest vertex. We regard
the k brain regions closest to the central node Euclidean space
dij =

∣∣vi−vj∣∣22 as the nearest neighbors of central brain region.
We refer to correlations between nodes as a hyperedge, dij
represents the Euclidean distance between brain region vi and

TABLE 1 Symbols and definitions of hypergraph.

Notation Definition

G = {V,E,W} G represents the hypergraph, V,E,W represent the set
of vertices, the set of hyperedges, and diagonal matrix
of hyperedge weights. respectively.

d (vi) The degree of vertex vi .

w (ei) The weight of hyperedge ei .

δ
(
ej
)

The degree of hyperedge ej .

H The |V| × |E| incidence matrix of hypergraph
structure. H (v, e) indicate the connection strength
between the vertex v and the hyperedge e.

Dv The diagonal matrix of vertex degrees.

De The diagonal matrix of hyperedge degrees.

4 The Laplacian matrix of hypergraph.
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vj. Based on the above mentioned process, we construct the
hypergraph based high-order brain connectivity network to
represent the global features of brain.

The novel feature extraction and
classification method based on
deep-broad learning

Due to the high dimensionality of the constructed high-
order brain functional connectivity network features, we utilize
a non-linear dimensionality reduction approach to reduce
the feature dimension. Specifically, we use an autoencoder
to reconstruct the features of the constructed hypergraph-
based high-order brain feature representation. We obtain low-
dimensional discriminative features of the high-order brain
network by minimizing the reconstruction error between the
input network features and the output features through self-
supervised learning. The autoencoder consists of an encoder and
a decoder.

enc = ∅enc (x) = τ
(
Wencx+ benc

)
(2)

We use the original high-order brain feature representation
x as input to the autoencoder to obtain discriminative lower-
dimensional feature henc via the encoder, denoted as Equation
(2) where τ is the hyperbolic tangent activation function
(tanh), and Wenc and benc represent the weight matrix and
bias of encoder. Once we have obtained the low-dimensional
feature representation henc of the high-order brain function
connectivity network, we use the decoder to reconstruct the
original input data x, expressed as Equation (3). The low-
dimensional feature representation henc is input into the
decoder, where Wdec and bdec represent the weight matrix
and bias of the decoder, respectively. We use Mean Squared
Error (MSE) as the reconstruction loss, which represents
the discrepancy between the reconstructed brain function
connectivity network features x′ and the original features x.
After completing the training of the autoencoder, we obtain the
low-dimensional feature representation of the new high-order
brain functional connectivity network as the effective feature.
And we use it as the valid discriminative high-order brain
function connectivity feature input broad learning system for
further learning.

x′ = ∅dec
(
henc

)
= Wdechenc + bdec (3)

Analyzing higher-order brain functional connectivity
using existing machine learning methods is challenging
due to the high-dimensional, large-scale, and complex
interdependencies between brain regions. Moreover, a
large number of iterative processes during traditional
model training requires huge amounts of time and
computational resources. The Broad Learning System (BLS)

(Chen and Liu, 2017, 2018; Chen et al., 2019) has recently
become one of the most popular networks due to its excellent
performance in machine learning tasks (Gong et al., 2022).
BLS can map samples to a more suitable space to handle the
large volume of high order brain functional network features
and is suitable for processing time-varying data. BLS first map
the inputs to construct a set of mapped features. A group of
mapping nodes defined in our work is a mapped feature in
original BLS. Given that the feature extraction at this step uses
randomly generated weights, calculating multiple mapping
features can enhance the stability of the extracted feature
information and simplify the operations. Figure 2 illustrates
the basic structure of the BLS, which consists of a three-layer
network defined as the feature mapping layer, the enhancement
layer and the output layer, where X ∈ RN × m denotes the
discriminative high-order brain function connectivity matrix
learned by autoencoder, which is taken as the input to the BLS.
N is the number of samples, and m is the feature dimension
of each sample, Y ∈ RN × c (c < m) is the output layer of
BLS, c is the feature dimension after the feature extraction
by BLS of each sample, and WBLS is the weight of the feature
mapping layer and the enhancement layer to the output
layer. Specifically, we first input the high-order brain function
connectivity matrix X to the feature mapping layer to generate
the i-th group of mapping nodes Zi, denoted as Equation
(4):

Zi = ∅ (XWei + βei), i = 1, ..., n (4)

Wei and βei are the weight and bias from X to the feature
mapping layer. Similarly, the m-th group of enhancement layer
nodes Hm is generated by taking the mapping node as the input
of the enhancement layer, which is expressed as Equation (5):

Hmδ ≡
(
ZnWhm + βhm

)
(5)

Whm and βhm are the weights and biases from the feature
mapping layer to the enhancement layer. It should be noted
that ∅ and δ are nonlinear functions, such as tanh and tansig,

FIGURE 2

The structure of the broad learning system.
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TABLE 2 Classification performance of different methods on multi-centers dataset.

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Running time(s)

SVM 60.3± 3.6 35.3± 8.2 84.4± 6.6 64.3± 5.9 186

Random forest 63.7± 7.2 54.9± 3.9 71.3± 9.2 68.9± 3.8 67

DNN 60.7± 5.4 56.4± 7.3 64.8± 3.8 70.1± 5.6 108030

Autoencoder 65.4± 6.6 69.3± 4.2 61.9± 5.2 60.8± 3.7 21600

Ours 71.8± 4.2 70.8± 3.8 65.9± 4.2 65.9± 4.8 1200

we compose all mapping nodes as Z = [Z1,Z2, ...,Zn], and
enhance the nodes as H = [H1,H2, ...,Hm].

The BLS model can be expressed as Equation (6):

Y =
[
Z1,Z2, ...,Zn|δ

(
ZnWh1 + βh1

)
, ..., δ

(
ZnWhm + βhm

)]
WBLS = [Z1,Z2, ...,Zn|H1,H2, ...,Hm]WBLS

= [Z|H]WBLS (6)

To summarize, we further learn the features extracted by
autoencoder via BLS and finally get the ASD classification result.

Experiments

In this section, we conduct two-stage experiments of our
proposed method. In the first stage, we conduct experiments
on 1,035 samples from 17 multi-centers and each single-center
to demonstrate the effectiveness of our proposed method. In
the second stage, we compare with the state-of-the-art methods

TABLE 3 Classification performance of our proposed method on
single-center dataset.

Sites Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

NYU 71.4± 5.7 75.0± 1.5 68.4± 9.4 66.7± 9.8

OHSU 80.8± 3.8 76.9± 7.7 84.6± 7.7 83.3± 8.3

KKI 62.5± 8.3 63.6± 9.1 61.5± 7.7 58.3± 8.4

YALE 71.4± 3.6 74.0± 2.9 68.9± 4.4 68.9± 2.5

USM 81.6± 2.9 84.8± 4.1 76.0± 0.9 86.6± 0.3

Olin 76.4± 3.0 75.0± 3.9 78.6± 1.4 83.3± 0.0

Pitt 73.2± 1.8 75.0± 2.6 71.4± 6.4 72.4± 5.4

Leuven 74.6± 3.2 68.8± 5.4 80.6± 0.7 78.6± 0.7

UCLA 79.5± 3.1 77.8± 3.7 75.0± 2.3 79.2± 2.3

Caltech 67.6± 2.7 71.4± 0.0 62.5± 6.3 71.4± 3.6

CMU 66.7± 3.6 64.3± 7.1 69.2± 0.0 69.2± 2.2

MaxMun 65.4± 3.8 69.2± 0.3 61.5± 6.7 64.3± 4.9

SBL 66.7± 3.4 71.4± 1.2 62.7± 6.2 62.5± 4.9

SDSU 61.6± 2.7 60.1± 5.7 67.9± 3.8 65.6± 3.2

Stanford 67.7± 4.2 51.6± 5.7 76.9± 5.3 64.2± 3.7

UM 63.8± 5.6 70.5± 4.3 53.2± 5.7 75.6± 4.9

Trinity 68.8± 5.5 72.9± 4.6 60.5± 5.7 73.3± 3.7

AVERAGEE 70.6± 4.0 71.7± 4.1 69.4± 4.8 71.7± 4.0

using another atlas that divides the brain into 264 ROIs. The
robustness and scalability of our proposed method are further
verified by experiments on multi-atlas data.

In our experiments, we use 10-fold cross-validation to
evaluate the classification accuracy of the prediction model. This
means that we first randomly divide the dataset into 10 disjoint
subsets of data, and then select a single subset as the test set, with
the remaining 9 subsets used as the training set. In particular, for
multi-center experiments, we mixed all samples from 17 centers,
and then divided the dataset into 10 disjoint subsets. We selected
1 of the Ke parts as the test set and the remaining Ke-1 parts as
the training set, finally took the average of the Ke verification
results as the verification error of this model. The process is
repeated 10 times to reduce the effect of sampling bias on
the experimental results. The classification performance of the
model is evaluated by comparing the accuracy (ACC), sensitivity
(SEN), and specificity (SPE), and the mean of the experimental
results for the single-center data is also calculated. Accuracy
measures the proportion of subjects correctly classified (i.e.,
actual ASD is classified as ASD and actual healthy is classified
as healthy). Sensitivity represents the proportion of actual ASD
subjects correctly classified as ASD, and specificity measures the
proportion of actual healthy subjects classified as healthy. The
running time means the training time and the inference time.

Experiments settings
The classification accuracy of our proposed model may be

affected by a variety of parameters, including: (1) the choice
of hypergraph parameters when constructing high-order brain
functional connectivity networks, (2) the number of layers of
autoencoders in the initial feature selection process, (3) the
number of BLS nodes and the window size of each layer.
The hypergraph parameters of the model include the nearest
neighbor size K obtained based on the hypergraph similarity
matrix. The number of autoencoder layers L, the number of
nodes in the enhancement layer E, the mapping layer M and the
window size W of the BLS are adjusted during the experiment.
In our experiments, we adjust all free parameters by 10-fold
cross-validation on the training set. Taking into account the
effect of the hypergraph construction parameters, we optimize
K in the range {4, 5, ..., 12}. Since there is difference in the
high-order brain features that can be learned by different layers
of the autoencoder, we test the effect of different layers of
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TABLE 4 Classification performance of ASD identification achieved by six different methods on four datasets (i.e., OHSU, NYU, USM and UCLA)
with rs-fMRI data.

Site Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

OHSU SVM 53.8± 5.2 55.1± 6.1 48.9± 7.2 52.6± 6.7

SVM-ATM 70.9± 3.7 69.9± 5.6 66.8± 4.1 70.1± 5.5

MLP 64.0± 4.5 56.5± 3.9 61.6± 4.2 60.3± 4.7

Autoencoder 74.0± 3.5 66.6± 2.9 75.5± 4.7 71.5± 4.1

BLS 75.5± 5.1 66.3± 3.8 72.6± 4.9 75.3± 3.9

Ours 80.8± 3.8 76.9± 7.7 84.6± 7.7 83.3± 8.3

NYU SVM 57.1± 2.5 50.3± 3.5 62.2± 2.7 57.8± 3.9

SVM-ATM 71.2± 5.1 53.3± 4.2 81.0± 1.2 69.1± 6.5

MLP 64.3± 4.2 68.4± 3.7 60.6± 3.9 57.1± 4.3

Autoencoder 65.7± 3.2 68.8± 2.6 63.2± 2.7 61.1± 4.8

BLS 69.7± 3.5 67.4± 6.3 71.1± 1.1 70.8± 1.4

Ours 71.4± 5.7 75.0± 1.5 68.4± 9.4 66.7± 9.8

USM SVM 64.7± 5.1 60.6± 1.9 66.9± 5.1 60.7± 3.9

SVM-ATM 69.6± 4.6 44.3± 3.8 68.2± 6.3 61.8± 4.3

MLP 64.1± 4.1 61.2± 3.8 65.4± 4.2 62.9± 3.8

Autoencoder 62.5± 2.8 60.0± 3.2 66.3± 4.5 62.5± 4.1

BLS 76.9± 3.1 78.5± 2.9 79.8± 3.9 82.2± 3.9

Ours 81.6± 2.9 84.8± 4.1 76.0± 0.9 86.6± 0.3

UCLA SVM 65.1± 5.7 68.3± 3.5 60.8± 4.7 65.2± 3.3

SVM-ATM 72.2± 3.1 73.8± 4.1 68.9± 3.8 69.2± 2.8

MLP 71.9± 3.5 72.7± 2.4 64.8± 3.1 66.1± 3.2

Autoencoder 57.7± 4.6 68.2± 4.1 47.4± 4.8 58.5± 3.9

BLS 73.2± 2.8 76.4± 4.5 65.8± 4.9 71.6± 3.1

Ours 79.5± 3.1 77.8± 3.7 75.0± 2.3 79.2± 2.3

the autoencoder on the experimental results for single-center
and multi-center data, respectively. We adjust the number of
layers of the autoencoder in the range {1, 2, ..., 6}. In addition,
the number of nodes in the mapping layer and enhancement
layer of the BLS and the size of the window also have a
significant impact on the classification results, so we test the
classification performance under different node settings. We
finally find that the hypergraph-based network of high-order
brain function connections are constructed with K set to
be 5. The number of layers of the autoencoder L is set to
be 3. For the multi-center data, we set the parameters as
M = 20, E = 10, W = 100. For the single-center data, we
set the parameters as M = 200, E = 50. Depending on the
optimal parameters chosen, we can obtain the best experimental
results.

Classification performance
We compare our proposed method with: (1) support vector

machine (SVM) with RBF kernel, (2) random forests, (3) deep
neural network (DNN), (4) Autoencoder, four state-of-the-art
methods shown in Table 2.

In the first part of the experiment, the results of the
multi-center data are shown in Table 2. Experimental
results demonstrate that our proposed method considers

the efficiency of the model while maintaining accuracy.
Moreover, the time required for ten-fold cross-validation
was significantly reduced. Based on the experimental results,
it is demonstrated that the high-order brain functional
connectivity network constructed based on hypergraphs
can capture more correlations between brain regions than
the traditional lower-order brain functional connectivity
network, and thus obtain more discriminative features. We
confirm that BLS further learns the features extracted by
autoencoder and greatly reduces the training time. Our method
achieves 71.8% accuracy on multi-center data. Experiments
show that our proposed method outperforms other state-
of-the-art algorithms in terms of accuracy and training
time.

At the same time, in order to verify the effectiveness
of the proposed method on independent single-center data,
we further conduct experiments on 17 single-center datasets.
Table 3 shows the results of our experiments, which demonstrate
that our method achieves better classification results on small
sample datasets compared to the existing state-of-the-art
methods. In particular, for the USM dataset, the accuracy is
as high as 81.6%. The experiments demonstrate the significant
superiority of our proposed method on small sample data as
well.
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FIGURE 3

The classification accuracy on different mapping features settings.

Discussion

Analysis of the hypergraph learning

To evaluate that BLS plays an important role in our
proposed method, we use BLS alone for the final classification
task on four representative single-center data. Meanwhile, to
demonstrate the improved classification accuracy of high-order
brain functional connectivity networks based on hypergraph
and BLS, we use BLS to classify the features obtained based
on the hypergraph. In particular, we select four representative
single-center datasets for comparison based on previous work
(Eslami and Saeed, 2019). Our approach is compared with the
following methods, as shown in Table 4.

(1) We first compare with the SVM method as well as
the MLP method. We also compare with SVM methods that
incorporated parameter tuning (i.e., SVM as a classifier using
the hyperparameter tuning method Auto Tune Models (ATM))
(Eslami and Saeed, 2019).

(2) We then compare with the ASD classification method
based on autoencoder and multilayer perceptron proposed by
Heinsfeld et al. (2017).

To demonstrate separately that hypergraphs and BLS play an
important role in our proposed method, we first used BLS alone
to learn the low-order brain functional connectivity network for
ASD classification, followed by the construction of a high-order

brain functional connectivity network based on hypergraphs,
which is then learned and classified by autoencoder and
BLS. Table 4 shows the experimental results of each method,
and the results show that our proposed method using only
BLS to learn the lower-order brain functional connectivity
network significantly outperforms traditional machine learning
methods as well as recent deep learning-based methods such as
autoencoder-based methods.

The model performance is further improved when the high-
order brain functional connectivity network is represented using
hypergraphs. Therefore, our proposed method demonstrates
significant superiority over other methods.

Analysis of the broad learning system

In order to verify the effectiveness of BLS in further
extracting discriminative features of high-order brain
functional connectivity networks and optimize the specific
structure of BLS, we test the classification results of different
mapping features of multi-center data. We empirically set
the initial number of enhancement nodes to 1,000, 5,000,
10,000, 15,000, 20,000, 25,000, respectively, and then gradually
increase the number of mapping nodes in steps of 500.
Figure 3 shows the variation in model performance at
some typical nodes settings during optimization. BLS has
obtained classification results with high accuracy under the
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FIGURE 4

The selected high-order brain functional connections.

TABLE 5 Comparison with the state-of-the-art methods using other brain atlas.

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

ASD-DiagNet (Eslami et al., 2019) 68.4± 1.2 70.9± 0.5 65.7± 2.6 65.2± 3.5

CNN + Element-wise Filters (Xing et al., 2019) 65.7± 3.8 70.8± 0.1 61.3± 7.0 61.3± 7.4

Auto-AsD-Network (Eslami and Saeed, 2019) 70.1± 1.7 71.7± 0.3 68.5± 2.8 70.5± 5.3

Autoencoder + DNN (Mostafa et al., 2020) 79.1± 1.8 77.5± 5.8 80.7± 12.5 80.0± 10.5

Riemannian Regression (Wong et al., 2018) 71.1± 1.5 72.7± 0.8 69.4± 2.9 71.1± 4.8

Ours 83.1± 3.9 82.2± 5.1 80.7± 4.2 86.0± 6.3

settings of different mapping nodes. In most cases, when the
number of enhancement nodes is fixed, model performance
becomes better and worse when the number of mapping
nodes continuously increases. Therefore, the optimal node

setting can be found in this process. When the number of
mapping nodes and the number of enhancement nodes reaches
5,000 and 10,000, respectively, the best result, 76.2%, can be
obtained.
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Analysis of high-order brain
connectivity network

In order to explore the high-order connections
associated with ASD in the brain functional connectivity
network, we analyze the high-order brain functional
connections that are selected most frequently. As shown
in Figure 4. These ROIs are colored according to the static
network to which they belong. We find the selected brain
connections and regional distribution of brain regions
scatter across the two hemispheres and different lobes,
showing a pattern of functional abnormalities throughout
the brain of ASD patients. Specifically, the top brain
FCs are visualized in Figure 4. The connections in Red
represent the edges of brain ROIs and the ROIs with
same color belong to the same brain modules. The brain
regions shown in Figure 4 are highly associated with ASD
(Wang et al., 2014). The selected connectivities include
the salience network and cerebellum region, and these
regions are also shown to be closely related to ASD.
These results verify the reliability of our proposed method
in detecting informative functional connectivity for ASD
identification.

Experiments on other brain atlas

To verify the robustness and scalability of our method
on another atlas, we further select the ABIDE dataset for
our experiments, using the preprocessing method and brain
region segmentation method used by Mostafa et al. (2020)
and Yin et al. (2022). In contrast to the aforementioned
segmentation of brain regions into 200 ROIs based on the
cc200 atlas, we segment the brain into 264 ROIs and then
obtain another brain feature representation by calculating
the high-order brain functional connectivity network among
the 264 ROIs, i.e., we obtain 69,432 pairwise correlation
features. We use 871 samples from the ABIDE dataset as in
Mostafa et al. (2020); Yin et al. (2022) for our experiments.
We compare our proposed method with the latest methods,
namely (1) the autoencoder based method for ASD diagnosis
proposed by Eslami and Saeed (2019); Eslami et al. (2019),
(2) a novel convolutional neural network method proposed
by Xing et al. (2019), (3) an autoencoder and DNN classifier
based method for ASD diagnosis proposed by Mostafa et al.
(2020), and a method based on logarithmic Euclidean and
affine invariant Riemann metric connectivity matrices proposed
by Wong et al. (2018). Table 5 shows the algorithm we
compared with and the experimental results. Experiments
confirm that our proposed method is significantly superior
to other methods in characterizing functional connectivity

relationships in the brain. Compared to the autoencoder-
based methods proposed by Mostafa et al. (2020) and
the Euclidean and affine-invariant Riemannian metric-based
connectivity matrix-based methods proposed by Wong et al.
(2018), our method performs well on another brain atlas. We
experimentally demonstrate the robustness and scalability of our
method.

Conclusion

We propose a deep-broad learning-based method to
explore the high-order brain functional connectivity for
ASD diagnosis. Our hypergraph-based higher-order brain
functional connectivity network helps to characterize the
global features of the brain. The use of autoencoder and
BLS to sequentially learn high-order features makes the
ASD detection model more efficient and effective. Our
experiments are conducted on single-center and multi-
center data of the ABIDE dataset. To verify the robustness
and scalability of the method, we perform additional
experiments on another brain atlas that divide brain regions
into 264 ROIs. Experimental results demonstrate that our
profiled high-order brain functional connectivity network
can represent more discriminative global brain features.
The combination of BLS and autoencoder further quickly
learns the features, and the diagnostic model can achieve
higher accuracy.
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