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Principal component analysis of
photoplethysmography signals
for improved gesture
recognition
Yuwen Ruan, Xiang Chen*, Xu Zhang and Xun Chen

School of Information Science and Technology, University of Science and Technology of China,
Hefei, Anhui, China

In recent years, researchers have begun to introduce photoplethysmography

(PPG) signal into the field of gesture recognition to achieve human-computer

interaction on wearable device. Unlike the signals used for traditional neural

interface such as electromyography (EMG) and electroencephalograph (EEG),

PPG signals are readily available in current commercial wearable devices,

which makes it possible to realize practical gesture-based human-computer

interaction applications. In the process of gesture execution, the signal

collected by PPG sensor usually contains a lot of noise irrelevant to gesture

pattern and not conducive to gesture recognition. Toward improving gesture

recognition performance based on PPG signals, the main contribution of this

study is that it explores the feasibility of using principal component analysis

(PCA) decomposition algorithm to separate gesture pattern-related signals

from noise, and then proposes a PPG signal processing scheme based on

normalization and reconstruction of principal components. For 14 wrist and

finger-related gestures, PPG data of three wavelengths of light (green, red, and

infrared) are collected from 14 subjects in four motion states (sitting, walking,

jogging, and running). The gesture recognition is carried out with Support

Vector Machine (SVM) classifier and K-Nearest Neighbor (KNN) classifier. The

experimental results verify that PCA decomposition can effectively separate

gesture-pattern-related signals from irrelevant noise, and the proposed PCA-

based PPG processing scheme can improve the average accuracies of gesture

recognition by 2.35∼9.19%. In particular, the improvement is found to be

more evident for finger-related (improved by 6.25∼12.13%) than wrist-related

gestures (improved by 1.93∼5.25%). This study provides a novel idea for

implementing high-precision PPG gesture recognition technology.
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Introduction

Photoplethysmography (PPG) sensors embedded in
wearable devices currently on the market are often used for
health detection (Raj et al., 2021; Dhar et al., 2022; Loh et al.,
2022), identity verification (Alotaiby et al., 2021; Dae et al.,
2021), and emotion recognition (Lee et al., 2019; Goshvarpour
and Goshvarpour, 2020). In recent years, researchers have
begun to explore the feasibility of using PPG signal for gesture
recognition to achieve human-computer interaction. Taking
advantage of PPG signals, Zhao et al. (2021) recognized 9
gestures with the average accuracy of 88%, and Yu et al. (2018)
recognized 10 gestures with the average accuracy of 90.55%.
Based on these studies, there is a growing consensus that PPG
has the potential to replace EMG, accelerometer and other
inertial sensors in the field of gesture recognition. Subramanian
et al. (2020) conducted a comparative gesture recognition study
on PPG and surface electromyography (EMG), and verified that
the performance of these two types of signals was at the same
level. Ling et al. (2021) proved that PPG signal is more suitable
than acceleration signal for gesture interactions in wearable
devices from three perspectives: (1) PPG is less affected by
background motion noise; (2) PPG has better recognition
performance of finger-related gestures; (3) PPG is more robust
in reducing training burden. However, although PPG gesture
recognition technology has made some progress, it is still in
early research stage. The recognition accuracy and robustness
have not met the needs of commercial use yet.

The main principle of using PPG signals for gesture
recognition is that hand movement can cause deformation of
blood vessels or tissues, resulting in PPG signal change with
different movement patterns. In occasions such as heart rate
estimation or blood oxygen detection, it is necessary to reduce
motion artifacts to prevent their influence on measurement
performance. However, for human-computer interaction, the
motion information contained in the PPG signal is the key to
realize gesture recognition, on the contrary, the vital sign-related
information is regarded as noise. Consequently, the traditional
PPG signal motion artifacts elimination methods are no longer
applicable in this case.

When gesture actions are used for human-computer
interaction, the signals collected by PPG sensors contain
components related to multiple factors such as heart rate,
gesture relevant motion and gesture irrelevant motion. In
terms of signal sources, the components can be regarded
as independent of each other, and the component irrelevant
to gesture motion is not conducive to gesture recognition.
Meanwhile, the energy levels of PPG signals caused by different
factors may vary greatly. When there exist high-energy noise
components, gesture recognition accuracy is bound to suffer
significantly. Based on above analysis, we believe that if the PPG
signals can be decomposed into components corresponding to

different factors, it is expected to improve the accuracy of PPG-
based gesture recognition through effective noise reduction.

In aspect of signal decomposition algorithms, principal
component analysis (PCA), independent component analysis
(ICA), and empirical mode decomposition (EMD), etc., can
realize the effective decomposition of multi-channel or single-
channel signals, and have been widely used in processing
of biomedical signals such as electroencephalograph (EEG)
(Turnip and Junaidi, 2014; Agarwal and Zubair, 2021; Farsi
et al., 2021) and EMG (Masri et al., 2021; Xiong et al., 2021)
etc. In PPG-based measurement of heart rate and other vital
sign parameters, PCA, ICA, and EMD also have been adopted
to remove motion artifacts, and the ability of these signal
decomposition algorithms in separating the components related
to vital signs and motion artifacts have been confirmed. For
instance, Lee et al. (2020) proposed an ICA-based motion
artifact reduction algorithm for PPG heart rate measurement.
Liu et al. (2021) presented a PCA-based scheme to remove
motion artifacts in PPG signals for blood pressure measurement.
Adopting a method based on ensemble EMD and PCA, Motin
et al. (2018) realized the estimation of heart rate, respiratory
rate, and respiratory activity from PPG signals. For pulse rate
detection, Wang et al. (2010) proposed an approach based on
EMD and Hilbert transform to reduce the artifacts in PPG
signals.

Inspired by the research progress of motion artifacts
elimination based on signal decomposition algorithms,
this study tried to explore the feasibility of using signal
decomposition technology for separating gesture-related
signals from physiological noise and gesture irrelevant
motion noise, and subsequently developed effective PPG
processing scheme for improving the accuracy of PPG gesture
recognition. Its main innovation and contribution lie in that:
(1) PCA algorithm was applied to decompose multi-channel
PPG signals associated with 14 kinds of gestures, and the
characteristic analysis of different principal components was
carried out to explore the feasibility of separating gesture
pattern related signal from irrelevant noise; (2) An effective
gesture PPG signal processing method based on normalization
and reconstruction of principal components was accordingly
developed and carried out.

Materials and methods

Gesture set and data acquisition

In this study, the target PPG gesture dataset is the same
as that in our previous work (Ling et al., 2021). As shown in
Figure 1, the target gesture set consists of 14 kinds of wrist and
finger joint related actions. Gestures G1–G6 mainly focus on
wrist movements, gestures G7–G13 focus on finger movements,
and gesture G14 is a baseline gesture, which requires the hand
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FIGURE 1

Fourteen gestures in the target gesture set.

FIGURE 2

Schematic diagram of (A) the acquisition device and (B) the
wearing example.

in a natural relaxed state. The execution process of each gesture
starts from the resting state that the arm is naturally drooping
and relaxed. When performing the gestures, subject raises the
arm in front of the chest, completes the action, and finally
returns to the relaxed state.

Fourteen healthy subjects (8 males and 6 females)
participated in the data acquisition. The subjects were between
22 and 24 years old. All of them are right-handed and have
no known history of any neural or musculoskeletal disease.
All of the subjects were informed about the experiments and

signed an informed consent form (No. PJ 2014-08-04) approved
by the Ethics Review Committee of First Affiliated Hospital
of Anhui Medical University. Each subject was asked to finish
a set of experiments in four exercise states, namely: Sitting,
Walking (speed of 3 km/h), Jogging (speed of 5 km/h), and
Running (speed of 8 km/h). Except Sitting, the experiments in
the other three exercise states were carried out on a treadmill
(Sole F63) to make sure that the subjects exercise at a constant
speed. In the states of Sitting and Walking, the subjects were
asked to repeat each gesture about 50 times, while in the
states of Jogging and Running, each gesture was repeated about
25 times. There was a 2-s interval between repetitions, and
subjects were asked to rest about 5 min between gestures to
avoid muscle fatigue.

A wristband-type multi-channel PPG acquisition device
(Figure 2A) developed and manufactured by the research team
was used for data collection. The device was equipped with four
PPG sensors (MAX30105, Maxim Integrated Inc., San Jose, CA,
USA). As shown in Figure 2B, the device was worn on the
right forearm at distance of about one finger from the wrist and
were placed near radial artery, ulnar artery, cephalic vein and
guillotine vein, respectively, to obtain PPG signals from the four
major blood vessels. Each PPG sensor alternately emitted the red
light, infrared light and green light, and the 4-channel signals
of the same light from the four PPG sensors were collected
synchronously. The sampling frequency of each channel was set
to 100 Hz.

Principal component characteristic
analysis of gesture
photoplethysmography signals

The PCA algorithm is adopted to decompose multi-
dimensional data into a series of linearly uncorrelated elements
called principal components using orthogonal transformation
(Bro and Smilde, 2014; Lever et al., 2017). As depicted in
Equation 1, the gesture PPG signal matrix X (4-channel, N data
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points) is transformed into principal component matrix PC and
the corresponding weight vector matrixW using PCA algorithm
according to the specific steps as follows:

PC4×N
= W4×4X4×N

X = [X1,X2,X3,X4]T,W = [W1,W2,W3,W4]T (1)

PC = [PC1,PC2,PC3,PC4]T

(1). Perform de-averaging operation on each row of X, which is
also called zero-averaging;

(2). Calculate the 4 × 4 covariance matrix according to
Equation 2;

σ =
1

N−1
XXT (2)

(3). Perform eigenvalue decomposition on the covariance
matrix to find the eigenvalues and corresponding
eigenvectors, and arrange the eigenvectors in descending
order of eigenvalues to get the eigenvector matrix W;

(4). Calculate the principal components according to
Equation 3.

PCi = ωi
TX (3)

Then the characteristic analysis of different principal
components is carried out to explore the feasibility of separating
gesture pattern related signal from irrelevant noise. Principal
component characteristic analysis is carried out in time domain
and frequency domain, respectively. In the time domain, the
envelope, energy, and variance levels of each channel of the raw
PPG signals and each principal component are analyzed. In the
frequency domain, Fast Fourier Transform (FFT) is performed
on the raw PPG signals and principal components, respectively,
to obtain the corresponding frequency domain signals. The
frequency distributions of each channel of the raw PPG signals
and each principal component are analyzed through mean
frequency (MNF) and median frequency (MDF) calculated
by Equations 4, 5, respectively, where M is the number of the
frequency points, fj is the frequency of pointj and Pj is its power
spectrum.

MNF =

∑M
j = 1 fjPj∑M
j = 1 Pj

(4)

∑MDF

j = 1
Pj =

∑M

j=MDF
Pj =

1
2

M∑
j = 1

Pj (5)

In order to depict the relationship between the principal
components and the raw PPG signals, Pearson correlation
coefficient (Ly et al., 2018) is used to measure the correlation
between the signal sequences.

The photoplethysmography gesture
recognition scheme based on principal
component analysis processing

Figure 3 shows the PPG gesture recognition scheme based
on the proposed PCA processing method, including: collecting
4-channel gesture PPG signals, PCA processing of the 4-channel
PPG gesture signals, segmentation of gesture action activity;
and gesture recognition with SVM classifier and KNN classifier.
Gesture PPG signal collection is the same as described above,
and details of the other steps are described below.

The purpose of PCA processing is to reduce the negative
impact of high-energy noise components on gesture recognition
by normalizing different principal components to the same level,
so as to achieve the effect of denoising. For the 4-channel gesture
PPG signals, the detailed procedure of the PCA processing is as
follows:

(1). Decompose the 4-channel PPG signals into four
principal components by means of PCA algorithm as
described above.

(2). Normalize the four principal components with unequal
energy to the same level. In particular, for each PC, to find
the maximum and minimum values firstly, then normalize
the data points greater than zero to [0 1] by the maximum
value, and normalize the data points less than zero to [−1
0] by the absolute value of the minimum;

(3). Obtain the processed PPG signals by reconstructing the
normalized principal components according to Equation 6.

Xprocessed = W · PCnormalized (6)

The goal of gesture segmentation is to extract gesture repetition
samples from continuous signals. A motion background noise-
based segmentation strategy proposed in our previous work
(Ling et al., 2021) is adopted in this study. In this strategy,
considering that the waveform and amplitude of gesture signals
are far greater than the motion background signal, the starting
and ending positions of a gesture repetition is determined by
setting suitable thresholds. The details of the motion noise-based
strategy can be found in Ling et al. (2021). In addition, the
lengths of the gesture repetitions are not always consistent in
different exercise states in this study. In the states of Sitting
and Walking, the completion time of a gesture is about 1 s.
As the movement speed increasing, the time to complete a
gesture will get shorter, and the gesture completion time in
the Running state is about 0.5 s. According to the sampling
rate of 100 Hz, the signal length of a gesture repetition is
about 40–120 data points. To normalize the length of gesture
samples, the down-sampling method is used to extract a 32-
point envelope of each gesture repetition as gesture feature
sample in further classification. Thus, each PPG gesture sample
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FIGURE 3

The PPG gesture recognition scheme based on PCA processing.

is in the form of a matrix of size 4 (channels) ×32 (data
points).

Considering the limited number of samples in the target
database, two classical and traditional machine learning
classifiers, namely Support Vector Machine (SVM) classifier
and K-Nearest Neighbor (KNN) classifier are adopted for
gesture classification in this study. SVM is considered as one
of the most successful machine learning algorithms in recent
years (Cortes and Vapnik, 1995). The basic idea is to solve a
separation hyperplane that can correctly classify the training
data set, and the hyperplane needs to satisfy the maximum
geometric interval between dissimilar data. SVM can solve the
nonlinear case by choosing a suitable kernel function, using
nonlinear processing to map the samples to a high-dimensional
space, and then finding the best classification hyperplane in
the high-dimensional space. In our previous work (Ling et al.,
2021), the SVM classifier achieve the best performance in
PPG gesture recognition compared to Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM). KNN
algorithm originally proposed by Cover and Hart (1967). Since
it is easy to realize and needs less training time, KNN classifier
is commonly used in the field of pattern recognition. After
the analysis of the distribution characteristics of gesture PPG
samples and the experimental verification, for SVM classifier, a
linear kernel function is used, and the penalty factor is set to 1.
And for KNN classifier, the Euclidean distance is selected, and K
is set to 1.

In view of the large individual differences in PPG signals, as
a primary study, PPG gesture recognition in this study is carried
out in a subject-specific way. In the meanwhile, considering
that it is difficult to obtain large-scale gesture training data in
practical human-computer interaction applications, this study
focuses on gesture recognition with small training size. In
particular, for each gesture, all samples of each subject are
randomly divided into 10 parts, one part of samples is used
for training data, and the remaining nine parts testing data.
That is, 10% data is used for training the classifier and 90%
for testing. The result of the recognition task is obtained by
cross-validation method.

Two denoising schemes for
comparison

In order to evaluate the effectiveness and superiority of the
proposed PCA processing method, gesture recognition adopting
two common signal denoising methods, namely Butterworth
low-pass filter (Li, 2007; Liao et al., 2014) and wavelet threshold
denoising (Pan et al., 2007; Cheng and Zhang, 2014; Wang et al.,
2019), have also been conducted in this study. Because the main
spectrum of PPG gesture signals is concentrated in 0∼5 Hz, a
5-order Butterworth low-pass filter with a cut-off frequency of
5 Hz is adopted.

The wavelet threshold denoising is carried out as follows:
(1) Calculate the orthogonal wavelet transform of the noisy
PPG signal, decompose the signal into 4 layers and get the
corresponding wavelet decomposition coefficient. The wavelet
used is “sym6”; (2) Threshold the wavelet coefficients to obtain
the estimate of the wavelet coefficients of the real signal.
In specific, the soft threshold function shown in Equation 7
is adopted, where th is the threshold and γ is the wavelet
coefficient. The minimax thresholding, which is defined as
Equations 8, 9, is used to determine the threshold, where N is
the sum of the total number of wavelet coefficients of the noisy
signal on scales 1 4, J is the binary scale, and W1,k is the wavelet
coefficients of scale 1; (3) Do the inverse wavelet transform, and
regard the reconstructed signal as the de-noised signal.

T
(
γ, th

)
=

{
sgn (γ)

(
|γ| −th

)
, |γ|≥th

0, |γ| < th
(7)

th =

{
σ
(
0.3936+0.1892log2N

)
, N > 32

0, N < 32
(8)

σ = middle
(∣∣W1,k

∣∣ , 0 ≤ k ≤ 2J−1
−1
)
/0.6745 (9)

Statistical analysis

Considering the data in this study do not strictly satisfy
the conditions of normal distribution and homogeneity of
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FIGURE 4

Raw signals and PCA decomposition results of a green light PPG sample (PC, principal component; E, energy; Var, variance; MNF, mean
frequency; MDF, median frequency). (A) The raw signals. (B) The principal components.

variance, non-parametric tests (Kruskal–Wallis test) were
performed to explore the impacts of the independent variables
(wavelength, motion state, denoising method, and classifier) on

the dependent variable (recognition accuracy). The statistical
analysis was carried out on IBM SPSS Statistics (Version 25),
and the significance level is 5%.
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Results and analyses

Principal component characteristics
analysis of multi-channel gestural
photoplethysmography signals

Figure 4 shows the raw signals and PCA decomposition
results of one PPG sample of gesture G5 from a representative
subject (Sub11) in the Running state. From Figure 4A, it
can be seen that the raw signals of different channels have
similar changing trend (average similarity coefficient of pairwise
channels ρ 0.92). The four channels are at almost the same level
in terms of energy. The MNF and MDF of the four channels only
vary slightly. In contrast, as shown in Figure 4B, the envelopes
of the 4 principal components obtained by PCA decomposition
are more distinct (average similarity coefficient of pairwise
components ρ 0.35). For example, PC1 has the highest energy
(8.68e + 06), which is more than 39 times higher than the other
three components (1.26e + 05∼2.20e + 05). At the same time,
the four components have significant frequency differences. PC1
has the lowestMNF (2.51 Hz) andMDF (2.06 Hz), while PC4 has
the largest MNF (9.48 Hz) and MDF (3.05 Hz). Above results
demonstrate that PCA can effectively decompose multi-channel
gesture PPG signals into multiple components with different
energy levels and frequency bands.

To explore which principal components are beneficial to
gesture recognition, all gesture samples of the subject in the
four motion states were analyzed. Figure 5 shows a similarity
comparison between the four channels of raw PPG signals
and the four principal components for all gesture samples, by
calculating the correlation coefficients of pairwise channels or
pairwise PC components (mean ± standard deviation). In all
the 4 motion states, the average correlation coefficients of raw
PPG are up to 0.7, while those of the principal components are
only in the range of 0.29 and 0.35. These results verify that the
four channels of raw signals have a large common component,
however, the four principal components are much independent
of each other.

Figure 6 shows the similarities between the four principal
components and the raw PPG signals for all gesture samples.
The values (mean ± standard deviation) in the figure were
obtained by calculating the correlation coefficients between
one PC component and the four channels of raw signals and
averaging them. From Figure 6 we can find that PC1 is similar
to the raw PPG (ρ 0.83∼0.92) while PC2, PC3, and PC4 are
less similar to the raw PPG (ρ 0.30∼0.54). According to the
above analysis, we believe that component PC1, which has the
largest energy level and the lowest frequency, maybe represents
the common trend of the four channels of raw PPG signal.

Figure 7 compares the correlation coefficients between
the same principal components of the samples belonging to
different gesture types. For samples belonging to different
gestures, the mean correlation coefficients of PC1 are all up

FIGURE 5

The similarities between the four channels of raw PPG signals
and between the four principal components (Subject 11).

FIGURE 6

The similarities between principal components and raw PPG
signals.

FIGURE 7

The similarities between the same principal components of the
samples belonging to different gestures.

to 0.68, while those of PC2, PC3, and PC4 are mostly lower
than 0.4. These results demonstrate further that PC1 mainly
represents a common part in all kinds of gesture samples.
This kind of trend item at a high energy level will mask the
information related to gesture pattern, which may reduce the
recognition accuracy. On the contrary, the other three principal

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1047070
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1047070 October 29, 2022 Time: 14:50 # 8

Ruan et al. 10.3389/fnins.2022.1047070

components may contain more valuable gesture pattern related
details.

In summary, PCA decomposition and principal component
characteristics analysis of multi-channel gestural PPG signals
verify the feasibility of using PCA to separate gesture pattern
related signals from irrelevant motion noise.

The photoplethysmography gesture
recognition based on principal
component analysis processing

Feature distribution of gesture samples
obtained by different denoising schemes

Taking the green light PPG samples of the 14 gestures of the
2nd subject (Sub 2) in the Sitting state as example, we perform
t-SNE (van der Maaten and Hinton, 2008; Pezzotti et al., 2017)
dimensionality reduction on PPG envelopes obtained by PCA
processing, Butterworth low-pass filter and Wavelet threshold
denoising, respectively. The obtained scatter plots of feature
distribution are shown in Figure 8. In the cases of Butterworth
low-pass filter and Wavelet threshold denoising, as shown in
Figures 8B,C, respectively, there are six gestures that can be
easily distinguished from other gestures. For the remaining eight
gestures, the features are too close to meet the recognition
condition. However, when PCA processing is applied, as shown
in Figure 8A, the features of all 14 gestures can be separated
effectively from each other. Above results demonstrate, to some
extent, the possibility of improving gesture recognition accuracy
by the proposed PCA processing scheme.

Recognition results for 14 gestures
Photoplethysmography gesture recognitions of 14 gestures

are carried out in the cases of three lights and four motion states,
using SVM and KNN classifiers, respectively. For each case, the
average gesture recognition accuracies among 14 gestures and
14 subjects are shown in Table 1. In order to compare the effect
of different denoising schemes and classifiers on PPG gesture
recognition in the cases of different lights and different motion
states, nonparametric tests are performed further and the results
are shown in Table 2. Combined the Tables 1, 2, the following
phenomena can be observed (The values presented in following
parts, if not otherwise specified, are the average recognition
accuracies and standard deviations for all recognition tasks
involving the discussing factors):

(1). The wavelength of PPG signal has a significant impact on
the recognition accuracy (p = 0.000∗∗). Specifically, the
recognition accuracy of green light (86.71 ± 7.53%) is
significantly (p = 0.000∗∗) lower than those of red light
(93.25 ± 5.44%) and infrared light (93.48 ± 4.49%), and
there is no significant difference between red light and
infrared light (p = 0.975). From this result, it can be

seen that although the green PPG suitable for heart rate
detection is generally embedded in wearables, it is not the
best choice for gesture recognition.

(2). The intensity of the motion has a significant impact
on the recognition accuracy (p = 0.000∗∗). In general,
the recognition accuracy decreases with the increase of
background motion speed: 92.70 ± 5.93% for Sitting,
92.94± 6.05% for Walking, 90.35± 7.01% for Jogging and
88.60± 6.92% for Running. However, there is no significant
difference between Sitting and Walking (p = 0.501). This
result shows that the low-intensity background motion has
little influence on the recognition effect. Only movement
that reaches a certain intensity makes the recognition
accuracy decrease.

(3). The performance of the PCA processing is significantly
(p = 0.000∗∗) better than the other two denoising schemes.
For the four motion states, three lights of PPG and two
classifiers, the average recognition accuracies obtained by
the three different denoising schemes are respectively:
94.61± 5.24% for PCA, 89.22± 6.87% for Butterworth and
89.61± 6.58% for Wavelet. Furthermore, the performances
of Butterworth denoising and Wavelet denoising have no
significant difference (p = 0.536). This result verifies the
superiority of the proposed PCA denoising scheme.

(4). According to the results shown in Table 1, the recognition
accuracy of SVM classifier (91.87± 6.20%) is slightly higher
than that of KNN (90.11 ± 8.91%), and the statistical
analysis result also shows that the classifier truly has some
impact on the accuracy (p = 0.002∗). However, in terms of
the accuracy requirement of human-computer interaction,
a difference of only one percent is not enough to conclude
that SVM is superior to KNN. Considering the advantage
of KNN in computing speed, it can still be considered that
both SVM and KNN classifiers are well-suited for the PPG
gesture recognition.

Recognition results for wrist-related gestures
and finger-related gestures

As mentioned above, the target gesture set contains 6
wrist-related gestures (G1–G6) and 7 finger-related gestures
(G7–G13). In order to compare the performance of the three
denoising schemes on these two types of gesture, we further
conduct recognition experiments on wrist-related gestures and
finger-related gestures, respectively. The gesture recognitions
are carried out using the red-light PPG data under the four
motion states. Figures 9A,B give the recognition results of wrist-
related gestures and finger-related gestures using SVM and KNN
classifiers, respectively. Nonparametric tests are performed to
explore the effects of denoising methods on recognition.

The recognition of finger-related gestures has always been
a difficulty in the field of gesture recognition. As shown in
Figure 9, when PPG gesture signals are denoised by general
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FIGURE 8

t-SNE dimensionality reduction feature distributions of gesture signal envelope in the cases of three denoising schemes. (A) PCA.
(B) Butterworth low-pass filter. (C) Wavelet.

TABLE 1 Hand gesture recognition accuracies (%) of 14 gestures.

Classifier SVM KNN

Motion states Lights PCA Butterworth Wavelet PCA Butterworth Wavelet

Sitting Red 99.44± 0.41 93.57± 3.18 93.86± 3.17 99.25± 0.56 91.89± 4.43 92.16± 4.30

Infrared 98.24± 1.65 94.02± 2.92 94.02± 3.16 97.70± 1.93 92.57± 3.79 92.41± 4.07

Green 93.21± 5.20 88.38± 4.34 88.51± 4.50 91.22± 6.75 84.01± 6.62 84.14± 6.62

Walking Red 98.81± 1.20 93.76± 4.12 93.96± 4.08 98.62± 1.47 92.04± 5.24 92.23± 5.11

Infrared 97.87± 1.60 95.14± 2.37 95.28± 2.39 97.55± 1.51 93.97± 2.49 93.99± 2.82

Green 92.86± 4.08 88.39± 6.35 88.55± 6.07 90.42± 5.35 84.70± 8.29 84.83± 7.97

Jogging Red 95.43± 4.20 90.69± 5.97 91.59± 5.36 94.80± 4.38 89.51± 6.50 90.28± 5.97

Infrared 95.31± 2.55 91.96± 5.60 92.96± 4.98 94.68± 2.97 91.35± 6.19 92.18± 5.66

Green 89.57± 5.51 85.08± 8.60 85.47± 8.11 88.28± 5.59 83.48± 9.05 83.75± 8.60

Running Red 97.00± 2.31 88.15± 4.22 88.74± 4.66 96.72± 2.35 87.53± 4.64 88.08± 5.14

Infrared 94.19± 3.18 88.88± 3.89 89.22± 3.65 93.61± 3.33 88.15± 4.15 88.31± 4.06

Green 88.48± 5.89 82.82± 8.51 83.82± 7.54 87.47± 6.94 81.30± 9.62 82.40± 8.25

Total 95.03± 4.86 90.07± 6.35 90.50± 6.05 94.19± 5.58 88.38± 7.28 88.73± 6.97

TABLE 2 The results of non-parametric tests for gesture recognition.

Factors Sig.
for accuracy

Multiple comparisons
(Motion state)

Sig.
for accuracy

Main Light 0.000** Running Jogging 0.001*

Motion state 0.000** Walking 0.000**

Processing
method

0.000** Sitting 0.000**

Classifier 0.002* Jogging Walking 0.000**

Sitting 0.000**

Walking Sitting 0.501

Multiple comparisons
(Light)

Sig.
for accuracy

Multiple comparisons
(Processing method)

Sig.
for accuracy

Green Red 0.000** PCA Butterworth 0.000**

Infrared 0.000** Wavelet 0.000**

Red Infrared 0.975 Butterworth Wavelet 0.536

*p < 0.05, **p < 0.001.
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FIGURE 9

The gesture recognition results for wrist-related gestures and
finger-related gestures under the four motion states,
∗p < 0.05, ∗∗p < 0.001. (A) Wrist-related gestures.
(B) Finger-related gestures.

denoising means, the recognition accuracies of finger-related
gestures are obviously lower than those of wrist-related gestures:
95.34 ± 4.23% for wrist-related and 88.95 ± 6.69% for finger-
related when performing Butterworth low-pass filter denoising;
95.88 ± 4.02% for wrist-related and 89.49 ± 6.46% for
finger-related when performing wavelet threshold denoising. In
comparison, the proposed PCA denoising scheme can effectively
improve the recognition performance of finger-related gestures.
Applying the PCA processing scheme, the recognition accuracy
of the finger-related gestures (97.91 ± 3.36%) is close to that of
the wrist-related gestures (98.68 ± 2.70%). In the meanwhile,
PCA processing improves finger-related gestured recognition
accuracy better than wrist-related gestures. Taking the state of
Running as example, for finger-related gestures, the average
accuracy of PCA denoising scheme is 11.77% higher than
Butterworth and 11.00% higher than Wavelet when using SVM
classifier, and 12.13% higher than Butterworth and 11.63%
higher than Wavelet when using KNN classifier. However, for
wrist-related gestures, the average accuracy of PCA denoising
scheme is only 5.14% higher than Butterworth and 4.21% higher
than Wavelet when using SVM classifier, and 5.25% higher than

Butterworth and 4.52% higher than Wavelet when using KNN
classifier.

Discussion

To the best of our knowledge, this is the first research
paper that specifically focuses on gestural PPG signal denoising.
Combined with the state of the art relevant to PPG gesture
recognition technology, the research results obtained in this
study can be discussed from the following aspects.

The feasibility of separating gesture
pattern related signals from irrelevant
noises using principal component
analysis algorithm

For PPG gesture recognition, how to extract gesture motion
information from irrelevant motion and physiological signals
is the key to determine the recognition performance. Inspired
by the research progress of motion artifact elimination of
PPG signal based on signal decomposition algorithm, this
study carries out multi-channel PPG signal decomposition and
principal component feature analysis using PCA algorithm
to explore the feasibility of separating gesture pattern related
signals from irrelevant noises. The experimental results
demonstrate that PCA algorithm can effectively decompose the
four-channel gesture PPG signals into four components with
different energy levels and frequency bands. The component
PC1, which has the largest energy level and the lowest frequency,
maybe represent the common trend item of the four channels
of raw PPG signal. We speculate that this kind of trend item
at a high energy level will mask the information related to
gesture pattern, thus reduce the recognition accuracy. On the
contrary, the other three principal components may contain
more valuable gesture pattern related details. The results of PCA
decomposition and principal component analysis of gesture
PPG signal provide a new way to propose effective signal
processing method.

In fact, PCA algorithm has been widely used to decompose
PPG signals to extract the needed physiological information.
Liu et al. (2021) used PCA to separate the arterial pulse,
capillary pulse and motion artifacts. Their acquisition device
contains four colors of light, namely: blue, green, yellow, and
infrared light, and one channel for each light. Because lights
of different wavelengths reach the skin at different depths, the
PPG signals of different lights can reflect different physiological
information. In their study, based on PCA decomposition
of the 4-channel PPG, PC1 was considered as arterial pulse
which should have the largest energy. However, when PCA was
applied to blue PPG and green PPG, PC1 was considered to
be capillary pulse and PC2 was motion artifact. In the study
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of Motin et al. (2018) which used PCA with ensemble empirical
mode decomposition (EEMD) to decompose PPG signals, the
PC1 and PC2 were considered to represent heart and respiratory
activity, respectively.

In summary, in related studies of physiological signal
extraction, the first and second principal components which
always have the largest energy, are often considered as the
approximation of the required signals. However, in this study,
we find that the first PC with the largest energy is likely the
noise that interferes gesture recognition, and the last three
principal components with low energy are more likely to be the
gesture-pattern-related signal.

The superiority of the proposed
principal component analysis
processing scheme in
photoplethysmography gesture
recognition

Although a number of studies have verified the feasibility
of using PPG signals for gesture recognition in recent years,
the problem of signal denoising has not attracted enough
attention. In this study, a PPG processing method based
on principal component normalization and reconstruction
is proposed and implemented. The results of gesture
recognition experiments on the data of 14 gestures, three
kinds of light (red, infrared, and green) and four motion
states (sitting, walking, jogging, and running) demonstrate
the superiority of the PCA processing scheme from the
following aspects.

First, the PCA processing method can improve the accuracy
of gesture recognition to a certain extent (as shown in
Tables 1, 2). As shown in Table 3, which summarizes
representative studies in the field of PPG gesture recognition in
recent years, most studies adopted common denoising methods
such as Discrete Wavelet Transform (DWT) (Yu et al., 2018),
Butterworth filter (Ling et al., 2021; Zhao et al., 2021), de-
averaging (Subramanian et al., 2020), etc., for PPG signal
processing. As we know, the objective of the common denoising
methods usually is to remove motion noise that is not in
the frequency band of gesture-related signals. In this study,
compared with Butterworth denoising and Wavelet denoising,
PCA denoising shows obvious superiority in improving the
accuracy of PPG gesture recognition. This result verifies that,
the simple denoising methods of removing signal in certain
frequency band cannot sufficiently remove noise and thus
improve the accuracy of gesture recognition. On the contrary,
PCA is a better choice for PPG gesture recognition. Therefore,
we should deeply explore PPG signal denoising scheme
based on PCA and other signal decomposition algorithms in
the future. T
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Second, the PCA processing scheme is of great
significance for the realization of human-computer
interaction based on finger-related gestures. From the
perspective of actual application, the finger-related gestures
are more suitable for interactive scenarios because they
usually have more clear and easy-to-understand meaning.
However, limited by factors such as small motion range
and low degree of muscle contraction, when using
electromyography or acceleration signals for gesture
recognition, the distinguishability of finger joint motion
is usually lower than that of wrist joint motion. In this
study, the experimental results indicate that, for PPG
gesture recognition technology, the distinguishability of
finger-related gestures is also lower than that of wrist-
related gestures. However, the proposed PCA processing
scheme can improve the finger-related gestures recognition
performance significantly. The PCA processing scheme
is able to increase the recognition accuracy of finger-
related gestures to a level similar to that of wrist-related
gestures. With only 10% of the samples for training,
the average recognition accuracy of seven finger-related
gestures can achieve 97.91%, which can basically meet the
commercial needs.

The advantage of the
photoplethysmography gesture
recognition framework implemented
in this study

Compared with the first three studies (Yu et al., 2018;
Subramanian et al., 2020; Zhao et al., 2021) in Table 3, a
relatively large target gesture set consisting of six wrist-related
gestures, seven finger gestures, and a baseline gesture is targeted
in this study, and the advancement of the research results is
reflected in the following aspects:

1) Gesture recognition performance of PPG signals with
different wavelengths is explored. Most current commercial
wearable products are embedded with green PPG sensors
because green light has a greater absorption rate for
oxyhemoglobin and deoxyhemoglobin, which makes it
more suitable for detection of physiological information.
However, the experimental results in this study show that
green PPG is not the best choice for gesture recognition.
Regardless of motion state and denoising method used, the
recognition performance of green PPG is obviously lower
than that of red and infrared lights;

2) The recognition performance of PPG signals in more
motion scenarios is investigated. In the works of
Subramanian et al. (2020) and Zhao et al. (2021), PPG
gesture recognition were carried out only in stationary
state and simple body-motion scenarios. The work of Yu

et al. (2018) added some motion scenarios such as walking
and jogging. In this study, the background motion is
designed more purposefully. We designed a series of tasks
with sequentially increasing background motion velocities
from 0 to 8 km/h, and strictly controlled the motion
velocity to be constant using a treadmill. The experimental
results demonstrate the low-intensity motion backgrounds
such as walking at a speed of 3 km/h have little impact on
the recognition, while the high-intensity movements have
certain influences;

3) The gesture recognition framework proposed in this study
has low training burden, which makes it valuable in the
application of human-computer interaction. As shown in
Table 3, the data for training accounts for 50∼90% of the
target dataset in the relevant works. Considering the needs
of practical application, we only use 10% of the samples to
train the classifier in this study, which means that for each
gesture, no more than 5 samples are included in the training
dataset. Although the training test ratio is as low as 1:9, it
still achieves satisfactory gesture recognition accuracy. In
sitting state, using SVM classifier, the recognition accuracy
of red PPG achieves 99.44%, and even the green PPG, which
is not good at gesture recognition, achieves 93.21%.

Compared with our previous work published in 2021
(Ling et al., 2021), this study follows the same design of the
gesture set and recognition tasks, but changes the gesture
recognition framework. The recognition accuracies obtained
in this study are significantly higher than those of our
previous study. Taking Sitting state and SVM classifier as
example, when the train test ratio is 1:9, the recognition
accuracies are improved by 16.84% for red PPG, 14.84%
for infrared PPG and 24.51% for green PPG. We believe
the main reason why this study achieves better gesture
recognition performance lies in that it adopts the proposed
PCA processing scheme, which aims to weaken the noise
component and highlight the gesture pattern related signal
that is beneficial for gesture recognition. In our previous
work, the signal preprocessing employed Butterworth low-
pass filtering with a cutoff frequency of 5 Hz and amplitude
normalization for each channel. According to the experimental
result of this study, the denoising effect of Butterworth low-
pass filtering is lower than the PCA processing method.
At the same time, amplitude normalization also does not
necessarily have a positive effect on gesture recognition.
Since the four-channel PPG signals are collected at different
locations on the wrist, each channel mainly responds to
blood flow changes in different vessels. When performing
different gestures, there should exist differences in the blood
flow at the corresponding locations of these four channels,
which helps to increase the distinguishability of the gestures.
However, the normalization process puts the amplitude of
the four channels at the same level, which means that the
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important difference information between gestures is erased.
Therefore, the normalization is not conducive to gesture
recognition.

Furthermore, SVM achieves the best performance for
PPG gesture recognition in the previous work. Therefore,
this study still uses the SVM classifier to complete the
gesture recognition task. Meanwhile, considering that it is
easier to implement and requires less training time, the KNN
classifier is also adopted in this study. The experimental
results show that, although the accuracy is slightly lower
than that of SVM, the KNN classifier also has good
recognition performance when using the proposed PCA
processing scheme.

Limitations and future work

Although this study provides a thought to improve the
performance of PPG gesture recognition, it still has some
limitations. First of all, the performance of the PCA processing
method proposed in this study is only verified offline, but
not tested online. Therefore, when the proposed method is
applied to short signal sequences in online situations, the
performance may degrade; Second, this study only takes the
PCA algorithm as an example to preliminarily prove that the
signal decomposition algorithm can effectively separate gesture
pattern related signal from irrelevant noise. Of course, signal
decomposition algorithms such as ICA, EMD, etc., may have the
same function, and may even achieve better performance than
the proposed PCA processing scheme. Third, the PPG gesture
recognition in this study only uses a single batch of data and does
not consider the effects of sensor displacement and other factors
on the recognition performance. To promote the practicality
of PPG gesture recognition technology, issues such as sensor
displacement caused by repeated wearing of the device will be
the focus of our future work.

Conclusion

In this study, PCA decomposition technique is introduced
into the noise processing of gesture PPG signals. After verifying
the feasibility of using the PCA algorithm to separate the gesture
pattern-related signals and irrelevant noises, a PCA processing
method based on normalization and reconstruction is proposed
and implemented. The superiority of the PCA processing
scheme for improving the gesture recognition accuracy is
verified in the recognition tasks of 14 gestures from 14 subjects,
three kinds of light and four motion states, using two classifiers.
In addition, the proposed PCA processing scheme is found to be
more effective in improving the recognition accuracy of finger-
related gestures. The research of this paper contributes to the
development of PPG gesture recognition technology.
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