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Brain tumor segmentation remains a challenge inmedical image segmentation

tasks. With the application of transformer in various computer vision tasks,

transformer blocks show the capability of learning long-distance dependency

in global space, which is complementary to CNNs. In this paper, we proposed

a novel transformer-based generative adversarial network to automatically

segment brain tumors with multi-modalities MRI. Our architecture consists

of a generator and a discriminator, which is trained in min–max game

progress. The generator is based on a typical “U-shaped” encoder–decoder

architecture, whose bottom layer is composed of transformer blocks with

Resnet. Besides, the generator is trained with deep supervision technology.

The discriminator we designed is a CNN-based network with multi-scale

L1 loss, which is proved to be e�ective for medical semantic image

segmentation. To validate the e�ectiveness of our method, we conducted

exclusive experiments on BRATS2015 dataset, achieving comparable or better

performance than previous state-of-the-art methods. On additional datasets,

including BRATS2018 and BRATS2020, experimental results prove that our

technique is capable of generalizing successfully.

KEYWORDS

generative adversarial network, transformer, deep learning, automatic segmentation,

brain tumor

1. Introduction

Semantic medical image segmentation is an indispensable step in computer-aided

diagnosis (Stoitsis et al., 2006; Le, 2017; Razmjooy et al., 2020; Khan et al., 2021). In

clinical practice, tumor delineation is usually performed manually or semi-manually,

which is time-consuming and labor-intensive. As a result, it is of vital importance

to explore automatic volumetric segmentation methods with the help of medical

images to accelerate the computer-aided diagnosis. In this paper, we focus on the

segmentation of brain tumors with the help of magnetic resonance imaging (MRI)

consisting of multi-modality scans. The automatic segmentation of gliomas remains one

of the most challenging medical segmentation problems stemming from some aspects,

such as arbitrary shape and location, poorly contrasted, and blurred boundary with

surrounding issues.
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Since the advent of deep learning, Convolutional Neural

Networks (CNN) have achieved great success in various

computer vision tasks, ranging from classification (LeCun et al.,

1998; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;

Szegedy et al., 2015; Huang et al., 2017), object detection

(Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Liu

et al., 2016; Redmon et al., 2016; He et al., 2017; Redmon and

Farhadi, 2017, 2018; Bochkovskiy et al., 2020) to segmentation

(Chen et al., 2014, 2017; Long et al., 2015; Ronneberger et al.,

2015; Lin et al., 2017). Fully Convolution Networks (FCN Long

et al., 2015) and in particular “U-shaped” encoder–decoder

architectures have realized state-of-the-art results in medical

semantic segmentation tasks. U-Net (Ronneberger et al., 2015),

which consists of symmetric encoder and decoder, uses the

skip connections to merge the extracted features from encoder

with those from decoder at different resolutions, aiming at

recovering the lost details during downsampling. Owing to

the impressive results in plenty of medical applications, U-Net

and its variants have become the mainstream architectures in

medical semantic segmentation.

In spite of their prevalence, FCN-based approaches are

incapable of modeling long-range dependency because of its

intrinsic limited receptive field and the locality of convolution

operations. Inspired by the great success of transformer-based

models in Natural Language Processing (NLP) (Devlin et al.,

2018; Radford et al., 2018; Liu et al., 2019; Yang et al.,

2019; Clark et al., 2020), a growing number of researchers

propose to apply the self-attention mechanism to medical image

segmentation, attempting to overcome the limitations brought

by the inductive bias of convolution, so as to extract the long-

range dependency and context–dependent features. Especially,

unlike prior convolution operations, transformers encode a

sequence of patches and leverage the power of self-attention

modules to pre-train on a large-scale dataset for downstream

tasks, like Vision Transformer (ViT) (Dosovitskiy et al., 2020)

and its variants.

Simultaneously, for the Transformers applied in medical

image segmentation, Generative Adversarial Networks (GAN)

has revealed great performance in semantic segmentation.

In a typical GAN architecture used for segmentation, GAN

consists of two competing networks, a discriminator and a

generator. The generator learns the capability of contexture

representations, minimizing the distance between prediction

and masks, while the discriminator on the contrary maximizes

the distance to distinguish the difference between them. The

two networks are trained in an alternating fashion to improve

the performance of the other. Furthermore, some GAN-based

methods like SegAN (Xue et al., 2018) achieve more effective

segmentation performance than FCN-based approaches.

In this paper, we explore the integrated performance of

transformer and generative adversarial network in segmentation

tasks and propose a novel transformer-based generative

adversarial network for brain tumor segmentation. Owing to

the attention mechanism, transformer has a global receptive

field from the very first layer to the last layer, instead of

focusing solely on the local information from convolution

kernel in each layer, thus contributing to the pixel-level

classification and being more suitable for medical segmentation

tasks. Besides, CNN learns representative features at different

resolutions through cascading relationships, while the attention

mechanism pays more attention to the relationship between

features, thus transformer-based methods are easily-generalized

and not completely dependent on the data itself, such as

experiments with incomplete images input in Naseer et al.

(2021). Inspired by some attempts (Wang W. et al., 2021;

Hatamizadeh et al., 2022) of fusing transformer with 3D CNNs,

we design an encoder–decoder generator with deep supervision,

where both encoder and decoder are 3D CNNs but the bridge

of them is composed of transformer blocks with Resnet. In

the contrast of typical “U-shaped” decoder–encoder network,

our transformer block is designed to replace the traditional

convolution-based bottleneck, for the reason that the self-

attention mechanism inside transformer can learn long-range

contextual representations while the finite kernel size limits

the CNN’s capability of learning global information. For pixel-

wise brain tumor segmentation task, replacing CNN with

transformer blocks on the bottleneck contributes to capturing

more features from encoder. Inspired by SegAN (Xue et al.,

2018), we adopt the multi-scale L1 loss to our method with only

one generator and one discriminator, measuring the distance of

the hierarchical features between generated segmentation and

ground truth. Experimental results on BRATS2015 dataset show

that our method achieves comparable or better performance

than some previous state-of-the-art methods. Compared to

existing methods, the main contributions of our approach are

listed as follows:

• A novel transformer-based generative adversarial network

is proposed to address the brain tumor segmentation task

with multi-modalities MRI. To enhance the efficiency of

brain tumor segmentation, our method incorporates the

concepts of “Transformer” and “Generative adversarial”.

The generator makes use of the transformer blocks

to facilitate the process of learning global contextual

representations. As far as we are aware, our work is

among the very first ones to explore the combination

of transformer and generative adversarial networks

and achieve excellent performance in the brain tumor

segmentation task.

• Our generator exploits transformer with Resnet module

in 3D CNN for segmenting multi-modalities MRI brain

tumors. Building upon the encoder–decoder structure,

both encoder and decoder in our proposed generator are

mainly composed of traditional 3D convolution layers,

while the bottom layer of the “U-shaped” structure is

a transformer with Resnet module. With Resnet, the
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transformer block captures both global and local spatial

dependencies effectively, thus preparing embedded features

for progressive upsampling to full resolution predicted

maps.

• Our loss functions are suitable and effectively applied in

generator and discriminator. Adopting the idea of deep

supervision (Zhu Q. et al., 2017), we take the output of the

last three decoder layers of generator to calculate weighted

loss for better gradient propagation. Besides, we leverage a

CNN-based discriminator to compute multi-scale L1 norm

distance of hierarchical features extracted from ground

truth and segmentation maps, respectively.

• The exclusive experimental results evaluated on

BRATS2015 dataset show the effectiveness of each

part of our proposed methods, including transformer with

Resnet module and loss functions. Comparing to existing

methods, the proposed method can obtain significant

improvements in brain tumor segmentation. Moreover,

our method successfully generalizes in other brain tumor

segmentation datasets: BRATS2018 and BRATS2020.

The following outlines the structure of this paper: Section

2 reviews the related work. Section 3 presents the detail of

our proposed architecture. Section 4 describes the experimental

setup and evaluates the performance of our method. Section 5

summarizes this work.

2. Related works

2.1. Vision transformer

The Transformers were first proposed by Vaswani et al.

(2017) on machine translation tasks and achieved a quantity

of state-of-the-art results in NLP tasks (Devlin et al., 2018;

Radford et al., 2018). Dosovitskiy et al. (2020) then applied

Transformers to image classification tasks by directly training

a pure Transformer on sequences of image patches as words

in NLP, and achieved state-of-the-art benchmarks on the

ImageNet dataset. In object detection, Carion et al. (2020)

proposed transformer-based DETR, a transformer encoder–

decoder architecture, which demonstrated accuracy and run-

time performance on par with the highly optimized Faster

R-CNN (Ren et al., 2015) on COCO dataset.

Recently, various approaches were proposed to explore

the applications of the transformer-based model for semantic

segmentation tasks. Chen et al. (2021) proposed TransUNet,

which added transformer layers to the encoder to achieve

competitive performance for 2D multi-organ medical image

segmentation. As for 3Dmedical image segmentation, WangW.

et al. (2021) exploited Transformer in 3D CNN for segmenting

MRI brain tumors and proposed to use a transformer in

the bottleneck of “U-shaped” network on BRATS2019 and

BRATS2020 datasets. Similarly, Hatamizadeh et al. (2022)

proposed an encoder–decoder network named UNETR, which

employed transformer modules as the encoder and CNN

modules as the decoder, for the brain tumor and spleen

volumetric medical image segmentation.

Compared to these approaches above, our method is

tailored for 3D segmentation and is based on generative

adversarial network. Our generator produces sequences fed into

transformer by utilizing a backbone encoder–decoder CNN,

where the transformer with Resnet module is placed in the

bottleneck. With Resnet, the encoder captures features not only

from CNN-based encoder but also from transformer blocks.

Moreover, the last three output layers of the encoder are

considered to calculate the loss function for better performance.

Networks like UNETR employ transformer layers as encoder

in low-dimension semantic level, and taking this network as

backbone in our method without pre-training easily leads to

model collapse during the adversarial training phase. Therefore,

we do not choose these networks as our backbone. We find that

taking transformer as encoder in low-dimension semantic level

needs quantities of pre-training tasks on other datasets to get

good results, like TransUNet and UNETR above. As shown in

our experiments Section 4.6, transformer-based encoder in low-

dimension semantic level performances inferior to CNN-based

one when training from scratch. Therefore, we choose to apply

transformer only in bottleneck, and remain the low-dimension

encode layers as convolutional layers. In this way, we can train

from scratch, meanwhile achieving good performance.

2.2. Generative adversarial networks

The GAN (Goodfellow et al., 2014) is originally introduced

for image generation (Mirza and Osindero, 2014; Chen et al.,

2016; Odena et al., 2017; Zhu J.-Y. et al., 2017), making the core

idea of competing training with a generator and a discriminator,

respectively, known outside of fixed circle. However, there exists

a problem that it is troublesome for the original GAN to remain

in a stable state, hencemaking us cautious to balance the training

level of the generator and the discriminator in practice. Arjovsky

et al. proposed Wasserstein GAN (WGAN) as a thorough

solution to the instability by replacing the Kullback-Leibler (KL)

divergence with the Earth Mover (EM) distance.

Various methods (Isola et al., 2017; Han et al., 2018; Xue

et al., 2018; Choi et al., 2019; Dong et al., 2019; Oh et al., 2020;

Ding et al., 2021; He et al., 2021; Nishio et al., 2021; Wang

T. et al., 2021; Zhan et al., 2021; Asis-Cruz et al., 2022) were

proposed to explore the possibility of GAN in medical image

segmentation. Xue et al. (2018) used U-Net as the generator

and proposed a multi-scale L1 loss to minimize the distance

of the feature maps of predictions and masks for the medical

image segmentation of brain tumors. Oh et al. (2020) took

residual blocks into account under the framework of pix2pix
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(Isola et al., 2017) and segmented the white matter in FDG-PET

images. Ding et al. (2021) took an encoder–decoder network as

the generator and designed a discriminator based on Condition

GAN (CGAN) on BRATS2015 dataset, adopting the image labels

as the extra input.

Unlike these approaches, our method incorporates the

concepts of “Transformer” and “GAN.” Our discriminator is

based on CNN instead of transformer. In our opinion, owing to

the attention mechanism inside transformer, transformer has a

more global receptive field than CNN with limited kernel size,

thus contributing to pixel-level classification and being more

suitable for medical segmentation tasks. However, for image-

level medical classification, transformer-based discriminator

seems to be less appropriate for its weakness of requiring

huge datasets to support pre-training, while CNN is strong

enough for classification tasks without pre-training. Motivated

by viewpoints above, in our method, the transformer-based

generator and CNN-based discriminator are combined to

facilitate the progress of segmentation under the supervision of

a multi-scale L1 loss.

3. Materials and methods

3.1. Overall architecture

The overview of our proposed model is presented

in Figure 1. Our framework consists of a generator and

discriminator for competing training. The generator G is

a transformer-based encoder–decoder architecture. Given

a multi modalities (T1, T1c, T2, and FLAIR) MRI scan

X ∈ RC×H×W×D with 3D resolution (H, W, D) and C

channels, we utilize 3D CNN-based down-sampling encoder

to produce high dimension semantic feature maps, and then

these semantic information flow to 3D CNN-based up-sampling

decoder through the intermediate Transformer block with

Resnet (He et al., 2016). With skip connection, the long-range

and short-range spatial relations extracted by encoder from

each stage flow to the decoder. For deep supervision (Zhu Q.

et al., 2017), the output of decoder consists of three parts: the

output of last three convolution layers after sigmoid. Inspired

by Xue et al. (2018), the discriminator D we used has the similar

structure as encoder in G, extracting hierarchical feature maps

from ground truth (GT) and prediction separately to compute

multi-scale L1 loss.

3.2. Generator

Encoder is the contracting path which has seven spatial

levels. Patches of size 160 × 192 × 160 with four channels are

randomly cropped from brain tumor images as input, followed

by six down-sampling layers with 3D 3×3×3 convolution (stride

= 2). Each convolution operation is followed by an Instance

Normalization (IN) layer and a LeakyReLU activation layer.

At the bottom of the encoder, we leverage the transformer

with Resnet module to model the long-distance dependency

in a global space. The feature maps produced by the encoder

is sequenced first and then create the feature embeddings by

simply fusing the learnable position embeddings with sequenced

feature map by element-wise addition. After the position

embeddings, we introduce L transformer layers to extract the

long-range dependency and context dependent features. Each

transformer layer consists of a Multi-Head Attention (MHA)

block after layer normalization (LN) and a feed forward network

(FFN) after layer normalization. In attention block, the input

sequence is fed into three convolution layers to produce three

metrics: queries Q, keys K and values V. To combine the

advantages of both CNN and Transformer, we simply short cut

the input and output of Transformer block. Thus, as in Vaswani

et al. (2017) and Wang W. et al. (2021), given the input X,

the output of the transformer with Resnet module Y can be

calculated by:

Y = x+ yL (1)

yi = FFN
(

LN
(

y
′
i

))

+ y
′
i (2)

y
′
i = MHA

(

LN
(

yi−1
))

+ yi−1 (3)

MHA (Q,K,V) = Concat
(

head1, ..., headh
)

WO (4)

headi = Attention (Q,K,V) = softmax
(

QKT/
√
dk

)

V (5)

where yi denotes the output of ith (i ∈ [1, 2, ..., L]) Transformer

layer, y0 denotes X, WO are projection metrics, dk denotes the

dimension of K.

Unlike the encoder, the decoder uses 3D 2× 2× 2 transpose

convolution for up-sampling, followed by skip connection and

two 3D 3 × 3 × 3 convolution layers. For a better gradient flow

and a better supervision performance, a technology called deep

supervision is introduced to utilize the last three decoder levels

to calculate loss function. Concretely, we downsampled the GT

to the same resolution with these outputs, thus making weighted

sum of loss functions in different levels.

The detailed structure of our transformer-based generator

is presented in Table 1. In the encoder part, patches of size

160 × 192 × 160 voxels with four channels are randomly

cropped from the original brain tumor images as input. At each

level, there are two successive 3 × 3 × 3 unbiased convolution

layers followed by normalization, activation layers and dropout

layers. Beginning from the second level, the resolution of the

feature maps is reduced by a factor of 2. These features, e.g.,

areas of white matter, edges of brain, dots and lines, etc., are

extracted by sufficient convolution kernels for next blocks. The
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FIGURE 1

Overall architecture of our proposed method. In this figure, “Conv1” represents convolutional layer with kernel 1× 1× 1, “Conv3” with kernel

3× 3× 3, “IN” represents InstanceNorm layer, “LeReLU” means LeakyReLU activation layer.

transformer block enriches the global contextual representation

based on the attention mechanism, forcing features located in

the desired regions unchanged while suppressing those in other

regions. The shortcut branch crossing the transformer block

fusing the features from both encoder part and transformer

block by element-wise addition, indicating that our generator is

capable of learning short-range and long-range spatial relations

with neither extra parameter nor computation complexity.

According to the attributes of Resnet (He et al., 2016), y =
f (x) + x, where f (x) in our method represents transformer

blocks, x is the output of CNN-based encoder, whose contexture

representations in feature maps are relatively short-range

than transformer’s. With Resnet, the element-wise addition of

f (x) and x can directly fuse the short-range spatial relations

from CNN-based encoder and long-range spatial relations

from transformer-based bottleneck. Additionally, unlike neural

network layers, element-wise addition is a math operation with

no more memory cost and negligible computation time cost.

The decoder part contains amounts of upsampling layers and

skip connection to progressively recover semantic information

as well as resolution. The first upsampling layer is implemented

by interpolation while the other upsampling layers adapt the

form of deconvolution with stride set to 2. At level i ∈ [1, 5],

the encoder block Di doubles the spatial resolution, followed by

skip connection to fuse high-level (fromDi) and low-level (from

encoder block Ei) contextual representation so as to segment the

desired tumor regions. For a better supervision performance,

the outputs of Di where i ∈ [1, 3] are fed into 1 × 1 × 1

convolution layer and sigmoid layer to predict segmentation

maps with different resolution. Accordingly, the ground truth

is downsampled to different shapes such that they match the

shapes of those segmentation maps.

Our generator’s vital part is the transformer with Resnet

module. As shown in Table 1, our transformer with Resnet

module consists of transformer block and Resnet, while

transformer block is composed of position encodings module,

several transformer layers depicted in Figure 2 and features

projection module. To make use of the order of the input

sequence reshaped from bottom layer feature maps, we

introduce a learnable positional encoding vector to represent

some information about position of tokens in the sequence,

instead of sine and cosine functions. After position encoding

and normalization, the input sequence is fed into three different

linear layers to create queries, keys, and values. Then, we

compute the dot products of keys with queries. To avoid

extremely small gradients after softmax function, we scale the

dot-products by a factor related to dimensions of queries,

as shown in Equation 5. Multiplying scaled weights with
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TABLE 1 The detailed structure of proposed generator.

Stage Name Details Output size

Encoder E1 [Conv3, IN, LeReLU, Dropout] 64*160*192*160

[Conv3, IN, LeReLU, Dropout]

E2 [Conv3(stride2), IN, LeReLU, Dropout] 96*80*96*80

[Conv3, IN, LeReLU, Dropout]

E3 [Conv3(stride2), IN, LeReLU, Dropout] 128*40*48*40

[Conv3, IN, LeReLU, Dropout]

E4 [Conv3(stride2), IN, LeReLU, Dropout] 192*20*24*20

[Conv3, IN, LeReLU, Dropout]

E5 [Conv3(stride2), IN, LeReLU, Dropout] 256*10*12*10

[Conv3, IN, LeReLU, Dropout]

E6 [Conv3(stride2), IN, LeReLU, Dropout] 384*5*6*5

[Conv3, IN, LeReLU, Dropout]

E7 [Conv3(stride2), IN, LeReLU, Dropout] 512*3*3*3

[Conv3, IN, LeReLU, Dropout]

Transformer ResTransBlock Reshape 512*3*3*3

PE

Transformer Layer*4

Reshape

Resnet

Decoder D6 Upsample 384*5*6*5

[Conv3, IN, LeReLU, Dropout] x 2

D5 Deconv 256*10*12*10

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

D4 Deconv 192*20*24*20

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

D3

Deconv 128*40*48*40

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

Output3 Conv1 + Sigmoid 4*40*48*40

D2

Deconv 96*80*96*80

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

Output2 Conv1 + Sigmoid 4*80*96*80

D1

Deconv 64*160*192*160

Concat

[Conv3, IN, LeReLU, Dropout]

[Conv3, IN, LeReLU, Dropout]

Output1 Conv1 + Sigmoid 3*160*192*160

values, we obtain a single attention output, which is then

concatenated with other heads’ outputs to produce the multi-

head attention outputs. Subsequently, normalization, dropout,

and multi-layer perception (MLP) layers are utilized to produce

the transformer layer’s ultimate output. While convolution

layers have local connections, shared weights, and translation

equivariance, attention layers are global. We take advantage of

both by residual connection to learn both short-range and long-

range spatial relations with no more memory cost and negligible

computational time cost.
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FIGURE 2

The structure of transformer layer.

3.3. Discriminator and loss function

To distinguish the difference between the prediction and GT,

the discriminator D extracts features of GT and prediction to

calculate L1 norm distance between them. The discriminator is

composed of six similar blocks. Each of these blocks consists

of a 3 × 3 × 3 convolution layer with a stride of 2, a batch

normalization layer and a LeakyReLU activation layer. Instead

of only using the final output of D, we leverage the jth output

feature f ij (x) extracted by ith (i ∈ [1, 2, . . ., L]) layers from image

x to calculate multi-scale L1 loss ℓD as follows:

ℓD

(

x, x
′)

=
1

L ∗M

L
∑

i=1

M
∑

j=1

∥

∥

∥
f ij (x)− f ij

(

x
′)∥

∥

∥

1
(6)

where M denotes the number of extracted features of a layer in

D.

Referring to the loss function of GAN (Goodfellow et al.,

2014), our loss function of the whole adversarial process is

described as follows:

min
θG

max
θD

L (θG, θD) = Ex∼Pdata

(

ℓD
(

G(x), y
))

+Ex∼Pdata

(

ℓdeep_bce_dice
(

G(x), y
)

)
(7)

where x, y denote the input image and ground truth,

respectively, ℓdeep_bce_dice denotes that the segmentation maps

of generator are used to calculate the BCE loss together with the

Dice loss under deep supervision. Concretely, ℓdeep_bce_dice is a

weighted sum of ℓdeep_bce_dice (pi, yi),i ∈ [1, 2, 3] for prediction

pi and mask yi where i denotes the ith level of decoder (Di).

The detailed training process is presented in Algorithm 1,

which interprets the procedure of sampling data and following

updating discriminator and generator with corresponding loss

function respectively.

1: for number of training epoches do

2: for steps of training discriminator do

3: Get n input images from pdata
{

x1, ..., xn
}

and

corresponding labels
{

y1, ..., yn
}

.
4: Update discriminator by maximizing the loss

below:

1

n

n
∑

i=1

[

ℓD
(

G
(

xi
)

, yi
)]

5: Clip the weights of discriminator.

6: end for

7: Get n input images from pdata
{

x1, ..., xn
}

and

corresponding labels
{

y1, ..., yn
}

.
8: Update generator by minimizing the loss

below:

1

n

n
∑

i=1

[

ℓdeep_bce_dice
(

G
(

xi
)

, yi
)

+ ℓD
(

G
(

xi
)

, yi
)]

9: end for

Algorithm 1. The detailed training process. ℓdeep_bce_dice represents

BCE Dice loss with deep supervision, ℓD represents multi-scale L1 loss.

4. Experimental results

4.1. Dataset

In the experiments, we evaluated our method using the

Brain Tumor Image Segmentation Challenge 2015 (BRATS2015)

dataset. In BRATS2015, the training dataset contains manual

annotation by clinical experts for 220 patient cases with high-

grade glioma (HGG) and 55 patient cases with low-grade glioma

(LGG), whereas 110 patient cases are supplied in the online

testing dataset without annotation. Four 3D MRI modalities—

T1, T1c, T2, and FLAIR—are used for all patient cases, as

depicted in Figure 3. Each modality has the origin size 240 ×
240×155 with the same voxel spacing. The ground truth has five

classes: background (label 0), necrosis (label 1), edema (label 2),

non-enhancing tumor (label 3), and enhancing tumor (label 4).
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FIGURE 3

HGG and LGG cases with four modalities: T1, T1c, T2, FLAIR on BRATS2015 dataset.

We divided the 275 training cases into a training set and a

validation set with the ratio 9:1 both in HGG and LGG. During

training and validation, we padded the origin size 240×240×155

to size 240 × 240 × 160 with zeros and then randomly cropped

into size 160×192×160, which makes sure that the most image

content is included.

4.2. Evaluation metric

To evaluate the effectiveness of a segmentation method, the

most basic thing is to compare it with the ground truth. In

the task of brain tumor segmentation, there are three main

evaluation metrics compared with the ground truth: Dice,

Positive predictive Value (PPV), and Sensitivity, defined as

follows:

Dice (P, T) =
1

2
×

∣

∣P1
⋂

T1
∣

∣

(|P1| + |T1|)
(8)

PPV (P,T) =
∣

∣P1
⋂

T1
∣

∣

|P1|
(9)

Sensitivity (P,T) =
∣

∣P0
⋂

T0
∣

∣

|T0|
(10)

where P represents the prediction segmented by our proposed

methods, T represents the corresponding ground truth. P1

and T1 denote the brain tumor region in P and T, P0 and

T0 denote the other region except brain tumor in P and T,

respectively, |·| calculates the number of voxels inside region, ∩
calculates the intersection of two regions. When Dice is larger,

PPV and Sensitivity are larger at the same time, the predicted

segmentation is considered to be more similar to ground truth,

proving that the segmentation method is more effective.

4.3. Implementation details

Experiments were run on NVIDIA A100-PCIE (4 × 40GB)

system for 1,000 epochs (about 3 days) using the Adam

optimizer (Kingma and Ba, 2014). The target segmentation

maps are reorganized into three tumor subregions: whole tumor

(WT), tumor core (TC), and enhancing tumor (ET). The initial

learning rate is 0.0001 and batch size is 4. The data augmentation

consists of three parts: (1) padding the data from 240×240×155

to 240×240×160with zeros; (2) randomizing the data’s cropping

from 240×240×160 to 160×192×160; (3) random flipping the

data across three axes by a probability with 0.5. Impacted by the

volumetric input size, the number of parameters of our network

is larger than common 2D networks, generator: 58.0127M,

transformer blocks inside generator: 11.3977M, discriminator:

75.4524M. Both the Dice loss in deep supervision and multi-

scale L1 loss are employed to train the network in competing

progress. In inference, we converted the transformed three

subregions (WT, TC, ET) back to the original labels. Specially, we

replace the enhancing tumor with necrosis when the possibility
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of enhancing tumor in segmentation map is less than the

threshold, which is chosen according to the online testing scores.

4.4. Impact of the number of generators
and discriminators

As the BRATS2015 is a multi-label segmentation task,

our architecture can be implemented with schemes where the

number of generators and discriminators are different. Each

implementation scheme in Table 2 is specifically described as

follows:

• 1G-1D. The network is composed of one generator and

one discriminator. The generator outputs three-channel

segmentation maps corresponding to three brain tumor

subregions, while the discriminator is fed with three-class

masked images concatenated in channel dimension.

• 1G-3D. The network is composed of one generator and

three discriminators. The generator outputs three-channel

segmentation maps while the discriminators output three

one-channel maps, each for one class.

• 3G-3D. The network is composed of three generators and

three discriminators. Each generator or discriminator is

built for one class. There are three pairs of generators

and discriminators, indicating that each pair is trained

independently for one class.

4.5. Evaluating the transformer with
Resnet module

To evaluate the effectiveness of the transformer with Resnet

module, we conduct some ablation experiments. We design the

bottom layer of our proposed generator with different schemes

as follows:

• Transformer with Resnet. The bottom layer is composed of

Transformer with Resnet we proposed.

• Transformer w/o Resnet. The bottom layer is composed

of Transformer block, ranging from projection, position

embedding to transformer layers, without shortcut crossing

them.

• CNN with Resnet. The bottom layer is composed of

convolutional layers together with a shortcut crossing

them.

• Shortcut. The bottom layer is simply a shortcut connection

from the encoder part to the decoder part.

TABLE 2 Results of di�erent number of generators and discriminators.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

1G-3D 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

1G-1D 0.84 0.72 0.62 0.82 0.78 0.58 0.89 0.72 0.71

3G-3D 0.81 0.68 0.60 0.83 0.74 0.62 0.84 0.70 0.63

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

TABLE 3 Results of di�erent bottom layer in generator.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

Transformer with Resnet 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

Transformer w/o Resnet 0.85 0.71 0.61 0.83 0.79 0.60 0.90 0.69 0.68

CNN with Resnet 0.83 0.68 0.58 0.80 0.78 0.58 0.91 0.66 0.62

Shortcut 0.82 0.67 0.60 0.82 0.77 0.63 0.87 0.67 0.63

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

TABLE 4 Results of di�erent discriminators training from scratch.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

CNN-based 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

Transformer-based 0.79 0.66 0.58 0.79 0.77 0.55 0.86 0.64 0.66

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.
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TABLE 5 Results of di�erent loss function.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

Our method 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

w/o deep supervision 0.85 0.72 0.61 0.83 0.78 0.57 0.90 0.73 0.71

Single-scale L1 loss 0.84 0.72 0.61 0.82 0.78 0.58 0.89 0.72 0.71

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

FIGURE 4

Detailed evaluation curves of di�erent loss function.

TABLE 6 Performance of some methods on BRATS2015 testing dataset.

Method Dice Positive predictive value Sensitivity

Whole Core Enha. Whole Core Enha. Whole Core Enha.

UNET (Ronneberger et al., 2015) 0.80 0.63 0.64 0.83 0.81 0.78 0.80 0.58 0.60

ToStaGAN (Ding et al., 2021) 0.85 0.71 0.62 0.87 0.86 0.63 0.87 0.68 0.69

3D Fusing (Zhao et al., 2018) 0.84 0.73 0.62 0.89 0.76 0.63 0.82 0.76 0.67

FSENet (Chen et al., 2018) 0.85 0.72 0.61 0.86 0.83 0.66 0.85 0.68 0.63

SegAN (Xue et al., 2018) 0.85 0.70 0.66 0.92 0.80 0.69 0.80 0.65 0.62

Our method 0.85 0.73 0.63 0.83 0.79 0.59 0.90 0.73 0.73

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

The comparation results are shown in Table 3. From

the results, we demonstrate the transformer’s superiority and

irreplaceability, and we can conclude that transformer with

Resnet module make the best of features from transformer

block and convolutional encoder to improve the segmentation

performance.

4.6. Evaluating the CNN-based
discriminator

We select the CNN-based discriminator instead of

the transformer-based one as our final discriminator in

our architecture, due to our opinion that transformer-

based multi-layers discriminator requires huge datasets to

support pre-training. To prove that, we conduct ablation

experiments to compare their performance by training from

scratch. The transformer-based discriminator is implemented

using the inspiration of Jiang et al. (2021). Table 4 shows

the results on BRATS2015 testing dataset using different

discriminators, from which our CNN-based discriminator

shows its superior capability of classifying the ground truth

and segmentation outputs from scratch. Without pre-training,

the CNN-based discriminator appears to be better than the

transformer-based one.

4.7. Evaluating the loss function

In this section, we evaluate the effectiveness of the loss

function in our proposed methods. As shown in Equation 7,

our loss function is divided into two parts: the deep supervision
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FIGURE 5

Experimental results with corresponding slices on BRATS2015 validation set. The red arrows locate the mainly di�erent regions between GT and

segmentation results.

loss and multi-scale L1 loss. We conduct two ablation

experiments: one model with single-scale L1 loss, the other

model without deep supervision loss. It is worth noting that

the implementation of these models is the same as 1G-

3D where the network consists of one generator and three

discriminators and employs the transformer with Resnetmodule

in the bottom layer. From Table 5, we find that our loss

function achieves better performance under the same other

experimental environment.

The detailed segmentation evaluation scores curves with

different loss function are depicted in Figure 4. It is clear that the

segmentation performance of all approaches steadily increases
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FIGURE 6

From left to right is the visualization results of an original image in FLAIR modality, ground truth, model in our method, model in the form of

UNET + GAN, model UNET. From up to down in each column is three segmentation maps predicted with the same method. The blue boxes

outline the di�erence between results from di�erent methods.

as the number of epochs increases until it reaches a steady state.

Ranging from WT, TC to ET, our method shows an increasing

performance boost over other methods. As a consequence, our

method yields the best results in all evaluation metrics listed in

Table 5.

4.8. Comparison with other methods

To obtain a more robust prediction, we ensemble 10

models trained with the whole training dataset to average the

segmentation probability maps. We upload the results of our

methods on the BRATS2015 dataset and get the testing scores

computed via the online evaluation platform, as listed in Table 6.

Figure 5 shows our qualitative segmentation output

on BRATS2015 validation set. This figure illustrates

different slices of different patient cases in ground truth

and predictions separately.

4.9. Qualitative analysis

To demonstrate the performance of our proposed method,

we randomly choose a slice of one patient on BRATS2015

validation set to visualize and compare the result in Figure 6.

In Figure 6, images in the same column are produced from the

same method, and images in the same row are belonging to

the same segmentation label. Concretely, the column FLAIR

represents the original image with modality of FLAIR, while

other columns are segmentation maps with corresponding

categories and colors: WT is yellow, TC is green, and ET

is red. The column UNET represents that the corresponding

three segmentation maps are inferenced with model UNET.

The model of the column UNET plus GAN is built based

on UNET, with an addition of GAN, where the generator is

UNET with deep supervision and discriminator is a CNN-based

network with multi-scale L1 loss. A deep insight of Figure 6

reveals that with the help of deep supervision and multi-scale

L1 loss, the UNET+GAN method segments fuller edges and

richer details than UNET method. When the transformer block

is applied, our method produces more smooth borders on the

tumor core regions, and more complete contours on enhancing

tumor regions. The reason for this improvement seems to

be that the transformer with Resnet module can effectively

model the short-range and long-range dependency, and collect

both local and global contexture representation information.

Owing to more complete features, our method achieves the

better performance.
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TABLE 7 Comparison to other methods on BRATS2018 validation

dataset.

Method Dice(mean) Hausdorff(mm)

Enha. Whole Core Enha. Whole Core

Myronenko (2018) 0.7664 0.8836 0.8154 3.7731 5.9044 4.8091

Hu et al. (2019) 0.7178 0.8824 0.7481 2.8000 4.4800 7.0700

Chandra et al. (2018) 0.7406 0.8719 0.7990 5.5757 5.0379 9.5884

Liu (2018) 0.7639 0.8958 0.7905 4.0714 4.4924 8.1971

Our method 0.7686 0.9021 0.8089 5.7116 5.4183 9.4049

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

TABLE 8 Comparison to other methods on BRATS2020 validation

dataset.

Method Dice(mean) Hausdorff(mm)

Enha. Whole Core Enha. Whole Core

Tang et al. (2020) 0.703 0.893 0.790 34.306 4.629 10.071

Zhou et al. (2022) 0.647 0.818 0.759 44.400 10.000 14.600

Anand et al. (2020) 0.710 0.880 0.740 38.310 6.880 32.000

Zhang et al. (2021) 0.700 0.880 0.740 38.600 7.000 30.200

Our method 0.708 0.903 0.815 37.579 4.909 7.494

Whole, whole tumor; Core, tumor core; Enha., enhancing tumor.

4.10. Generalization on other datasets

To evaluate generalization of our proposed method, we

conduct additional experiments on other datasets relative to

brain tumor segmentation, BRATS2018 and BRATS2020, which

are composed of more practical patient cases. These datasets

differ from BRATS2015 dataset in labels, number of cases

and difficulty. The detailed inference performance are listed in

Tables 7, 8. On BRATS2018 validation dataset, our proposed

method achieves Dice score of 0.7686, 0.9021, and 0.8089,

and Hausdorff (HD) of 5.7116, 5.4183, and 9.4049 mm on

ET, WT, and TC, respectively. On BRATS2020 validation

dataset, our method also realizes Dice score of 0.708, 0.903,

and 0.815 and HD of 37.579, 4.909, and 7.494 mm on

ET, WT, and TC, respectively. These excellent scores reveal

the great generalization of our transformer-based generative

adversarial network.

5. Discussion and conclusion

In this paper, we explored the application of a transformer-

based generative adversarial network for segmenting 3D

MRI brain tumors. Unlike many other encoder–decoder

architectures, our generator employs a transformer with Resnet

module to effectively model the long-distance dependency in a

global space, simultaneously inheriting the advantage of CNNs

for learning the capability of local contexture representations.

Moreover, the application of deep supervision improves the

flowability of gradient to some extent. Our discriminator is

applied to measure the norm distance of hierarchical features

from predictions and masks. Particularly, we calculate multi-

scale L1 loss between the generator segmentation maps and

ground truth. Experimental results on BRATS2015, BRATS2018,

and BRATS2020 datasets show a better performance of our

proposed method in comparison of other state-of-the-art

methods, which proves the superior generalization of our

method in brain tumor segmentation.
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