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Background: This study aimed to conduct a bibliometric analysis of

publications on connectomes and illustrate its trends and hotspots using a

machine-learning-based text mining algorithm.

Methods: Documents were retrieved from the Web of Science Core

Collection (WoSCC) and Scopus databases and analyzed in Rstudio 1.3.1.

Through quantitative and qualitative methods, the most productive and

impactful academic journals in the field of connectomes were compared in

terms of the total number of publications and h-index over time. Meanwhile,

the countries/regions and institutions involved in connectome research

were compared, as well as their scientific collaboration. The study analyzed

topics and research trends by R package “bibliometrix.” The major topics of

connectomes were classified by Latent Dirichlet allocation (LDA).

Results: A total of 14,140 publications were included in the study.

NEUROIMAGE ranked first in terms of publication volume (1,427 articles) and

impact factor (h-index:122) among all the relevant journals. The majority of

articles were published by developed countries, with the United States having

the most. Harvard Medical School and the University of Pennsylvania were the

two most productive institutions. Neuroimaging analysis technology and brain

functions and diseases were the two major topics of connectome research.

The application of machine learning, deep learning, and graph theory analysis

in connectome research has become the current trend, while an increasing

number of studies were concentrating on dynamic functional connectivity.

Meanwhile, researchers have begun investigating alcohol use disorders and

migraine in terms of brain connectivity in the past 2 years.
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Conclusion: This study illustrates a comprehensive overview of connectome

research and provides researchers with critical information for understanding

the recent trends and hotspots of connectomes.

KEYWORDS

connectome, bibliometric, latent Dirichlet allocation, Web of Science, neuroscience

1 Background

“Connectome” is a subject that studies the operating
mechanism of brain functions via analyzing the connection
and organization patterns of neurons. With the development
of brain imaging technology and computational science, such
as the mapping of the human brain atlas, the advancement of
Magnetic Resonance Imaging (MRI) data analysis techniques,
and the integration with complex network theory, more
possibilities for exploring human brain connectivity have
been revealed (Sporns and Betzel, 2016). Scientific research in
this field provided a holistic and multidimensional approach
to understanding the brain’s operating mechanism and
neuropsychological disorders (Sporns et al., 2005; Sporns,
2013). At present, research on the connectome is mainly
focused on the large-scale level while constructing structural
brain networks with structural MRI or diffusion MRI, or
establishing functional brain networks with technologies such
as functional MRI (fMRI), electroencephalogram (EEG), or
magnetoencephalography (MEG) (Sadaghiani and Wirsich,
2020). Additional computer science and mathematics theories,
such as machine learning and deep learning, were applied to
connectome research. By combining complex network analysis
methods based on graph theory and exploring its topological
principles, we can further reveal the internal connection
patterns and operating mechanisms of the human brain
(Sporns, 2018; Farahani et al., 2019). The connectome provides
a theoretical basis for brain development and neuropathology
of neuropsychological diseases (van den Heuvel and Sporns,
2019). Therefore, summarizing the trends and hotspots of the
connectome research may be instructive for further studies in
the field.

Bibliometric analysis has become an ideal method for
examining the literature in a certain scientific field over time.
It can quantitatively analyze articles through mathematical and
statistical methods (Guler et al., 2016). Through quantitative
and qualitative analysis of the literature, it assists researchers
in identifying the research trends and focus of a particular
topic (Yan et al., 2020). Latent Dirichlet allocation (LDA)
is an unsupervised machine-learning-based algorithm, which
contains a three-layer probabilistic structure of words, topics
and documents. LDA has been widely utilized as a bibliometric

tool for identifying research topics and generating clusters of
topic terms (Tran et al., 2019; Zhang et al., 2021).

There have been some bibliometric studies on brain imaging
(Gong et al., 2019; Yan et al., 2020; Devezas, 2021), while
few, to our knowledge, conducted the bibliometric analysis of
connectomes. Moreover, most of the reviews on connectomes
generally lack quantitative analysis. Therefore, it is necessary to
carry out a bibliometric study on the connectome.

2 Materials and methods

2.1 Data acquisition and search
strategy

We collected the relevant literature from the Web of
Science Core Collection (WoSCC) database1 and the Scopus
database.2 Web of Science and Scopus are the two most
massive and popularly used databases for bibliometric analysis.
The following retrieval strategies were employed for the
WoSCC database: TS = (connectom*) AND PY = (2005-
2021). The following retrieval strategies were employed for
the Scopus database: TITLE-ABS-KEY (connectom∗) AND
PUBYEAR > 2004 AND PUBYEAR < 2022 AND (LIMIT-
TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)).
Data from the WoS database included “title, abstract, author
keywords, and Keywords Plus,” while data from the Scopus
database included “title, abstract, and keywords.” There were
no language limitations. All the processes of research and
statistics were conducted on October 24, 2022, for eliminating
the potential errors caused by daily updates of the database. Six
thousand seven hundred and ninety-one records were identified
through the WoSCC database and 13,428 records through the
Scopus database. Duplicated records between the two databases
were identified and excluded in R. The data retrieved were
transformed to “bib” format and then imported into Rstudio
1.3.1. Records were excluded if publication year was in 2022
or article type was not article or review. Figure 1 showed the
screening flowchart.

1 https://www.webofscience.com/

2 https://www.scopus.com/
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FIGURE 1

The flowchart of detailed screening steps of publications.

2.2 Quantitative analysis

The annual publication output on connectomes was
illustrated. The most productive and most impactful journals
were compared and ranked with their major subspecialties.
Similarly, authors engaged in connectome research were ranked
by their productivity and impact. The total number of
publications was used to evaluate the productivity of journals,
while the impact was assessed by h-index. The most productive
and influential countries/regions were compared according to
their total productions and average article citations. The country
to which an article belongs was defined according to the country
of the corresponding author. The countries/regions covered in
the analysis were classified as developed or developing according
to the World Economic Situation and Prospects 2020 by United
Nations (2020). The top 10 most productive institutions in
connectome research were listed as well. Additionally, the
collaborative relationship among countries/regions or different
institutions was presented as a collaboration network map with
lines that illustrated the frequency of cooperation between each
entity. Finally, the top 20 most cited articles were summarized
and analyzed.

2.3 Research topics and trends

The R package “bibliometrix” was used to visualize the
research trends over the last decade (Aria and Cuccurullo,
2017). The main topics of the connectome were classified using
Latent Dirichlet allocation (LDA) analysis. LDA is a three-layer

Bayesian probabilistic model, which considers a document as
a collection of unordered words and then identifies each topic
as a probability distribution across words based on the co-
occurrences of words (Schwarz, 2018). The R package “lda” was
utilized to conduct an LDA analysis of the publications included.
Words in keyword plus (author keywords, titles, and abstracts)
were imported into LDA analysis. The number of topics was
set to at least three. The raw data and code are available in the
Supplementary Data Sheet 2.

3 Results

3.1 General information

A total of 14,140 publications on connectomes were
included. The average number of citations per document
was 36.91, a total of 759 sources were included. The annual
production in the connectome field maintained a high growth
trend since 2011 (Figure 2) with the annual growth rate reaching
53.59%. By 2021, the annual number of articles on connectomes
reached 1,918. Detailed data for general information and annual
production are available (see Supplementary Tables 1, 2). The
production and citations trend of the top 20 most productive
authors were shown in Figure 3. The size of the blue bubble
indicated the number of articles, with the darker color indicating
more total citations per year. Sporns O published his research
in the field of connectomes as early as 2005. Since 2013, a
significant number of researchers have invested in the research
of connectomes and continue to work in this field.
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FIGURE 2

Annual publication production over time.

FIGURE 3

Top 20 productive authors in connectome research over time. N.Articles, number of articles; TC per Year, total citations per year.

TABLE 1 Top 10 productive and top 10 impactful journals in the field of connectomes.

Ranking Journals ranked
by articles

Neuroscience-
subspecialty

Articles Journals ranked by
h-index

h-index Neuroscience-
subspecialty

TC*

1 NEUROIMAGE Yes 1,427 NEUROIMAGE 122 Yes 76,894

2 HUM BRAIN MAPP Yes 714 NEURON 91 Yes 26,932

3 PLOS ONE No 439 J NEUROSCI 72 Yes 20,774

4 J NEUROSCI Yes 402 PROC NATL ACAD SCI U S A 71 No 20,609

5 SCI REP No 337 HUM BRAIN MAPP 63 Yes 17,847

6 NEUROIMAGE-CLIN Yes 334 CEREB CORTEX 58 Yes 12,876

7 CEREB CORTEX Yes 268 PLOS ONE 58 No 14,819

8 NEURON Yes 220 NAT NEUROSCI 56 Yes 13,591

9 ELIFE No 216 BRAIN 52 Yes 8,874

10 PROC NATL ACAD SCI
U S A

No 203 BIOL PSYCHIATRY 46 No 6,642

*TC, total citations.
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3.2 Analysis of journals

Table 1 listed the top 10 productive and impactful journals
in connectome research. The top 10 most productive journals
contributed 42.86% (6060/14140) of the total publications.
NEUROIMAGE ranked first with 1,427 articles, which was
considerably ahead of the second-ranked journal (HUMAN
BRAIN MAPPING, 714 articles). NEUROIMAGE also ranked
first in terms of journal impact, with an h-index of 122. The
growth trend of top journals was shown (see Supplementary
Figure 1 and Supplementary Table 3). Six of the top 10 most
productive journals and seven of the top 10 most influential
journals in this field were in the neuroscience subspecialty.
Comprehensive features, such as (a) the journal’s scope, (b) the
average turnaround time, (c) the journal’s longevity, (d) whether
it’s open access, and (f) publication fee, of the most productive
journals were compared (see Supplementary Table 4).

3.3 Analysis of countries and
institutions

The 20 most productive and impactful countries/regions
that participated in connectome research were listed in
Table 2. Articles of the top 20 countries/regions (12,499)
were equal to 88.39% of all 14,140 publications. The
United States was the leading producer (4,868 articles) of
scientific publications in this field, followed by China (1,681
articles) and Germany (945 articles). The developed countries
published 73.84% (10,441/12,499) of articles among all the top
20 countries/regions. The top impactful countries/regions were
ranked by average article citations (Ding et al., 2021). Pakistan
ranked first in terms of average article citations.

The international collaboration in the connectome field
was shown in Figure 4. The countries/regions that published
articles on connectomes were marked in blue, with darker
colors indicating more publications. Countries/regions that had
cooperation were linked by red lines, while the width of the
red line was proportionate to the number of collaborations. The
United States had the most scientific research cooperation links
with other countries, with the most frequent collaboration with
European countries. Additionally, Canada, Australia, China,
South Korea, Brazil, and Japan were among the prominent
countries that have intensive international collaboration.

Table 3 listed the top 10 most productive institutions
in connectome research around the world. The Harvard
Medical School was ranked first with a total of 890 articles.
The University of Pennsylvania came in second with 795
articles. Half of the top 10 most productive institutions
were in the United States, while others came from the
United Kingdom, China, Canada, and Australia. There was
an extensive intertwined network of collaboration among the
various institutions involved (Figure 5). As shown in Figure 5,

institutions that cooperated frequently were clustered together
to form two different colored set clusters. Affiliations with
cooperation were connected by lines. The size of the bubble
denoted the number of publications while the width of the
lines reflected the frequency of scientific collaboration. As
can be seen, several institutions have established significant
partnerships in connectome research.

3.4 Topics and trends

Articles without abstracts were excluded and a total of 6,607
publications were included in the LDA analysis of keyword
plus (author keywords, titles, abstracts). Three primary topics of
research in this field were identified and designated as “Topic
1: Neuroimaging Analysis Technology,” “Topic 2: Function
and Disease,” and “Topic 3: Basic research” (Figure 6). These
three topics accounted for 35.0, 37.0, and 28.0% of the articles,
respectively. Furthermore, we illustrated the annual volume of
publications on these three topics. Between 2011 and 2018, the
number of articles on the three topics increased significantly.
Among them, the number of research devoted to neuroimaging
analysis technology (Topic 1) had always been ahead, while
the number of articles on related basic research (Topic 3)
concerning cells, neural circuits, genes, etc. was relatively
smaller. After 2019, the incremental pace of growth of Topic 1
and Topic 3 slightly slowed down, meanwhile, Topic 2 began to
outrun the previous two topics, with an increasing amount of
research examining alterations in brain connectivity in relation
to cognitive, memory, and related neurological or psychiatric
diseases. By 2021, the number of studies on Topic 2 had
far surpassed that of associated analysis technology and basic
research.

We assessed the connectome research trends using term
frequency over the last 7 years (Figure 7). Among the high-
frequency terms, computational or mathematical algorithms,
including machine learning, deep learning, and graph theory
had become the hotspots of connectome research. Alcohol use
disorder and migraine have garnered an increasing amount of
interest from researchers in the past 2 years. Resting-state fMRI
and dynamic functional connectivity remain to be the preferred
study approach and perspective in recent years.

3.5 Most cited articles

The analysis of local citations of articles enabled us to
identify the most fundamental or significant studies in a specific
research field. The top 20 most cited articles in connectome
research were listed in Table 4. The most cited article was
published by Van Essen et al. (2013) with 941 citations.
NEUROIMAGE contributed seven of the top 20 most cited
articles. The majority (16/20) of references were classified as
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TABLE 2 The most productive and impactful countries/regions in the field of connectomes.

Ranking Countries/Regions
ranked by articles

Articles Developed Countries/Regions ranked by
average article citations

TC* AAC* Developed

1 USA 4,868 Yes PAKISTAN 131 131 No

2 CHINA 1,681 No LUXEMBOURG 213 71 Yes

3 GERMANY 945 Yes UNITED KINGDOM 48,838 55.43 Yes

4 UNITED KINGDOM 881 Yes VENEZUELA 51 51 No

5 CANADA 600 Yes SWEDEN 4,757 45.74 Yes

6 ITALY 516 Yes USA 222,556 45.72 Yes

7 AUSTRALIA 427 Yes GEORGIA 592 45.54 No

8 NETHERLANDS 399 Yes SAUDI ARABIA 313 44.71 No

9 FRANCE 395 Yes NETHERLANDS 17,516 43.9 Yes

10 JAPAN 321 Yes SWITZERLAND 12,002 43.49 Yes

11 SPAIN 286 Yes FRANCE 15,734 39.83 Yes

12 SWITZERLAND 276 Yes BELGIUM 4,893 38.83 Yes

13 KOREA 264 Yes AUSTRALIA 14,841 34.76 Yes

14 BELGIUM 126 Yes FINLAND 1,863 34.5 Yes

15 ISRAEL 118 No GERMANY 32,543 34.44 Yes

16 SWEDEN 104 No CANADA 20,154 33.59 Yes

17 INDIA 79 No SINGAPORE 2,343 33 Yes

18 BRAZIL 76 No ISRAEL 3,832 32.47 No

19 SINGAPORE 71 Yes NEW ZEALAND 738 32.09 Yes

20 HUNGARY 66 Yes AUSTRIA 2,038 31.35 Yes

*TC, total citations; AAC, average article citations.

Topic 1 (Neuroimaging Analysis Technology). In addition, we
ranked the highly cited articles by global citations, and the
results were presented in the Supplementary Table 5.

4 Discussion

To our knowledge, this is the first bibliometric study on
connectomes. This study is expected to provide an overview and
detailed analysis of the publications in the field of connectomes.
It may serve as a valuable resource for researchers in gaining
an understanding of the underlying concepts and fundamental
researches in this field, as well as determining research
directions, journal selection, and research collaboration.

The connectome has been a popular research subject over
the last decade, with the total number of publications increasing
rapidly yearly. Sporns et al. (2005) first introduced the concept
of the connectome in 2005, but it wasn’t until 2011 that a large
number of authors began devoting their time to connectome
research. Both the quantity and the breadth of relevant articles
have increased dramatically in the last decade.

We conducted a quantitative analysis of the productivity
and impact of journals engaged in connectome research.

NEUROIMAGE, HUAMAN BRAIN MAPPING, and
JOURNAL of NEUROSCI were ranked in the top five
both in terms of productivity and impact, and hence
may be the preferred choice for researchers exploring the
connectome’s research frontiers and submitting high-quality
work. Additionally, as the top 20 journals were mostly focused
on neuroscience, researchers could also follow other journals
with a subspecialty in neuroscience, such as CEREBRAL
CORTEX, NEURON, BRAIN, NATURE NEUROSCIENCE,
and BRAIN CONNECTIVITY.

LDA (Latent Dirichlet Allocation) has been widely used in
recent years for publication analysis (Shatte et al., 2019). It
could be used to identify latent topic information in a large-
scale document collection or corpus (Griffiths and Steyvers,
2004). This study discovered that the scientific output for all
three topics increased dramatically from 2011. Until 2016, more
research focused on techniques of neuroimaging analysis than
on the other two topics. Numerous researchers have achieved
important advancements and developments in brain image data
processing and brain network connectivity analysis techniques
(Yan et al., 2013b; Glasser et al., 2016). The mapping of the
human brain parcellation atlas has contributed significantly to
the advancement of connectomes (Glasser et al., 2016). Machine
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FIGURE 4

Collaboration network of countries/regions participating in connectome research.

TABLE 3 Top 10 productive institutions in connectome research.

Ranking Institutions Articles Country

1 Harvard Medical School 890 The United States

2 University of Pennsylvania 795 The United States

3 University of California 739 The United States

4 University of Oxford 605 The United Kingdom

5 University of Toronto 588 Canada

6 University of Cambridge 541 The United Kingdom

7 Stanford University 524 The United States

8 Beijing Normal University 516 China

9 Washington University 374 The United States

10 University of Melbourne 358 Australia

learning and deep learning algorithms were widely used to build
classification or prediction models with brain connectivity data
(Horn et al., 2017; Neher et al., 2017). Along with the exploration
of technology, an increasing number of researchers started to
concentrate on the relationship between brain connectivity and
brain function or diseases. The most extensively studied brain
functions were cognition (Mill et al., 2017; Malagurski et al.,
2020), memory (Ousdal et al., 2020; Barron et al., 2021), and
language (Dick et al., 2014; Kaestner et al., 2020). In terms
of diseases, many researchers have investigated the association
between brain connectivity and epilepsy (Bernhardt et al.,
2019; Moguilner et al., 2021), and stroke (Silasi and Murphy,
2014; Koch et al., 2021). In addition, some researchers have
found alterations in brain connectivity in neural degenerative
disorders, such as Parkinson’s disease (Horn et al., 2017; Krismer
and Seppi, 2021) and Alzheimer’s disease (Wang et al., 2020).
Schizophrenia (Lynall et al., 2010; Dong et al., 2018) and
depression (Yun and Kim, 2021) were the most extensively

studied psychiatric disorders in the study of connectomes. The
number of studies on the topic of the underlying mechanisms
of brain connectivity was less than those on the other two
topics, but it was expanding gradually. Through experiments
with elegans (Towlson et al., 2013; Taylor et al., 2021) or mouses
(Oh et al., 2014), researchers have been able to investigate the
mechanisms of neuronal cell potential changes, synaptic activity,
and neuron circuits associated with brain connectivity at the
cellular level. Similarly, some studies sought to discover how
genetic variables influence brain connection and whether they
could serve as a biomarker for neural diseases (Thompson et al.,
2013; Yu et al., 2021).

By summarizing the trend of topic terms over the last
few years, we may better understand the evolution of research
hotspots over time, which can hopefully guide future research
of connectomes. According to the results, the most recent
research trend in the field of connectomes over the last 5 years
has been cross-disciplinary research combined with various
computer-science approaches such as machine learning and
deep learning. Since the year 2020, numerous researchers have
started to pay more attention to the abnormalities in brain
connectivity and neural network mechanisms in alcohol use
disorders (Elton et al., 2021; Gerchen et al., 2021) and migraine
(Burke et al., 2020; Coppola et al., 2020). It has also been shown
that dynamic functional connectivity analysis has become a
popular issue in brain connectivity research. Most previous
studies on functional connectivity potentially assumed that
signals from specific brain regions remain consistent across time
in the same task condition. The dynamic functional analysis
challenges this fundamental premise by investigating changes
in functional signals over time, which is more consistent with
the features of brain networks and introduces new insights to
the study of brain connectomes (Hutchison et al., 2013). The
cross-fertilization of brain connectomes with graph theory was
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FIGURE 5

Collaboration network of institutions engaged in connectome research.

of particular interest, which has become a hot topic. Graph
theory, as a branch of mathematics, entails the construction of
nodes and connected edges to investigate various elements and
their interactions (Sporns, 2018). This theoretical system fits
fairly well with the way the brain is connected (Fornito et al.,
2013). Using graph theory methods, we may topologically model
complex brain network systems and analyze their efficiency
and tightness at multiple scales, including local, global and
modular, to better characterize the patterns of structural and
functional brain connections (delEtoile and Adeli, 2017). This
has contributed significantly to our understanding of the
structure, development, and evolution of brain networks.

Given that the evolution of connectomes is inextricably
linked to the exploration and innovation of a vast number
of research in the field of analysis technology (Topic 1) over
the years, here we highlighted some milestone research in the
fundamental concept and connectome analysis techniques. In
2005, Sporns et al. (2005) proposed the term “connectome”
to refer to the human brain’s complete structural map. There
were only a handful of articles (He et al., 2007; Lichtman and
Sanes, 2008; Seung, 2009) concerning the connectome before
2009, owing to a number of significant obstacles in mapping

the connectome, such as capturing network connections at
different spatial scales, explaining individual variability and
structural plasticity, as well as elucidating the connectome’s
function in determining brain dynamics (Sporns, 2013). In
2010, scientists from 35 centers across the world collaborated
to provide global access to the 1,000 Functional Connectomes
Project dataset, which contains resting-state functional MRI
data from 1,414 participants, opening a new chapter in the
science of human brain function (Biswal et al., 2010). Since
2011, a variety of connectome-related analysis techniques were
proposed by researchers. These studies set the experimental
foundation for following mechanistic and clinical studies and
being heavily cited by publications in the field of connectomes.
Glasser et al. (2013) provided the minimal pipelines for the
preprocessing of various MRI data which were developed
by the Human Connectome Project. The pipelines were
widely used as a preprocessing standard in subsequent brain
imaging and brain connectome research. Van Dijk et al.
(2012) investigated the influence of head motion on fMRI
measurements, concluding that head motion could significantly
and systematically affect the fMRI network measurements
and should be fully considered when analyzing the results.
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FIGURE 6

Research topics of connectomes over time. hcp, human connectome project.

FIGURE 7

Recent research trend topics of connectomes. fmri, functional magnetic resonance imaging; rs-fmri, resting-state functional MRI; bold, blood
oxygenation level dependent.

Similarly, Yan et al. (2013a) comprehensively assessed the
impact of head micromovements on the outcomes of functional
connectivity studies, providing a great reference value for
subsequent experimental design and result discussion. van
den Heuvel and Sporns (2011) further proposed the concept
of “rich club” on the basis of topological research on brain
networks, which gave an essential perspective for the study of the
structural brain network. Xia et al. (2013) developed BrainNet

Viewer, a graph-theoretic network visualization toolbox, to
depict human connectomes as simplified models with balls and
sticks. This MATLAB-based program has become one of the
most popular for visualizing brain networks. Andersson and
Sotiropoulos (2016) created a technique for estimating and
correcting subject motion and distortions in diffusion imaging.
It has been extensively used in the majority of DTI-based
network studies.
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TABLE 4 Top 20 most cited articles in connectome research.

Ranking Article_doi Corresponding
author

Local
citations

Journal Published
year

Topic*

1 10.1016/j.neuroimage.2013.05.041 Van Essen DC 941 NEUROIMAGE 2013 1

2 10.1016/j.neuroimage.2013.04.127 Glasser MF 833 NEUROIMAGE 2013 1

3 10.1371/journal.pcbi.0010042 Sporns O 739 PLOS COMPUT BIOL 2005 1

4 10.1152/jn.00338.2011 Yeo BTT 634 J NEUROPHYSIOL 2011 1

5 10.1523/JNEUROSCI.3539-11.2011 Van Den Heuvel MP 488 J NEUROSCI 2011 1

6 10.1016/j.neuroimage.2012.02.018 Van Essen DC 417 NEUROIMAGE 2012 1

7 10.1038/nature18933 Glasser MF 413 NATURE 2016 1

8 10.1038/nrn3214 Bullmore ET 412 NAT REV NEUROSCI 2012 1

9 10.1038/nn.4135 Finn ES 403 NAT NEUROSCI 2015 2

10 10.1371/journal.pone.0068910 Xia M 332 PLOS ONE 2013 1

11 10.1016/j.neuroimage.2013.05.039 Smith SM 328 NEUROIMAGE 2013 1

12 10.1073/pnas.0911855107 Biswal BB 307 PROC NATL ACAD SCI U S A 2010 1

13 10.1016/j.tics.2013.09.012 Van Den Heuvel MP 307 TRENDS COGN SCI 2013 1

14 10.1038/nature13186 Oh SW 303 NATURE 2014 3

15 10.1093/brain/awu132 Crossley NA 289 BRAIN 2014 1

16 10.1016/j.neuroimage.2013.05.033 Barch DM 283 NEUROIMAGE 2013 2

17 10.1038/nrn3901 Fornito A 277 NAT REV NEUROSCI 2015 2

18 10.1016/j.neuroimage.2013.11.046 Salimi-Khorshidi G 265 NEUROIMAGE 2014 1

19 10.1016/j.neuroimage.2013.05.079 Hutchison RM 257 NEUROIMAGE 2013 1

20 10.1089/brain.2011.0008 Friston KJ 233 BRAIN CONNECTIVITY 2011 1

*Topic of the document was classified according to the topics in Figure 6.

There may be some limitations to the current study.
Firstly, we only analyzed publications from the WoSCC and
Scopus databases, which means that publications not indexed
in these two databases were excluded and citations may
have been underestimated. Secondly, rather than assessing
whole texts, the study mainly evaluated selected information
from the included publications, such as abstracts, titles,
and author’s keywords, etc. Moreover, we included data
till 2021, although the databases were constantly updated,
so the most recent trends in 2022 may not be reflected.
Last but not least, we did not evaluate the impact of the
COVID-19 pandemic on the publications of connectome
research, though there was much evidence indicating that the
breakout of the epidemic has had a significant influence on
academic research (Aggarwal et al., 2021; Malekpour et al.,
2021).

5 Conclusion

In conclusion, the study illustrated a comprehensive
overview of the connectome research. The productivity
and impact of various academic journals, countries/regions,

and institutions were summarized, which could be a guide
for journal selection and international collaboration for
researchers interested in connectomes. Brain functions
and neuropsychological diseases were the major topics,
followed by neuroimaging analysis technology. The
combination with computational analysis algorithms,
such as machine learning or deep learning, has been
the most recent trend in the study of the connectome.
Similarly, recent research has concentrated on the topic
of dynamic functional connectivity and graph theory.
With the quantitative and comprehensive analysis of the
publication on connectomes, this study could provide
researchers with some insight into the overview and
hotspots in this certain field and shed new light on future
research strategies.
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