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Introduction: Analysis of task fMRI studies is typically based on using ordinary

least squares within a voxel- or vertex-wise linear regression framework

known as the general linear model. This use produces estimates and standard

errors of the regression coe�cients representing amplitudes of task-induced

activations. To produce valid statistical inferences, several key statistical

assumptions must be met, including that of independent residuals. Since task

fMRI residuals often exhibit temporal autocorrelation, it is common practice

to perform “prewhitening” to mitigate that dependence. Prewhitening involves

estimating the residual correlation structure and then applying a filter to

induce residual temporal independence. While theoretically straightforward,

a major challenge in prewhitening for fMRI data is accurately estimating the

residual autocorrelation at each voxel or vertex of the brain. Assuming a

global model for autocorrelation, which is the default in several standard

fMRI software tools, may under- or over-whiten in certain areas and produce

di�erential false positive control across the brain. The increasing popularity of

multiband acquisitions with faster temporal resolution increases the challenge

of e�ective prewhitening because more complex models are required to

accurately capture the strength and structure of autocorrelation. These issues

are becoming more critical now because of a trend toward subject-level

analysis and inference. In group-average or group-di�erence analyses, the

within-subject residual correlation structure is accounted for implicitly, so

inadequate prewhitening is of little real consequence. For individual subject

inference, however, accurate prewhitening is crucial to avoid inflated or

spatially variable false positive rates.

Methods: In this paper, we first thoroughly examine the patterns, sources

and strength of residual autocorrelation in multiband task fMRI data.

Second, we evaluate the ability of di�erent autoregressive (AR) model-based

prewhitening strategies to e�ectively mitigate autocorrelation and control

false positives. We consider two main factors: the choice of AR model order

and the level of spatial regularization of AR model coe�cients, ranging

from local smoothing to global averaging. We also consider determining

the AR model order optimally at every vertex, but we do not observe

an additional benefit of this over the use of higher-order AR models

(e.g. (AR(6)). To overcome the computational challenge associated with

spatially variable prewhitening, we developed a computationally e�cient

R implementation using parallelization and fast C++ backend code. This

implementation is included in the open source R package BayesfMRI.
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Results: We find that residual autocorrelation exhibits marked spatial

variance across the cortex and is influenced by many factors including

the task being performed, the specific acquisition protocol, mis-modeling

of the hemodynamic response function, unmodeled noise due to subject

head motion, and systematic individual di�erences. We also find that local

regularization is much more e�ective than global averaging at mitigating

autocorrelation. While increasing the AR model order is also helpful, it has

a lesser e�ect than allowing AR coe�cients to vary spatially. We find that

prewhitening with an AR(6) model with local regularization is e�ective at

reducing or even eliminating autocorrelation and controlling false positives.

Conclusion: Our analysis revealed dramatic spatial di�erences in

autocorrelation across the cortex. This spatial topology is unique to each

session, being influenced by the task being performed, the acquisition

technique, various modeling choices, and individual di�erences. If not

accounted for, these di�erences will result in di�erential false positive control

and power across the cortex and across subjects.

KEYWORDS

temporal autocorrelation, prewhitening, false positive control, task fMRI analysis,

multiband acquisition, surface-based analysis

1. Introduction

The general linear model (GLM) has long been a popular

framework for the analysis of task functional magnetic

resonance imaging (fMRI) data. In the GLM, a linear regression

model is used to relate the observed blood oxygenation level

dependent (BOLD) signal to the expected BOLD response due

to each task or stimulus in the experiment, along with nuisance

regressors, yielding an estimate of the activation across the

brain due to each task (Friston et al., 1994). Hypothesis testing

with multiplicity correction is used to determine areas of the

brain that are significantly activated in response to each task

or contrast. One well-known issue with the GLM approach is

that BOLD data generally violates the ordinary least squares

(OLS) assumption of residual independence (Lindquist, 2008;

Monti, 2011). When this happens, standard errors associated

with themodel coefficients are biased, invalidating inference and

generally giving rise to inflated false positive rates for areas of

activation.

Violations of residual independence are most consequential

for subject-level inference (the “first-level GLM”), since OLS-

based group inference (the “second-level GLM”) has been found

to be relatively robust to dependent errors in the first level

(Mumford and Nichols, 2009). While group-level analysis has

historically been the norm in fMRI studies, more recently

subject-level analysis is gaining in relevance. This in part due

to the rise of “highly sampled” datasets collecting lots of data

on individual subjects (Choe et al., 2015; Laumann et al., 2015;

Braga and Buckner, 2017; Gordon et al., 2017), as well as

growing interest in using fMRI data for biomarker discovery,

clinical translation, and other contexts where robust and reliable

subject-level measures are required. Unfortunately, fMRI data

presents several challenges for proper statistical analysis (Monti,

2011), and subject-level task fMRI measures have been shown

to be unreliable (Elliott et al., 2020). One important factor for

reliable subject-level task fMRI analysis is dealing appropriately

with temporal dependence to avoid inflated rates of false

positives.

Generalized least squares (GLS) is a regression framework

that accounts for dependent and/or heteroskedastic errors.

Briefly, in a regression model y = Xβ + ǫ, ǫ ∼ N(0,V), assume

that the residual covariance matrix V is known. Then the GLS

solution is β̂
GLS
= (X′WX)−1X′Wy, where W = V−1, and

Var(β̂
GLS

) = (X′WX)−1. This is mathematically equivalent

to pre-multiplying both sides of the regression equation by

V−1/2, which induces independent and homoskedastic residuals

and gives rise to an OLS solution of the same form as β̂
GLS

.

In the context of task fMRI analysis, such “prewhitening” is

a common remedy to eliminate temporal dependence as it

produces the best linear unbiased estimate (BLUE) of model

coefficients (Bullmore et al., 1996). A key challenge in GLS

analysis is determining the form of V, which is not actually

known in practice. In a conventional statistical analysis, an

iterative approach to estimating V is commonly used through

iteratively reweighted least squares (IRLS). However, in fMRI

analysis this is typically considered computationally prohibitive
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and prone to overfitting, so V is often estimated in a single

pass based on the OLS residuals (Woolrich et al., 2001). To

constrain the estimation of V, a parametric form is typically

assumed based on the temporal structure of the data, such as

an autoregressive (AR) or AR moving average (ARMA) model.

It is also common practice to regularize the AR or ARMAmodel

parameters by smoothing or averaging across the brain or within

tissue boundaries.

Prewhitening methods are implemented in the major

software packages AFNI (Cox, 1996), FSL (Jenkinson et al.,

2012) and SPM (Penny et al., 2011). Yet, many of these standard

prewhitening techniques have received criticism for failing to

effectively remove residual autocorrelation (Worsley et al., 2002;

Eklund et al., 2012). These criticisms have pointed to two main

sources of mismodeled residual autocorrelation: (1) use of overly

parsimonious autocorrelation models that fail to fully capture

the autocorrelation in the data—an issue of ever-increasing

relevance with the rise of faster multi-band acquisitions—

and/or (2) assuming the same degree of residual autocorrelation

across the brain. Olszowy et al. (2019) performed a systematic

comparison of prewhitening techniques implemented in SPM,

AFNI and FSL using several task and rest datasets of varying

repetition time (TR) between 0.645 and 3s. They found that,

while some techniques clearly performed better than others, all

failed to control false positives at the nominal level, especially for

low TR data. The best performance was seen using AFNI, which

assumes a first-order autoregressive moving average (ARMA)

model with unsmoothed, spatially varying coefficients, and the

FAST option in SPM, which employs a flexible but global

model using a dictionary of covariance components (Corbin

et al., 2018). Interestingly, these two methods represent opposite

approaches: AFNI allows for spatially varying autocorrelation

but uses a relatively restrictive ARMA(1,1) model, while SPM

FAST uses a quite flexible temporal correlation model but

imposes a restrictive global assumption. Neither AFNI, FSL, or

SPM currently offers a prewhitening technique that provides for

a flexible and spatially varying autocorrelationmodel. Therefore,

the ability to fully account for residual autocorrelation remains

a limitation of many first-level task fMRI analyses.

Several recent studies have considered the ability of higher-

order autoregressive models to adequately capture residual

autocorrelation in fast TR fMRI data (Bollmann et al., 2018;

Chen et al., 2019; Luo et al., 2020). Bollmann et al. (2018) found

that optimal AR model order and AR coefficient magnitude

varied markedly across the brain in fast TR task fMRI data,

and that physiological noise modeling reduced but by no means

eliminated the spatial variability in residual autocorrelation

or the need for a high AR model order. Woolrich et al.

(2004) examined the spatial dependence of autocorrelation in a

Bayesian setting by utilizing AR models with a range of orders

from 0 to 3 which is insufficient subsecond TR scans. Luo et al.

(2020) used resting-state fMRI data of varying sub-second TRs

to examine false positives rates with assumed task paradigms.

They found that the optimal ARmodel order varied spatially and

depended on TR, with faster TR requiring a higher AR model

order. They found that a too-low or too-high AR model order

resulted in inflated false positive rates, and that a global model

order (even with spatially varying coefficients) performed worse

than when model order was allowed to vary spatially. Their

approach of allowing the AR model order to vary spatially also

outperformed both SPM FAST and the ARMA(1,1) model used

by AFNI, the two methods found to have the best performance

by Olszowy et al. (2019).

These recent studies also highlight several challenges

associated with the use of volumetric fMRI in prewhitening.

Both Bollmann et al. (2018) and Luo et al. (2020) observed sharp

differences in the strength of residual autocorrelation across

tissue classes, with cerebral spinal fluid (CSF) exhibiting much

stronger autocorrelation than gray matter, and white matter

exhibiting relatively low autocorrelation. Because of this, they

point out that the standard practice of spatial smoothing (of the

data, of the AR model order, or of the AR coefficient estimates)

may be problematic at tissue class boundaries: gray matter

bordering CSF may have higher autocorrelation due to mixing

with CSF signals, while gray matter bordering white matter

may have decreased autocorrelation due to mixing with white

matter signals. Indeed, Luo et al. (2020) found smoothing of the

sample autocorrelations at 6 mm FWHM to result in inflated

false positive rates. Yet some regularization of autocorrelation

model parameters is believed to be necessary to avoid very

noisy estimates (Worsley et al., 2002; Bollmann et al., 2018;

Chen et al., 2019), and data smoothing is nearly universal

practice in the massive univariate framework, given its ability

to enhance signal-to-noise ratio (SNR) and increase power to

detect activations. This presents a dilemma: smoothing across

tissue classes can be detrimental for autocorrelation modeling,

but regularization of autocorrelation coefficients is needed to

avoid overly noisy estimates.

The use of cortical surface fMRI (cs-fMRI) could mitigate

this dilemma in two ways. First, geodesic smoothing along the

surface can increase SNR without blurring across tissue classes

or neighboring sulcal folds. Second, by eliminating white matter

and CSF, the spatial variability in residual autocorrelation is

simplified, since the most dramatic spatial differences have been

observed between tissue classes (Penny et al., 2003, 2007). An

additional potential benefit of the use of cs-fMRI is the utility

of spatial Bayesian models, which cs-fMRI is uniquely suited

for (Mejia et al., 2020), to spatially regularize autocorrelation

coefficients in a statistically principled way. Therefore, in this

work we adopt cortical surface format fMRI.

In this work, we advance prewhitening methods for modern

fMRI acquisitions in three ways. First, we thoroughly examine

the spatial variability and influence of various factors on residual

autocorrelation, including the task protocol, the acquisition

technique, and systematic individual differences. We also

examine the influence of potential model mis-specification for

the GLM. Un-modeled neural activity is temporally correlated

and may be absorbed into the model residuals, thus increasing
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residual autocorrelation (Penny et al., 2003; Lindquist et al.,

2009; Bollmann et al., 2018). Task-related neural activity is

assumed to be captured through task regressors, which are

typically constructed by convolving a hemodynamic response

function (HRF) with a stick function representing the task

paradigm. However, the shape and duration of the HRF are

known to vary across the brain (Lindquist and Wager, 2007)

as well as within and across individuals (Aguirre et al., 1998).

Furthermore, sensitivity of the canonical HRF within and

between subjects is discussed in Badillo et al. (2013). For

example, the canonical HRF is found to be more suitable choice

for modeling motor cortex regions while the choice of more

flexible HRF modeling improved the sensitivity on parietal

regions. Therefore, assuming a fixed “canonical” HRFmay fail to

adequately capture task-induced activity (Lindquist et al., 2009).

More flexible models can capture differences in HRF height,

width, and time to peak, including the model with temporal and

dispersion derivatives (Friston et al., 1998b), the finite impulse

response model (Glover, 1999), and the inverse logit model

(Lindquist and Wager, 2007). Here, we consider the effect of

including the temporal and/or dispersion derivatives of the HRF

on autocorrelation. Another potential source of model mis-

specification is failure to account for noise resulting from head

motion, scanner drift, and other sources. If such noise is not

modeled, it will be reflected in the model residuals. Because

such sources of noise tend to be temporally correlated, this

will tend have the effect of increasing residual autocorrelation.

Here, we consider the effect of including more or fewer head

motion-based regressors on residual autocorrelation.

Second, we investigated the autocorrelation of GLM

residuals by utilizing voxel specific AR models as suggested by

Penny et al. (2003) and Luo et al. (2020). This investigation

was conducted under two dependent conditions: (1) model

order and (2) surface smoothing. We evaluate the effectiveness

of different autoregressive (AR) model-based prewhitening

strategies at reducing autocorrelation and controlling false

positive rates. We consider AR model order varying from 1

to 6, as well as determining the AR model order optimally at

each vertex. We also consider local regularization of AR model

coefficients vs. global averaging. We find that local surface-

based regularization of AR model coefficients is much more

effective than a global prewhitening strategy at eliminating

autocorrelation across the cortex.

Third, we overcome the major computational challenges

associated with spatially-varying prewhitening. We have

developed a computationally efficient implementation of the

AR-based prewhitening techniques considered here. Using

parallelization and backend code written in C++, we are able

to perform spatially varying prewhitening very efficiently

for surface-based analysis and “grayordinates” analysis more

generally. This implementation is available in the open-source

BayesfMRI R package (Mejia et al., 2022).

The remainder of this paper is organized as follows. In

Section 2 we describe the data, the GLM approach, and the

methods for autocorrelation estimation, and prewhitening. We

also describe a mixed effect modeling framework we use to

assess the influence of several key factors on the strength

and spatial variability of residual autocorrelation, including

acquisition method, task protocol, modeling choices, and

individual variability. In Section 3 we present results based

on an analysis of several task and resting state fMRI studies

from the Human Connectome Project, utilizing 40 subjects with

test-retest data. In Section 4, we conclude with a discussion

of these results and what they suggest for future research in

prewhitening.

2. Materials and methods

2.1. Data collection and processing

The data used in this paper are from the Human

Connectome Project (HCP) 1200-subject release (http://

humanconnectome.org) collected at Washington University in

St. Louis. The HCP includes task and resting-state fMRI data

collected on a customized Siemens 3T Skyra scanner with a

multiband factor of 8 to provide high spatial (2 mm isotropic

voxels) and temporal (TR = 0.72s) resolution. Functional

MRI acquisition was performed using a simultaneous multi-

slice gradient echo EPI sequence. Data were collected with a

32-channel head coil, with no in-plane acceleration and an

echo-time of 33.1 ms (Van Essen et al., 2013). The fMRI data

were processed according to the HCP minimal preprocessing

pipelines including projection to the cortical surface, as

described in Glasser et al. (2013). The resulting surface mesh

for each hemisphere consists of 32,000 vertices. For all fMRI

scans, we perform surface-based spatial smoothing using a

2-dimensional Gaussian kernel with 6mm full-width-at-half-

maximum (FWHM). To reduce the computational burden of

estimating the mixed-effects models described below, prior to

smoothing, we resample to 6,000 vertices per hemisphere. Note

that this level of resampling results in a much milder degree of

interpolation than smoothing at 6 mm FWHM, and therefore

results in a negligible loss of information when performed in

combination with smoothing [see, e.g., Mejia et al. (2020) Figure

A.1 in Appendix]. For both resampling and smoothing, we

employ the Connectome Workbench (Marcus et al., 2011) via

the ciftiTools R package (Pham et al., 2022).

Each subject underwent several task and resting-state fMRI

protocols across two sessions. Each task and rest session was

performed twice, using opposite phase encoding directions (LR

and RL). For a subset of 45 participants, the entire imaging

protocol was repeated. We analyze data from the 40 participants

having a complete set of test and retest data for the protocols we

analyze in this study. We analyze four task experiments, namely

the emotion, gambling, motor, and relational tasks (Table 1). In

the emotion processing task, developed by Hariri et al. (2002),

participants are shown sets of faces or geometric shapes, and are
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TABLE 1 Type and duration of each task protocol analyzed.

Task Block or
event

Frames per
run

Run duration
(mm:ss)

Emotion Block 176 2:16

Gambling Event 253 3:12

Motor Block 284 3:34

Relational Block 232 2:56

Adopted from Barch et al. (2013).

asked to determine which of two faces/shapes match a reference

face/shape. Each face has an angry or fearful expression. A 3 s

cue ("shape" or "face") precedes a block of 6 trials, lasting 18 s in

total. Each run includes three blocks of each condition (shape or

face).

In the gambling task, adopted from Delgado et al. (2000),

participants play a game in which they are asked to guess the

value of a mystery card to win or lose money. They indicate

their guess for the value, which can range from 1 to 9, as being

more or <5. Their response is evaluated by a program which

predetermines whether the trial is a win, loss, or neutral event. In

each run, there are two mostly win blocks (six win trials and two

non-win trials), two mostly loss blocks (six loss trials and two

non-loss trials), alternating with four 15 s fixation blocks. While

this protocol can be considered a block design since the task

protocol is comprised of short events rather than continuous

blocks of stimulus, we analyze it as an event-related design.

In the motor task, developed by Buckner et al. (2011),

participants are given a 3 s visual cue which instructs them to

perform one of fivemotor actions: tap left or right fingers, wiggle

left or right toes, or move tongue. Each action block lasts 12 s,

and each run includes two blocks of each action as well as three

15 s fixation blocks.

In the relational task, developed by Smith Rachelle and

Kalina (2007), subjects undergo two conditions: relational

processing and control matching. In the relational condition,

one pair of objects is shown at the top of the screen and another

pair is shown at the bottom of the screen. In this condition,

participants are asked to determine the dimension (shape or

texture) across which the pair displayed at the top differs. Next,

they determine whether the bottom pair differs along the same

dimension. During the matching condition, two objects are

displayed at the top of the screen and one is shown at the bottom,

and the word “shape" or “texture" appears in the middle of the

screen. In this condition, participants are asked to determine

whether the bottom object matches either of the top objects,

based on the dimension displayed in the middle. Each condition

is administered as blocks of trials of the same condition, with

each block lasting 18 s total, with three blocks of each condition

(relational, matching, and fixation block) in each run.

To quantify false positive rates, we also analyze resting-state

fMRI data acquired for the same subjects and sessions, which we

analyze under a false task protocol. To emulate the duration of

the task fMRI runs, we truncate the resting-state runs to have 284

volumes, the same number of volumes as the motor task, after

dropping the first 15 rest volumes. The boxcar design consists

of a single event with three “boxcars:" three periods of stimulus

lasting 10 s each, with 10 s in between each consecutive stimulus.

The first stimulus begins at the 20th second, or <28th volume.

We use only three boxcars instead of extending the boxcars to

the duration of the scan, in order to more closely resemble the

number of stimuli in the HCP task scans. We used the same

GLM model as with the task analysis, except we did not include

any HRF derivatives since there is no true task-evoked signal to

potentially mis-model.

2.2. Statistical analysis

Our analysis consists of three primary steps. First, for

each subject, session, task, acquisition protocol, HRF modeling

strategy, and motion regression strategy, we fit a vertex-wise

general linear model (GLM) to estimate the amplitude of task-

evoked activation assuming residual independence. Based on

the fitted residuals, we estimate the degree of autocorrelation

at every location in the brain. Second, we fit a series of mixed

effects models to identify the effects of acquisition and modeling

factors on residual autocorrelation across the brain, as well as

systematic individual variability. Finally, we prewhiten the data

using a range of strategies, varying the parametric model order,

and spatial regularization level. We evaluate the ability of each

prewhitening strategy to effectively mitigate autocorrelation and

control false positives.

2.2.1. GLM estimation

We first fit a series of GLMs to each task fMRI dataset

assuming residual independence in order to quantify residual

autocorrelation and examine its patterns and sources. Let yv be

the BOLD response at vertex v, and let X be a design matrix

containing an intercept, task-related regressors, and nuisance

regressors. For each vertex v, the GLM proposed by Friston et al.

(1994) can be written as:

yv = Xβv + ǫv, ǫv ∼ MVN(0,6v). (1)

6v (T × T) encodes the residual autocorrelation and

variance, which may differ across the brain. If 6v 6= σ 2
v I,

the OLS assumption of residual independence is violated, and

a generalized least squares (GLS) approach is appropriate in

place of OLS to improve estimation efficiency and to avoid

invalid statistical inference. In some cases, such as in spatial

Bayesian variants of the GLM where a single Bayesian linear

model is fit to all vertices, spatially homogeneous variance

may also be assumed, i.e., σ 2
v ≡ σ 2. GLS can be used
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to satisfy this assumption by inducing unit variance across

the brain. In GLS, OLS is first used to obtain an initial

set of fitted residuals ǫ̂v, which are utilized to estimate 6v

(Kariya and Kurata, 2004). The GLS coefficient estimates are

given by β̂
GLS
v = (X′6−1v X)−1X′6−1v y, and their covariance

is Var(β̂
GLS
v ) = (X′6−1v X)−1. Equivalently, prewhitening

involves pre-multiplying both sides of the regression equation

(1) by Wv = 6
−1/2
v to induce residual independence.

Traditionally this process is repeated until convergence, but

due to computational considerations a single iteration is often

assumed to be sufficient for task fMRI analysis (Woolrich et al.,

2001).

To avoid overly noisy estimates of 6v, restrictive parametric

models (e.g., low-order autoregressive models) and/or

aggressive regularization (e.g., averaging across all gray matter)

are often used to estimate 6v. Recent work has suggested

that these approaches generally fail to fully account for

autocorrelation or control false positives as a nominal rate

(Bollmann et al., 2018; Corbin et al., 2018; Chen et al., 2019;

Olszowy et al., 2019; Luo et al., 2020). The challenge is how to

produce a sufficiently efficient estimate of 6v while accurately

representing the differential levels of autocorrelation across

the brain. In Section 2.2.3, we consider various strategies for

estimation of Wv = 6
−1/2
v . However, our first step is to

examine the sources and patterns of residual autocorrelation,

and therefore we do not impose any parametric model or

regularization in estimating 6v. Instead, we use empirical

autocorrelation function (ACF) at each vertex. Consider the

timeseries of fitted OLS residuals ev = yv − X(X′X)−1X′y at

vertex v for a particular fMRI dataset. The ACF of ev at lag u is

defined as

ρv,u =
Cov(ev,t , ev,t+u)

√

Var(ev,t)Var(ev,t+u)
,

for u = 0, . . . ,T − 1, with lag-0 ACF ρv,0 = 1 (Venables and

Ripley, 2013).We summarize the ACF ρv,u into a singlemetric of

autocorrelation, the autocorrelation index (ACI) (Afyouni et al.,

2019), which is given by

τ (v) =

T−1
∑

u=0

ρ2u(v).

We consider the effect of two potential sources of

modelmisspecification on temporal autocorrelation: unmodeled

neuronal activity via the task regressors in X, and unmodeled

head motion-induced noise via the nuisance regressors in

X. Since both neuronal activity and motion-induced noise

exhibit temporal dependence, failing to adequately account for

either may contribute to residual autocorrelation. The task

regressors in X are constructed by convolving a stimulus

function representing the timing of the tasks or stimuli with a

canonical HRF, which is typically modeled as a gamma function

or a difference of two gamma functions (Worsley et al., 2002).

However, HRF onset and duration is known to vary across the

brain and across individuals (Aguirre et al., 1998), so using

a fixed HRF may fail to accurately capture the task-evoked

BOLD signal (Loh et al., 2008; Lindquist et al., 2009). Therefore,

we consider three models for the HRF: one assuming a fixed

canonical HRF; one including the temporal derivative of the

HRF to allow for differences in HRF onset timing; and one

additionally including its dispersion derivative to allow for

differences in HRF duration (Friston et al., 1998a; Lindquist

et al., 2009). Regarding nuisance regressors, the inclusion of

measures of head motion is a common practice to account for

head motion-induced noise in the data. We therefore consider

two sets of motion regressors: the six rigid body realignment

parameters and their one-back differences (RP12) or those

terms plus their squares (RP24). In all models, we include

discrete cosine transform (DCT) bases to achieve high-pass

filtering at 0.01 Hz, which is important to satisfy the stationarity

assumption of AR-based prewhitening.

In sum, we estimate a vertex-wise GLM via OLS for each

subject i = 1, . . . , 40, session j = 1, 2, task k = 1, 2, 3, 4, and

phase encoding direction ∈ {LR,RL}. Each GLM is fit using the

canonical HRF only, with its temporal derivative, and with its

temporal and dispersion derivatives. Each GLM is also fit with

12 or 24 motion realignment parameters. In total, we fit 3,840

GLMs (40×2×4×2×3×2) before prewhitening. All models are

fit using the BayesfMRI R package Mejia et al. (2022). In the

next section, we describe the mixed effects modeling framework

we use to disentangle the influence of each factor (e.g. subject

effects vs. acquisition effects vs. modeling effects) on residual

autocorrelation.

2.2.2. Examining sources of residual
autocorrelation through mixed e�ects
modeling

Let τhrℓ
ijk

(v) be the ACI at vertex v for subject i, session j,

task k, phase encoding direction ℓ, HRF modeling strategy h

and motion regression strategy r. To determine the influences

of population variability, spatial variability, and other factors on

ACI, we fit a mixed effect model at each vertex. We include fixed

effects for each task, for the interaction between task and HRF

modeling strategy, and for the motion regression strategy. For

each of these fixed effects, we also include a random effect to

represent population heterogeneity. Finally, we include a fixed

effect for phase encoding direction. The mixed effect model at

vertex v is given by:

τhrℓijk (v) =

baseline effects
︷ ︸︸ ︷
{

αk(v)+ ak,i(v)
}

+

HRF modeling effects
︷ ︸︸ ︷
{

βk(v)+ bk,i(v)
}

h

+

motion
regression effects
︷ ︸︸ ︷
{

γ (v)+ gi(v)
}

r+

acquisition
effects
︷ ︸︸ ︷

θ(v)ℓ + ǫhrℓijk (v) (2)
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ǫhrℓijk (v)
iid
∼ N(0, σ 2

v ), bi(v)

=
{

a1,i(v), . . . , a4,i(v), b1,i(v), . . . , b4,i(v), gi(v)
}′ iid
∼ N(0,G(v)).

The covariates h, r, and ℓ are constructed as dummy

variables equalling zero for the “baseline” conditions (canonical

HRF only, RP12 motion regression, and LR phase encoding

direction acquisition) and equalling one for the alternative

conditions (canonical HRF plus derivative(s), RP24 motion

regression, and RL phase encoding direction acquisition). The

model in equation (2) is estimated separately for h = 1

representing the inclusion of HRF temporal derivatives or the

HRF temporal and dispersion derivatives.

We perform model fitting using the lmer function from

the lme4 R package (version 1.1.-30) (Bates et al., 2015) to

estimate each fixed effect [the αk(v), βk(v), γ (v), and θ(v)],

the error variance, and the covariance of all the random effects

[the ak,i(v), bk,i(v), and gi(v)]. The fixed effect for task, αk(v),

represents the baseline autocorrelation for task protocol k for

the model including the canonical HRF only (h = 0). The

corresponding random subject effect, ak,i(v), represents the

difference in autocorrelation for subject i, vs. the average over

subjects for task k. The fixed effect for HRF modeling, βk(v),

represents the change in autocorrelation when the temporal

derivative of the HRF is included (h = 1) for task k, while bk,i(v)

represents the random variation in that change over subjects.

We generally expect negative values for βk(v), representing a

reduction in residual autocorrelation when the HRF derivative

is included, since discrepancies between the true HRF and the

canonical HRF tend to exhibit temporal dependence. The fixed

effect for motion regression strategy, γ (v), represents the change

in autocorrelation associated with the use of RP24 (r = 1) vs.

RP12 (r = 0) motion regression. The corresponding random

effect, gi(v), represents random variation in that effect over

subjects. θ(v) represents the difference in autocorrelation when

using phase encoding direction RL (ℓ = 1), compared with

phase encoding direction LR (ℓ = 0).

Since the model includes multiple sessions from each

subject, the random effects ak,i(v), bk,i(v), and gi(v) represent

systematic effects that are consistently observed across sessions

for subject i. G(v) is the covariance matrix of the random

effects vector bi(v). It encodes population variance for each

random effect, as well as the correlation between different

random effects. For example, Cor
{

a1,i(v), a4,i(v)
}

represents the

correspondence between the direction and strength of subject

i’s deviation from the population mean autocorrelation for tasks

1 (emotion) and 4 (relational), using the canonical HRF only.

A strong positive correlation here would suggest that the same

subjects tend to exhibit stronger or weaker autocorrelation,

possibly due to their having a longer or shorter HRF than

the canonical HRF, regardless of task. Cor
{

a1,i(v), b1,i(v)
}

represents the correspondence between the direction and

strength of subject i’s deviation from the population mean on

task 1 and the effect of including the HRF derivative for the

same task. A strong anti-correlation here would suggest that

including the HRF derivative has a bigger effect on subjects who

exhibit stronger autocorrelation when using the canonical HRF–

in short, that inclusion of the HRF derivative achieves the goal of

accounting for some population variability in HRF timing.

2.2.3. Prewhitening strategies

To evaluate the effectiveness of different prewhitening

strategies on mitigating residual autocorrelation, we use an

AR model with varying model order and varying degrees

of regularization to estimate the prewhitening matrix Wv.

Specifically, we vary AR model order from p = 1 to p = 6.

We also consider automatic selection of the optimal AR model

order at each vertex using Akaike information criterion (AIC)

(Sakamoto et al., 1986; Bozdogan, 1987) as proposed by Luo

et al. (2020), with a maximum model order of 10. AIC is

inversely related to the log-likelihood and includes a penalty

term to account for differences in the number of parameters in

different models. AIC is commonly used as a model selection

criterion, where the model with the lowest AIC has the best fit,

accounting for model complexity. The AR model coefficients

and residual variance are estimated using the Yule-Walker

equations (Brockwell and Davis, 2009). We consider both local

and global regularization of the AR coefficients and white noise

variance. Local regularization refers to surface smoothing with

a 5 mm FWHM Gaussian kernel; global regularization refers

to smoothing with an infinitely-wide Gaussian kernel, nearly

equivalent to averaging the AR coefficients across the cortex. In

the case of optimal AR model order selection, we impute a value

of 0 for any AR coefficients above the selected model order prior

to regularization.

Our R/C++ implementation of prewhitening is available in

the open-source BayesfMRI R package (Mejia et al., 2022),

which is compatible with cortical surface and “grayordinates”

neuroimaging file formats via the ciftiTools R package

(Pham et al., 2022). After estimating the prewhitening matrix

Wv as described in Appendix 2, (Algorithm 1) the response and

design matrix are pre-multiplied at each vertex byWv, changing

the GLM in (1) to

ỹv = X̃vβv + ǫ̃v, ǫ̃v ∼ MVN(0, σ 2I), (3)

where ỹv = Wvyv, X̃v = WvXv and ǫ̃v = Wvǫv. Note

that the prewhitened design matrix X̃v may vary across vertices

when using a local approach to prewhitening. This increases

the computational burden associated with GLM coefficient

estimation: with a common design matrix X̃, the model

coefficients for all vertices can be estimated with a single matrix

multiplication step as (X̃′X̃)−1X̃′Ỹ, where Ỹ =
(

ỹ1, . . . , ỹV
)

;

when the design matrix varies spatially, however, we must

perform V matrix multiplications (X̃′vX̃v)
−1X̃′vỹv to obtain the
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coefficient estimate at each vertex v. Even more computationally

burdensome is estimating Wv at each location, which involves

performing V different eigendecompositions. These obstacles

are perhaps one reason that global prewhitening approaches

are often preferred in a practical sense. To overcome these

challenges, we have developed a highly computationally efficient

implementation using parallelization and C++ backend code.

This implementation typically completes in 1 min per scan for

the task fMRI data we analyze here.

2.2.4. Evaluation metrics

To evaluate the performance of each prewhitening strategy,

we take two approaches. First, we directly assess the degree of

residual autocorrelation still present in each task fMRI dataset

after prewhitening. Using on the fitted GLS residuals at each

vertex, we compute the autocorrelation index (ACI) as in Section

2.2.2. We also perform a Ljung-Box (LB) test at every vertex

(Ljung and Box, 1978) to identify vertices exhibiting statistically

significant levels of residual autocorrelation after prewhitening.

We use the Box.test function in the stats R package,

version 4.2.0. As in Corbin et al. (2018), we use the first 100

volumes of each session and consider up to 20 lags. We consider

two approaches to determine the degrees of freedom (DOF)

for the test: accounting for the intercept only, or accounting

for the intercept and the AR model coefficients. We consider

the intercept-only approach for maximum comparability with

Corbin et al. (2018).1 When accounting for the AR(p) model

coefficients as well, the DOF for the LB test is 20−
[

p ∗ 100/T
]

−

1, where T is the original number of volumes in the task

fMRI session (given in Table 1). We scale the number of AR

coefficients p by 100/T to account for the fact that the ARmodel

parameters were estimated across the whole duration of the scan,

not just the 100 volumes used for the LB test. We determine

vertices whose residuals exhibit significant autocorrelation based

on those with p < 0.05 after false discovery rate correction

(Benjamini and Hochberg, 1995). We compute the proportion

of vertices exhibiting significant autocorrelation before and

after prewhitening with each technique to determine the

ability of each prewhitening method to effectively eliminate

autocorrelation.

Second, we quantify false positives using resting-state

fMRI data, assuming a false boxcar task paradigm. For

each resting-state fMRI dataset, we perform GLS using

the estimated prewhitening matrix for each prewhitening

strategy. We then perform a t-test at every vertex. We

1 Though Corbin et al. (2018) did not state explicitly how DOF was

determined in their analysis, their implementation used the Matlab Ljung-

Box test function, where ignoring the model DOF is the default. Further,

the higher-order SPM FAST models considered in Corbin et al. (2018)

contain more than 20 DOF, which would result in negative DOF for the

LB test if taken into account.

correct for multiple comparisons across all vertices with

Bonferroni correction to control the family-wise error

rate (FWER) at 0.05. While Bonferroni correction is

typically considered overly conservative for whole-brain

voxel-wise analysis involving potentially hundreds of

thousands of tests, here we are performing fewer than

6,000 tests per hemisphere. In previous work we have

found Bonferroni correction to have similar power as

permutation testing for the cortical surface resampled to

a similar resolution (Spencer et al., 2022). We visualize

the spatial distribution of false positive vertices and

quantify the false positive rate and FWER before and after

prewhitening. We obtain 95% confidence intervals for

the FWER using Agresti-Coull intervals for proportions

(Agresti and Coull, 1998).

3. Results

3.1. Overview

We first examine the spatial patterns and factors influencing

autocorrelation in task fMRI prior to any prewhitening,

using a random effects analysis of task fMRI data from the

HCP retest dataset. This allows us to understand to what

degree residual autocorrelation varies across the cortex in

task fMRI studies, which in turn helps inform an effective

approach to prewhitening. We find that residual autocorrelation

varies markedly across the cortex, and the spatial topology is

influenced by the task being performed, the phase encoding

direction, and systematic inter-subject differences. Effective

modeling choices (e.g., HRF flexibility, nuisance regression)

can mitigate autocorrelation, but their effects are relatively

modest and they do not eliminate spatial variability. We

then assess the ability of different AR-based prewhitening

strategies to effectively mitigate residual autocorrelation and

control false positive rates. We consider low- and high-

order AR models, as well as optimal determination of the

AR model order at each vertex. We also consider two

opposing approaches to spatial regularization of AR model

parameters: local spatial smoothing and global averaging across

the cortex. We find that higher-order AR models that allow

for spatial variability in AR model parameters are able to

effectively mitigate autocorrelation, while global averaging

and very low-order AR models retain substantial levels of

autocorrelation.

3.2. Spatial patterns of residual
autocorrelation

Figure 1 shows the autocorrelation index (ACI) across the

cortex, averaged over all subjects, sessions, runs, and tasks in the
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FIGURE 1

Spatial patterns of autocorrelation and the e�ect of HRF modeling. (A) The average autocorrelation index (ACI) across all subjects, sessions and

tasks, for three di�erent cases: assuming a canonical HRF, including the HRF temporal derivative (TD) to allow for di�erences in HRF onset; and

including the HRF TD and dispersion derivative (DD) to allow for di�erences in HRF onset and duration. (B) The reduction in ACI when HRF

derivatives are included to allow for di�erences in HRF shape. Including the HRF TD has a sizeable e�ect in reducing autocorrelation;

additionally including the HRF DD has a more subtle e�ect.

HCP retest study. The spatial topology of autocorrelation across

the cortex is striking: higher autocorrelation is seen in frontal,

parietal, and occipital areas, particularly the inferior parietal

cortex and the occipital pole. Much lower autocorrelation is

seen in the insula, the fusiform gyrus and the temporal pole,

for example. The regions with highest autocorrelation tend

to be near the edge of the brain, possibly reflecting in part

effects of motion. Three different modeling strategies for the

hemodynamic response function (HRF) are considered, ranging

from rigid [canonical HRF) to more flexible (canonical HRF

plus its temporal derivative (TD) and dispersion derivative

(DD)]. The degree of autocorrelation is reduced by the inclusion

of HRF derivatives, illustrating that HRF mis-modeling is

one source of autocorrelation that can be mitigated with

more flexible HRF models. Figure 1B shows that inclusion

of the TD serves to reduce autocorrelation most in the

same areas where autocorrelation tends to be the highest,

suggesting that the spatial patterns of autocorrelation may be

due in part to heterogeneity in HRF onset and duration that

varies across the cortex. Even after including HRF derivatives,

however, there are still marked differences in the degree

of residual autocorrelation across the cortex. Including the

dispersion derivative has a more subtle effect, compared with

just including the temporal derivative. For the remaining

analyses, we therefore focus on inclusion of the HRF temporal

derivative only.

3.3. Random e�ects analysis of residual
autocorrelation

Here, we examine the sources of residual autocorrelation

in task fMRI studies through a random effects analysis of

repeated task fMRI scans from the HCP retest participants.

We fit a series of general linear models (GLMs) to each

task fMRI scan, varying the HRF modeling strategy and the

number of motion regressors across GLMs. For each GLM,

we quantify the autocorrelation index (ACI) of the model

residuals at each surface vertex. We then fit the random

effects model in (2) at each vertex to quantify the contribution

of task-specific differences, HRF modeling strategy, phase

encoding direction, and number of nuisance regressors on

the residual autocorrelation index. The inclusion of random

effects accounts for systematic between-subject variability

and allows us to understand population heterogeneity in

these effects.

Figure 2 displays the fixed baseline effects associated with

each task [α
(k)
v , k = 1, . . . , 4 in model (2)], along with the

effect of including the HRF derivative [β
(k)
v , k = 1, . . . , 4 in

model (2)]. The first column displays the mean effect over tasks

k = 1, . . . , 4; the other columns display the difference between

the task-specific effects and that mean effect. The baseline

effects shown on the first row [αk(v) in model 2] represent

the average ACI when assuming a canonical HRF, including 12
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FIGURE 2

Baseline autocorrelation index (ACI) and e�ect of including HRF derivatives by task, based on the fixed e�ects (FEs) from the mixed e�ects

model shown in equation (2). The first column shows the average of FE estimates across tasks, indicating general spatial patterns of

autocorrelation and the e�ect of HRF derivatives across the cortex. The other columns show the di�erence between each task and the average,

to show areas of stronger or weaker e�ects during specific tasks. The first row shows the average ACI when assuming a canonical HRF [αk(v)];

the second row shows the e�ect of including HRF derivatives to allow for heterogeneity in the shape of the HRF [βk(v)]; the third row shows the

sum of both e�ects, which represents the average ACI when including HRF derivatives in the model [αk(v)+ βk(v)].

motion regressors, and using the LR phase encoding direction.

The average pattern is very similar to the mean ACI in the

dataset shown in Figure 1. The task-specific deviations show that

ACI tends to be markedly higher or lower in certain regions

depending on the task. For example, the motor task tends to

have higher residual ACI in many areas, whereas the emotion

task tends to have lower residual ACI. These results show that

there are systematic task-related effects on autocorrelation that

vary across the cortex.

The HRF derivative effects shown on the second row

represent the change in average ACI when including the HRF

derivative in each GLM [βk(v) in model 2]. The mean effect

shows that including HRF derivatives tends to decrease ACI,

particularly in areas where ACI tends to be the highest, as

observed in Figure 1. The task-specific deviations show that

more flexible HRF modeling has the strongest effect for the

motor task, mimicking the more severe autocorrelation seen

in the motor task. The areas most affected by flexible HRF
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FIGURE 3

Population variability in the e�ects shown in Figure 2, based on the random e�ect (RE) standard deviations (SD) from model (2). The first column

shows the average across tasks, indicating general spatial patterns of population variability. The other columns show the di�erence between

each task and the average, indicating areas of greater (warm colors) or lesser (cool colors) variability during specific tasks. The first row shows

variability in autocorrelation when assuming a canonical HRF [ak,i(v)]; the second row shows variability in the e�ect of using HRF derivatives to

allow for di�erences in HRF shape [bk,i(v)].

modeling for each task tend to somewhat mimic the spatial

patterns unique to each task, but do not fully account for them.

The sum of both effects shown in the third row represent

the average ACI when including HRF derivatives [αk(v)+ βk(v)

in model 2]. The average image shows reduced autocorrelation

on average, consistent with 1. The task-specific deviations

show that task-related differences in residual autocorrelation

are substantially reduced but not eliminated when using a

more flexible HRF model. This illustrates that the differences

in autocorrelation across the different task experiments may be

largely due to differences in the HRF shape or onset that are not

captured with the canonical HRF. This is particularly true for the

motor task, which exhibits similar magnitude of autocorrelation

compared to the other tasks once the HRF onset is allowed to

vary.

Figure 3 displays the random effects associated with each

fixed effect shown in Figure 2. These random effects represent

reliable between-subject differences observed across repeated

sessions from each subject. The scale of the values is standard

deviation, so they share the same units as the fixed effects. The

figure organization is the same as that of Figure 2, with the first

column representing the mean over tasks and the remaining

columns representing differences between each task and that

mean. Themean effects show that there is substantial population

heterogeneity in the degree of residual autocorrelation, as well

as in the reduction in residual autocorrelation achieved by

more flexible HRF modeling. In general, the spatial patterns

mimic that of the fixed effects: areas that tend to have

higher autocorrelation on average also tend to exhibit greater

systematic variability across subjects, and areas that benefit more

from flexible HRF modeling on average also tend to exhibit the

most population variability in the degree of reduction.

Figure 4 shows fixed and random effects of including

additional motion regressors (24 vs. 12) in the GLM on the

degree of residual autocorrelation across the cortex. In the GLM

with 12 motion regressors, the six realignment parameters (RPs)

plus their one-back differences are included as covariates; in

the model with 24 motion regressors, their square of each term

is also included. Figure 4A shows that on average, including

additional motion regressors decreases residual autocorrelation.

This illustrates that without adequate nuisance signal modeling,

temporally correlated noise such as that arising from head

motion will be at least partly absorbed into the residuals, which

will consequently exhibit greater autocorrelation. The spatial
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FIGURE 4

E�ect of including additional motion regressors on autocorrelation index (ACI), based on the fixed e�ects in model (2). Values represent the

decrease in ACI associated with including 24 rather than 12 motion regressors. (A) The fixed e�ects at every vertex; (B) shows the random e�ect

standard deviation at every vertex.

patterns mimic the spatial topology of baseline autocorrelation

seen in Figures 1, 2, suggesting that thorough noise modeling

helps to alleviate, without eliminating, the spatial heterogeneity

in autocorrelation across the cortex. Figure 4B shows that there

is population heterogeneity in the benefit of including additional

motion regressors on autocorrelation, particularly in those areas

with the most benefit on average.

Figure 5 takes a deeper look at population heterogeneity

by examining the correlation between different random effects

in the model. The lower triangle of the matrix is divided into

several blocks, representing the different random components

of the model. Blocks (A) and (B) show that there is moderate

correlation between the different tasks in terms of the baseline

effect and the effect of including HRF derivatives. This

shows that for a particular subject, the spatial topology of

autocorrelation and HRF shape are similar but not identical

across different tasks. In block (C), the diagonal elements

show a strong negative correlation between the baseline level

of autocorrelation and the reduction in autocorrelation due

to flexible HRF modeling. This shows that subjects having

higher (or lower) baseline autocorrelation tend to benefit more

(or less) from flexible HRF modeling. The strong but not

perfect correlations suggest that accounting for between-subject

differences in HRF shape reduces, but does not eliminate,

systematic population variability in residual autocorrelation.

Turning to the effect of motion, the strongly negative

correlations in block (E) show that including additional motion

regressors (24 instead of 12) reduces autocorrelation most for

subjects who tend to exhibit stronger baseline autocorrelation.

The moderate positive correlations in block (D) show that

subjects who benefit more from more flexible HRF modeling

also tend to benefit more from inclusion of additional motion

regressors, suggesting that these two approaches may be

complementary in reducing residual autocorrelation.

Figure 6A displays the fixed effects associated with the

utilizing an RL phase encoding direction acquisition, compared

with an LR phase encoding direction. The effect of phase

encoding direction on residual autocorrelation is clearly

lateralized, with the RL phase encoding direction generally

producing less autocorrelation on the right side of each

hemisphere (the lateral cortex of the right hemisphere, and

the medial cortex of the left hemisphere). This is likely due

to lateralized distortions induced by the RL and LR phase

encoding directions even after distortion correction, as shown

in Figure 6B. The spatial distribution of residual autocorrelation

is therefore sensitive to specific acquisition. This may result in

an increased risk of false positives in certain areas, depending

on the acquisition method. For example, using an LR phase

encoding direction, residual autocorrelation is generally higher

within the right lateral cortex. This will result in higher rates

of false positives compared with the left lateral cortex if not

accounted for with prewhitening techniques that account for

such spatial discrepancies in residual autocorrelation.

We examine this further through a small simulation study

from HCP subject 103, 818, shown in Figure 7. We consider a

strip of nine voxels overlapping with the edge of the brain of the

subject, shown in Figure 7A. These include, sequentially, three

voxels in CSF (red), two cortical gray matter voxels (yellow), and

four white matter voxels. In addition, we include 26 background

voxels on the left and 14 additional WM voxels on the right

in order to absorb any edge effects. We generate autocorrelated

timeseries for each voxel using an AR(3) model with white noise

variance equal to 1. The AR coefficients are chosen to induce low

ACI in white matter, moderate ACI in gray matter, high ACI in
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FIGURE 5

Correlation among sources of population variability in autocorrelation, based on the random e�ect (RE) correlations in model (2). Values

represent the mean across all vertices. Positive values (warm colors) between two e�ects indicate that subjects who exhibit higher values in one

e�ect also tend to exhibit higher values in the other e�ect. Negative values (cool colors) indicate that subjects who exhibit higher values in one

e�ect tend to exhibit lower values in the other e�ect. The lower triangle of the correlation matrix is divided into several parts, representing the

correlation between: (a) di�erent tasks in the baseline level of autocorrelation; (b) di�erent tasks in the e�ect of HRF derivatives on

autocorrelation; (c) the baseline level of autocorrelation and the e�ect of including HRF derivatives on autocorrelation; (d) the e�ect of

including additional motion regressors and the e�ect of including HRF derivatives; (e) the e�ect of including additional motion regressors and

the baseline level of autocorrelation.

CSF, and unit ACI (the minimum) in background voxels. Table 2

gives the AR coefficients and resulting ACI in each region.

To examine the effect of the distortions introduced through

lateralized phase encoding on the ACI, we estimate the

distortion map from the original temporal mean undistorted

brain images of the subject. We distort the simulated timeseries

then apply distortion correction using the Anima image

processing toolbox.2 Figure 7B shows the true ACI in each voxel,

the ACI after distortion, and the ACI after distortion correction

based on the mean over 7,000 randomly generated timeseries.

The last row shows the bias between the ACI of the distortion-

corrected data, as a proportion of the true ACI. We see inflated

ACI in the gray matter voxel bordering CSF and diminished ACI

in the graymatter voxel bordering white matter. This agrees with

our findings in Figure 6 and supports the hypothesis that the LR

and RL acquisitions result in changes in autocorrelation in gray

2 https://github.com/Inria-Visages/Anima-Public

matter due to distortion-induced mixing of signals with white

matter and CSF.

In sum, we observe marked spatial discrepancies in

autocorrelation within cortical gray matter due to acquisition

factors, modeling choices, task-related factors and individual

differences. The following section evaluates the effect of

different prewhitening strategies on mitigating autocorrelation,

reducing spatial variability in autocorrelation, and controlling

false positives.

3.4. The e�ect of prewhitening strategy
on autocorrelation and false positives

Here, we apply several prewhitening strategies based on

autoregressive (AR) modeling and evaluate their effect on both

residual autocorrelation and false positive rates. Specifically,

we consider AR model order ranging from 1 to 6, as well
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FIGURE 6

E�ect of phase encoding direction on autocorrelation. (A) Fixed e�ect of RL phase encoding direction in model (2). Values represent the

di�erences in average autocorrelation index (ACI) at each vertex when the RL (vs. LR) phase encoding direction is used during image acquisition.

Cool colors on the right lateral cortex, for example, indicate that RL acquisitions tend to have reduced autocorrelation in those areas compared

with LR acquisitions. The e�ect of phase encoding direction is clearly lateralized, with the RL acquisition resulting in relatively lower

autocorrelation on the right side of each hemisphere and higher autocorrelation on the left side of each hemisphere. This is likely due to

distortions induced by the RL and LR phase encoding directions, even after distortion correction. (B)Mean rest fMRI image for a single subject

(103,818) for LR (blue) and RL (red) runs during the same session, before and after distortion correction, shown in neurological convention.

Lateralized distortions persist after distortion correction, based on the imperfect overlap between the LR and RL runs.

FIGURE 7

E�ect of distortions on the spatial topology of autocorrelation. (A) A nine-voxel sequence contains three voxels from cerebral spinal fluid (CSF,

red), two voxels from gray matter (GM, yellow), and four voxels from white matter (WM, blue). These were padded by 26 background voxels on

the left and 15 additional WM voxels on the right to avoid edge e�ects. (B) An AR(3) was used to generate autocorrelated timeseries within each

tissue class, resulting in the true autocorrelation indices (ACI) shown on the top row. The ACI of the timeseries after after forward-direction

distortion are shown on the second row and after distortion correction on the third row. While distortion correction clearly helps to resolve

changes in ACI induced by the distortions, the fourth row shows that there is still bias (after/true) present after correction. Namely, the GM voxel

neighboring CSF has increased ACI, and the GM voxel neighboring WM has decreased ACI. There is also a lesser amount of bias in the CSF and

WM voxels neighboring GM.

as a spatially varying “optimal” model order based on Akaike

information criterion (AIC). For each AR model order, we

also consider two spatial regularization levels of the AR

model coefficient estimates: “local” regularization is achieved

by surface-based spatial smoothing the coefficient estimates

using a 5 mm full width at half maximum (FWHM) Gaussian

kernel (Pham et al., 2022); “global” regularization is achieved by

averaging the estimates across all cortical vertices. For optimal

model order selection, all remaining coefficients after the AIC-

based model order p∗ (up to the maximum of 10) are set to
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TABLE 2 Settings for the simulation study shown in Figure 7.

Tissue class Number of
voxels

AR(3) model ACI

White matter 11 voxels (0.1, 0.0, 0.0) 1.1

Gray matter 2 voxels (0.425, 0.25, 0.1) 2.3

CSF 3 voxels (0.5, 0.3, 0.1) 4.5

Background 11 voxels White noise only 1

zero prior to regularization. All of the prewhitening methods

considered are implemented in the open-source BayesfMRI R

package, version 2.0 (Mejia et al., 2022; R Core Team, 2022).

In this section, we include just 12 motion parameters

(six rigid body realignment parameters and their one-back

differences) in each GLM by default. This is because when

combined with effective prewhitening, there does not appear to

be a benefit of including the squares of the motion parameters

and their one-back differences. In fact, it appears to be slightly

detrimental, as shown in Figure A.1 in Appendix. This suggests

that including these additional motion parameters no longer

serves to reduce autocorrelation when effective prewhitening is

performed, and the loss of degrees of freedom associated with

the inclusion of superfluous covariates in the GLM actually

worsens the performance of prewhitening.

Figure 8 displays the distribution of AIC-based AR model

order, p∗, across the cortex. Figure 8A shows the value of p∗

for a single run from a single subject across all four tasks. The

spatial patterns mimic the general patterns of autocorrelation

strength seen in Figure 1. Areas of higher autocorrelation

generally require a higher AR model order (e.g., the inferior

parietal cortex and the occipital pole), while areas of lower

autocorrelation (e.g. the insula and the temporal pole) generally

require a lower AR model order or no prewhitening at all

(p∗ = 0). Differences across tasks can also been seen:

for example, the motor task generally requires a higher AR

model order, reflecting the stronger residual autocorrelation

associated with the motor task as seen in Figure 2. The AIC-

based model order is somewhat noisy, suggesting that some

degree of regularization is needed. Figure 8B shows a histogram

of AIC-based model order across all vertices. The proportions

are averaged across all subjects, sessions and tasks. We see

that on average, while the optimal AR model order is two or

less for most vertices, over 30% of vertices have optimal AR

model order of three or higher, while over 10% require an AR

model order of seven or higher. This again underscores the

important spatial differences in residual autocorrelation across

the cortex and the need for prewhitening methods that account

for those differences to avoid under- or over-whitening in a

given area.

Figure 9 shows the effect of each prewhitening strategy on

the degree of residual autocorrelation. Figure 9A displays the

autocorrelation index (ACI) at each vertex averaged over all

subjects, sessions and tasks, prior to any prewhitening. Figure 9B

displays the average ACI at each vertex after prewhitening

with each strategy (varying AR model order, local vs. global

regularization of the AR model coefficients). Figure 9C displays

the mean and 95th quantile of ACI across the cortex by task,

averaged over all subjects and sessions, after prewhitening with

each strategy. Figures 9B, C show that there is a dramatic

difference between local and global regularization in terms

of reducing autocorrelation: local regularization reduces ACI

more and mostly eliminates the spatial variability in ACI. The

combination of higher AR model order [e.g., AR(6)] with local

regularization is the most effective at reducing ACI. Notably,

the use of higher model orders in combination with global

regularization is not very effective at reducing autocorrelation in

many areas of the cortex: even an AR(1) model with coefficients

that are allowed to spatially vary appears to be more effective

than an AR(6) model with global regularization. Interestingly,

the use of AIC to select the optimal model order at each

vertex does not appear to be advantageous over fitting an

AR(6) model at every vertex. It is worth noting that an AR(6)

model encompasses lower-order AR models, since the higher

coefficients can equal zero. Local regularization of the AR

model coefficients may have the effect of shrinking those higher

coefficients closer to zero when that is appropriate. Therefore,

fitting an AR(6) model at each vertex, combined with local

regularization, may allow for less aggressive prewhitening in

those areas that exhibit less autocorrelation.

Figure 10 displays the effect of prewhitening on the rate

of vertices with statistically significant autocorrelation, based

on performing a Ljung-Box (LB) test at every vertex (Ljung

and Box, 1978). We correct for multiple comparisons by

controlling the false discovery rate (FDR) at 0.05 using the

Benjamini-Hochberg procedure (Benjamini and Hochberg,

1995). In Figures 10A, B, the value at each vertex represents

the proportion of sessions that show significant autocorrelation

across all subjects, sessions, and tasks. Figure 10C shows the

proportion of significantly autocorrelated vertices in each

session by task, averaged over all subjects, and sessions. For now

we will focus on the solid lines, which represent the results of

the LB test when we assume a single degree of freedom lost

in all models. The patterns mimic those seen in Figures 9A,

B: local regularization of AR prewhitening parameters is

much more effective at reducing autocorrelation than global

regularization, and even a parsimonious [e.g., AR(1)] AR model

with local coefficient regularization is more effective than a

high-order AR model with global regularization. Figure 10C

shows that AR-based prewhitening with local regularization

(the black lines) essentially eliminates statistically significant

autocorrelation in all vertices, particularly when using an AR

model order of 3 or higher. A globally regularized, high-order

AR model approach is less effective, reducing the proportion

of significantly autocorrelated vertices to 10–15%. Note that

this is similar to the performance of the optimal 12-component
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FIGURE 8

Optimal AR model order across the brain based on the Akaike information criterion (AIC). (A) The optimal AR model order at every vertex for a

single subject for each task. The optimal order clearly varies across the cortex and with the task being performed. (B) The distribution of optimal

AR model order across all vertices, averaged over all subjects, sessions and tasks. The optimal AR model order is two or less for most vertices,

but over 20% of vertices have optimal AR model order of 3–6, while over 10% have optimal order of 7 or higher.

SPM FAST model for data with TR = 0.7 (Corbin et al.,

2018). The much greater reduction in autocorrelation with local

regularization illustrates the need to consider spatial differences

in autocorrelation for effective prewhitening.

Note that in Figure 10C, we also consider the effect on

the test result of accounting for the degrees of freedom

(DOF) lost through the AR model fit (1 + p) or just the

intercept (1).3 Though accounting for the AR fit in the total

DOF is recommended, we account for the intercept only in

3 Note that for the optimal AR model order approach [AR(*)], we do

not consider accounting for the DOF lost through model fitting when

summarizing across vertices, since the DOF varies across vertices.

(A), (B) and the solid lines in (C). This is done in order

to replicate the analysis of Corbin et al. (2018), which was

based on the Matlab implementation of the Ljung-Box test,

where ignoring the model DOF is the default. For more

complex models involving many parameters, accounting for

the model DOF generally results in apparently higher rates

of autocorrelation, as seen in the U-shaped gray dashed

lines in Figure 10C. This somewhat counterintuitive effect is

simply a consequence of the loss in total degrees of freedom

going from a more parsimonious model [e.g., AR(3)] to

a more complex one involving more parameter estimates

[e.g., AR(6)]. Accounting properly for the DOF lost helps

to avoid overestimating the performance of more highly
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FIGURE 9

The e�ect of prewhitening on autocorrelation index (ACI). (A)Mean ACI over all subjects, sessions and tasks before prewhitening. (B) Mean ACI

after prewhitening. Eight di�erent prewhitening strategies are shown, based on four di�erent AR model orders (1, 3, 6 and optimal at each

vertex) and two di�erent regularization strategies for AR model coe�cients (local smoothing vs. global averaging). Higher AR model order and

allowing AR model coe�cients to vary spatially results in substantially greater reduction in ACI. (C)Mean ACI over subjects and sessions,

averaged across all vertices, by task and prewhitening method. Notably, allowing AR model coe�cients to spatially vary reduces ACI much more

than increasing AR model order. (D) 95th Quantile of ACI.
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FIGURE 10

The e�ect of prewhitening on the number of vertices with statistically significant autocorrelation. (A) Proportion of sessions exhibiting significant

autocorrelation at each vertex before prewhitening. (B) Proportion of sessions exhibiting statistically significant autocorrelation after

prewhitening. Eight di�erent prewhitening strategies are shown, based on four di�erent AR model orders (1, 3, 6, and optimal at each vertex)

and two di�erent regularization strategies for AR model coe�cients (local smoothing vs. global averaging). Higher AR model order and allowing

AR model coe�cients to vary spatially results in substantially greater reduction in the number of vertices with statistically significant

autocorrelation. Notably, allowing AR model coe�cients to spatially vary has a greater e�ect than increasing AR model order. (C) Percentage of

vertices with statistically significant autocorrelation, averaged across all subjects, sessions, and tasks. Dotted lines correspond to accounting for

the degrees of freedom (DOF) lost when estimating AR coe�cients. Adopting an AR model order of three or higher and allowing AR coe�cients

to vary spatially results in virtually no vertices with statistically significant autocorrelation.
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FIGURE 11

False positives in resting-state data before and after prewhitening. (A) Values at each vertex represent the proportion of sessions where a false

positive is detected. (B) Boxplots representing the distribution across all sessions and subjects of the FPR, defined as the proportion of vertices

flagged as false positives for a given scan. (C) FWER with 95% Agresti-Coull confidence intervals for proportions. Prewhitening dramatically

reduces false positive rates and brings FWER close to the nominal rate of 0.05 (dashed line). Local regularization of prewhitening parameters

achieves near-zero FPR across nearly all sessions. Interestingly, including additional motion covariates (24 vs. 12) seems to worsen both FPR and

FWER when used alongside prewhitening.

parameterized models, which run the risk of overfitting to

the data.

In Figure 11, we examine the effect of prewhitening on false

positives in null (resting-state) data. Assuming a false on-off

10 s boxcar design, we fit a GLM and perform a t-test on

the task coefficient at every vertex. We perform Bonferroni

correction of the p-values to control the FWER at 0.05. Note

that while Bonferroni correction is often considered overly

conservative for volumetric fMRI analyses involving hundreds

of thousands of tests, here we have resampled the data to

6, 000 vertices per hemisphere, so the number of tests being

performed is an order of magnitude less. We have previously

observed that Bonferroni correction is not more conservative

than permutation testing in this data. Figure 11A displays

the proportion of sessions showing a false detection at each

vertex when no prewhitening is performed or when an AR(6)
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model is used for prewhitening with local or global coefficient

regularization. Figure 11B displays the false positive rate (FPR),

the proportion of vertices labeled as active in each session,

averaged across all subjects, sessions and tasks. Figure 11C

displays the FWER, the proportion of sessions exhibiting a single

false positive vertex. In Figures 11B, C we also consider the

effect of including additional motion parameters (24) vs. the

12 included by default in our analyses. We observe that for

both local and global regularization, the inclusion of additional

motion parameters actually worsense the FPR and FWER. This

is in line with the slight increase in ACI we observe when these

parameters are included in combination with prewhitening (see

Figure A.1 in Appendix). Taken together, these results suggest

that the loss in degrees of freedom associated with including

superfluous covariates in the GLM worsen the performance

of prewhitening. This illustrates that overparameterized GLMs

may actually result in inflated false positive rates, in addition to

their well-known effect of reducing power to detect true effects.

Comparing the FPR and FWER before and after prewhitening,

we see that prewhitening drastically reduces the FPR within each

session, and achieves FWER fairly close to the nominal rate of

0.05.

Interestingly, using global regularization achieves slightly

lower FWER while achieving slightly worse but still very

low FPR. This surprisingly strong performance of global

regularization stands in contrast to its poor performance in our

task fMRI-based analyses, displayed in Figures 9, 10. This may

indicate some limitations of using resting-state fMRI as “null”

data for evaluating false positive control in task fMRI. There

are many features of task fMRI data that may not be reflected

in resting-state fMRI data. For example, mismodeling of the

task-inducedHRF can induce residual autocorrelation, as shown

in Figure 1. Inclusion of HRF derivatives only partly accounts

for the task-related differences in autocorrelation, as shown in

Figure 2.

4. Discussion

In this paper, we have made three primary advances in

prewhitening in fMRI. First, we performed a comprehensive

analysis to examine the spatial topology of autocorrelation

across the cortex and identify the different factors driving

autocorrelation. Second, we evaluated the efficacy of a

range of AR-based prewhitening methods at eliminating

autocorrelation and controlling false positives. We found that

“local” prewhitening methods that account for spatial variability

strongly outperform “global” methods where the same filter

is applied to each voxel or vertex of the brain. Third,

we developed a fast implementation of local prewhitening,

available through the open-source BayesfMRI R package,

that overcomes the computational challenges associated with

performing prewhitening at thousands of locations.

4.1. Variable autocorrelation across the
cortex results in spatially di�erential false
positive control

Using a mixed effects modeling approach and test-retest

data from the Human Connectome Project, we showed

that autocorrelation varies markedly across the cortex and

is influenced by task-related differences, modeling choices,

acquisition factors, and population variability. As a result,

the spatial topology of autocorrelation in each fMRI scan is

unique. Given the spatial variability in autocorrelation, global

prewhitening will result in differential levels of false positive

control across the brain or cortex. And because the spatial

topology of autocorrelation is unique to each fMRI scan, the

topology of false positive control as well as power will likewise

vary across fMRI scans, even within the same study. For

example, one subject may be less likely to see a significant

effect in a certain region compared with another subject in the

same study, simply due to differences in autocorrelation in that

region. These results illustrate the importance of prewhitening

techniques that capture the spatial variability in autocorrelation,

in order to avoid differential false positive rates across the cortex

or across the brain.

Current prewhitening methods implemented in major fMRI

software tools often use a global prewhitening approach.

One likely reason for this is the computational efficiency of

global prewhitening, since it requires a single T × T matrix

inversion, unlike local prewhitening which requires V such

inversions. Likewise, the GLM coefficients can be estimated in

a single matrix multiplication step with global prewhitening,

whereas local prewhitening requires V multiplications. Another

seeming advantage of global regularization of the prewhitening

parameters is the low sampling variability in the estimates of

those parameters, though this comes as the cost of large biases

for specific locations. Local prewhitening can lead to noisier

estimates of the prewhitening parameters, though smoothing

can help combat this. While previous work based on volumetric

fMRI found smoothing to be detrimental because of mixing

signals across tissue classes (Luo et al., 2020), our use of

surface-based smoothing largely avoids this limitation. Using

cortical surface fMRI data also has the advantage of reduced

dimensionality and the option to further reduce dimensionality

through resampling without significant loss of spatial resolution.

This lower dimensionality, combined with an implementation

optimized for speed, makes our approach to local prewhitening

quite feasible ( 1 min per run for the task fMRI we analyze here).

4.2. Implications for volumetric fMRI
analyses

Our analysis focused on cortical surface-based analysis,

but our findings have major implications for volumetric fMRI
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analysis as well. The issue of spatially varying autocorrelation

is actually more salient in volumetric fMRI, because

autocorrelation is known to differ markedly across tissue

classes, with CSF generally exhibiting higher autocorrelation

and white matter exhibiting lower autocorrelation (Bollmann

et al., 2018; Luo et al., 2020). A global prewhitening approach

in volumetric fMRI may have more severe consequences

than in surface-based analyses because of the more dramatic

differences in autocorrelation across tissue classes. For

example, to eliminate autocorrelation within CSF and

thereby control false positive rates there, we may over-

whiten within gray matter. Even if we target the gray matter,

standard volumetric smoothing exacerbates differences in

autocorrelation, increasing autocorrelation in voxels near CSF

and decreasing autocorrelation in voxels near white matter.

While these issues point to the importance of local prewhitening

in volumetric fMRI analysis, the higher dimensionality of

that data introduces new computational challenges. For

example, our implementation of local prewhitening would

take 10 min per run for a volumetric analysis involving

100,000 voxels or more, compared with 1 min per run for

12,000 surface vertices. Additionally, our local regularization

approach of smoothing AR coefficients may not translate

seamlessly to volumetric fMRI analysis, given the risks

associated with smoothing across tissue classes. For volumetric

fMRI analysis, it may be preferable to avoid AR coefficient

smoothing or employ smoothing techniques that respect tissue

class boundaries.

4.3. Low-order AR models perform
surprisingly well when allowed to vary
spatially

We were somewhat surprised by the fairly strong

performance of AR(1) models when the AR coefficients

were allowed to vary spatially through local regularization.

This echoes the relatively strong performance of AFNI (Cox,

1996), which assumes a spatially varying ARMA(1,1) model

with no smoothing, observed by Olszowy et al. (2019). In our

analysis, locally regularized AR(1) prewhitening consistently

outperformed globally regularized AR(6) prewhitening

at reducing autocorrelation. We generally saw the best

performance for local AR(6) prewhitening, but its improvement

over local AR(1) was small compared to the difference between

local and global regularization. This suggests that for volumetric

fMRI analysis where the computational burden associated with

voxel-specific prewhitening may be substantial, lower-order

AR models may be worth consideration since they would

speed up estimation of the prewhitening coefficients and

matrix inversion.

4.4. FWER is not the whole picture

Because many multiplicity correction methods focus on

controlling the family-wise error rate (FWER) or the probability

of observing a single false positive voxel, vertex, or cluster,

FWER control is often used as an evaluation metric for

prewhitening methods. While this can be a useful metric in

determining whether important modeling assumptions (e.g.,

independent residuals) have been satisfied, it is not the only

important one. We advocate for two additional considerations:

equal false positive control across the brain or cortex, and

avoiding unnecessary loss of power. Global prewhitening that

does not consider the spatial variance in autocorrelation may

control the FWER, but will generally fail to achieve spatially

homogeneous levels of false positive control. As a result, we

may be much more likely to observe false positives in certain

regions, which may also differ across subjects. In addition,

global prewhitening will tend to over-whiten regions with low

autocorrelation, which can lead to overly conservative inference,

manifesting as a lack of power to detect effects. Just as we will be

more likely to see false positives in certain regions, other regions

will suffer disproportionately from a loss of power to detect

real effects. Indeed, achieving nominal FWER without spatially

homogeneous false positive control will almost surely come at

the cost of unnecessary loss of power in many parts of the brain.

4.5. Acquisition-induced distortions
change the spatial topology of
autocorrelation and false positive control

One striking finding in our analysis was the effect of

phase encoding direction on the spatial topology of residual

autocorrelation. Comparing the RL and LR phase encoding

directions, LR generally produced higher autocorrelation in the

right lateral cortex and left medial cortex, while RL generally

produced higher autocorrelation in the left lateral cortex and

the right medial cortex. In other words, the choice of phase

encoding direction generally had opposing effects on the

lateral and medial cortices within each hemisphere, as well

as across hemispheres. Why might this be? The LR and RL

phase encoding directions are known to introduce lateralized

distortions, even after distortion correction. These distortions

are due to areas of varying magnetic susceptibility giving rise

to signal stretching and signal pile-up based on the direction

of the phase-encode direction for acquisitions such as echo-

planar imaging (Jezzard and Clare, 1999). Those distortions

cause a slight misalignment of the fMRI data on the structure

of the brain. This has the result of mixing CSF signals with

higher autocorrelation into some cortical areas, and mixing

white matter signals with lower autocorrelation into others. For

example, the higher autocorrelation on the right lateral cortex
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with the LR acquisition may result from the introduction of CSF

signals produced by a slight shift of gray matter voxels to the left;

a similar shift to the left of the right medial cortex will introduce

white matter signals, resulting in lower autocorrelation. This is

somewhat analogous to the effect of volumetric smoothing on

gray matter voxels bordering CSF and white matter observed by

Luo et al. (2020) (though note that these effects of volumetric

smoothing would be in addition to, and perhaps exacerbate,

the effects of distortions). As a result, in the HCP there may

be sizeable discrepancies in false positive control and power

across and within each hemispheres before prewhitening or

when using global prewhitening. While such lateralized effects

are somewhat unique to HCP-style acquisitions that employ left-

to-right or right-to-left phase encoding, other acquisitions can

introduce different types of distortions that may also change

the spatial topology of autocorrelation. Different acquisitions

may therefore produce very different spatial distributions of

false positive control, if not addressed through an effective local

prewhitening strategy.

4.6. Limitations and future directions

Our study has several limitations. First, our analysis was

based on a single dataset, the Human Connectome Project,

which includes data from healthy young adults collected using

a certain multi-band acquisition protocol. Previous studies have

found the baseline level of autocorrelation, as well as the efficacy

of prewhitening, to differ across datasets of varying TR (Corbin

et al., 2018; Olszowy et al., 2019). Future work should examine

the generalizability of our findings, particularly the efficacy of

our local prewhitening approach, to data collected with different

acquisition protocols and inmore diverse populations. Similarly,

a valuable area of future work would be to assess the efficacy

of local prewhitening strategies in volumetric task fMRI data,

which presents unique challenges as described in Section 4.2.

Our study, as well as most prior studies on the efficacy of

prewhitening in task fMRI analyses, focused on the ability of

prewhitening techniques to effectively mitigate autocorrelation

and control false positives. Here we discussed, but did not

explicitly analyze, the possibility of a loss of power due to

over-whitening. We argue that this is more likely with global

prewhitening strategies that aim to achieve false positive control

within a particular region or tissue class, at the risk of over-

whitening in other areas. A valuable area of future work would

be to examine the effect of different prewhitening techniques on

power across the brain.

Here, we considered the effect of HRF modeling strategy

on residual autocorrelation, and observed that the inclusion

of temporal and dispersion derivatives of the HRF helped to

alleviate it. However, we did not consider alternative, potentially

advantageous HRF modeling strategies such as finite impulse

response (FIR) (Ciuciu et al., 2003; Marrelec et al., 2003)

or inverse logit (Lindquist et al., 2009) models. For data with

short TR such as the HCP, recently proposed techniques

for blind deconvolution of the fMRI time series can

be used to estimate the HRF associated with different

regions of the brain in a particular dataset (Cherkaoui

et al., 2021). When enough data is available to allow for

accurate HRF estimation, these more flexible models may

help account for additional spatial, within-subject and

between-subject heterogeneity in HRF shape, onset and

duration, particularly in more diverse populations (Woolrich

et al., 2004). Thus, these more flexible HRF modeling

strategies could further reduce autocorrelation and its

spatial variance.

Finally, one limitation of our implementation of AR-

based prewhitening implementation is that we did not account

for potential bias in the prewhitening matrix due to using

the fitted residuals as a proxy for the true residuals. Since

the fitted residuals have a different dependence structure

induced by the GLM, their covariance matrix is not equal

to that of the true residuals. This bias will generally

be worse in overparameterized GLMs, which may help

explain why we observed a slightly detrimental effect of

including all 24 motion regressors when prewhitening was

also performed (see Figure A.1 in Appendix). A valuable

topic of future work would be to develop prewhitening

methods that formally model and adjust for this source

of bias.

5. Conclusion

We performed a comprehensive investigation of the

sources and patterns of residual autocorrelation across the

cortical surface in multi-band task fMRI data. Our analysis

revealed dramatic spatial differences in autocorrelation

across the cortex. This spatial topology is unique to each

session, being influenced by the task being performed, the

acquisition technique, various modeling choices, and individual

differences. If not accounted for, these differences will result in

differential false positive control and power across the cortex

and across subjects. We evaluated the efficacy of different

prewhitening methods to mitigate autocorrelation and control

false positives. Our findings demonstrate that allowing the

prewhitening filter to vary spatially is crucial to effectively

reducing autocorrelation and its spatial variability across the

cortex. Our computationally efficient implementation of “local”

prewhitening is available in the open-source BayesfMRI

R package.
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Appendix

FIGURE A. 1

E�ect of including additional motion covariates on autocorrelation,

when e�ective prewhitening is performed. For prewhitening, we

use an AR(6) model with local regularization of AR model

coe�cients, which we observe to be highly e�ective at reducing

autocorrelation. The first two columns show the average

autocorrelation index (ACI) across all subjects, sessions and tasks

when 12 realignment parameters (RPs) or 24 RPs are included in

each GLM. The last column shows the di�erence (24 RPs–12 RPs).

The mostly warm colors indicate that using additional RPs results in

very slightly worse autocorrelation when e�ective prewhitening is

performed.

Prewhitening Algorithm

Result: Prewhitened data values for the

response and design across all vertices

v = 1, . . . ,V

for v← 1 to V do

Find estimates β̂v by fitting the GLM at

vertex v;

Find AR coefficients φv,1, . . . ,φv,p and white

noise variance sv after global or local

regularization for the time series yv − Xβ̂v

using the Levinson-Durbin recursion

(Brockwell and Davis, 2009);

Create the symmetric temporal precision

matrix Q−1v as a sparse band matrix taking

the value 1 on the diagonal and −φv,q for the

qth location off the diagonal;

Set S−1v = ((1/sv)IT )Q
−1
v ;

Find the eigenvectors and eigenvalues of

S−1v , where Uv is the matrix of eigenvectors

and Dv is the diagonal matrix of

corresponding eigenvalues;

Compute the prewhitening matrix Wv = UvDvU
′
v;

Set off-diagonal values Wij = 0 at row i and

column j within Wv if |i− j| > p;

end

Create W as a block-diagonal matrix for all

prewhitening matrices Wv;

Output prewhitened response Ỹ =WY and

block-diagonal prewhitened design matrix X̃

with elements WvX;

Algorithm 1. Prewhitening time series data in order to reduce

temporal dependence in residuals. Steps in italics are performed

using C++ for computational e�ciency.
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