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Multi-modal brain image fusion targets on integrating the salient and

complementary features of di�erent modalities of brain images into a

comprehensive image. The well-fused brain image will make it convenient for

doctors to precisely examine the brain diseases and can be input to intelligent

systems to automatically detect the possible diseases. In order to achieve the

above purpose, we have proposed a local extreme map guided multi-modal

brain image fusion method. First, each source image is iteratively smoothed

by the local extreme map guided image filter. Specifically, in each iteration,

the guidance image is alternatively set to the local minimum map of the

input image and local maximum map of previously filtered image. With the

iteratively smoothed images, multiple scales of bright and dark feature maps

of each source image can be gradually extracted from the di�erence image of

every two continuously smoothed images. Then, the multiple scales of bright

featuremaps and base images (i.e., final-scale smoothed images) of the source

images are fused by the elementwise-maximum fusion rule, respectively, and

the multiple scales of dark feature maps of the source images are fused by

the elementwise-minimum fusion rule. Finally, the fused bright feature map,

dark feature map, and base image are integrated together to generate a

single informative brain image. Extensive experiments verify that the proposed

methodoutperforms eight state-of-the-art (SOTA) image fusionmethods from

both qualitative and quantitative aspects and demonstrates great application

potential to clinical scenarios.

KEYWORDS

multi-modal brain images, image fusion, imageguidedfilter, local extrememap, bright

and dark feature map

1. Introduction

With the development of the medical imaging techniques, patients are often

required to take multiple modalities of images, such as computed tomography (CT),

magnetic resonance (MR) image, positron emission tomography (PET), and single-

photon emission computed tomography (SPECT). Specifically, CT image mainly

captures dense structures, such as bones and implants. MR image can capture soft-tissue
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information clearly, such as muscle and tumor. PET image can

help reveal the metabolic or biochemical function of tissues

and organs and SPECT image can visualize the conditions of

organs, tissues, and bones through delivering a gamma-emitting

radioisotope into the patient. Then, through observing all these

captured medical images, the doctors can precisely diagnose the

possible diseases. However, accurately locating the lesions and

diagnosing the corresponding diseases from multiple modalities

of images are still complex and time-consuming for the doctors.

Therefore, the image fusion technique can be applied to merge

the salient and complementary information of the multi-modal

images into a single image for better perception of both doctors

and intelligent systems (Yin et al., 2018; Liu et al., 2019,

2022a,b,c,d; Xu and Ma, 2021; Wang et al., 2022).

In recent years, many methods have been proposed for the

task of multi-modal image fusion. Generally, these methods

can be divided in two categories, i.e., spatial-domain image

fusion methods and transform-domain methods (Liu et al.,

2015, 2018; Zhu et al., 2018, 2019; Yin et al., 2019; Xu

et al., 2020a; Zhang et al., 2020). Specifically, the spatial-

domain image fusion methods first decompose the source

images into multiple regions, and then integrate the salient

regions together to generate their fusion image (Bai et al.,

2015; Liu et al., 2017, 2018, 2020; Zhang et al., 2017). The

fusion images of these methods often yield unsatisfactory effect

due to their inaccurate segmentation results. The transform-

domain methods are more popular in the field of image fusion.

These methods first convert the source images into a specific

domain, then fuse the salient features in this domain, and finally

generates the fusion image by converting the fused features

back to the image domain (Liu et al., 2015; Xu et al., 2020a;

Zhang et al., 2020). The fusion images of these methods are

usually more suitable for human to perceive, but might suffer

from the blurring effect (Ma et al., 2019a). Moreover, with

the fast development of deep-learning techniques, many deep-

learning (mainly convolutional neural network, CNN) based

image fusion methods have been proposed (Liu et al., 2017;

Li and Wu, 2018; Ma et al., 2019b; Wang et al., 2020; Zhang

et al., 2020). These methods adopt CNN to extract the deep

convolutional features, then fuse the features of the source

images by a feature fusion module, and finally reconstruct

the fused features as their fusion images. Even though these

deep-learning based methods have achieved great success in

the field of image fusion, many of these methods would

generate fusion images of low contrast or having other kinds

of defects.

Amongst the transform-domain methods, the guided image

filter (He et al., 2012) demonstrates to be a state-of-the-art

(SOTA) edge-preserving image filter, and has been widely used

in the field of image fusion (Li et al., 2013; Gan et al., 2015).

But in these methods, the guided image filter is often used

to refine the decision map or weight map rather than used

to extract salient features due to its relatively weak ability in

feature extraction. Therefore, in this study, we aim to improve

the feature extraction ability of the guided image filter, and based

on our improved guided filter to further develop a multi-modal

brain image fusion method.

To be specific, we have developed a local extreme map

guided image filter, which consists of a local minimum map

guided image filter and a local maximum map guided image

filter. The developed local extreme map guided image filter is

able to more effectively smooth the input image as compared to

the original image filter guided by the input image itself, then

the features extracted from the difference image of the smoothed

image and input image by our filter will be naturally more

salient than those extracted by the original image filter guided

by the input image itself. Through extending the local extreme

map guided filter to multiple scales, we propose a local extreme

map guided image filter based multi-modal brain image fusion

method. Specifically, we first apply the local extrememap guided

image filter iteratively on each source image to extract their

multi-scale bright and dark feature maps. Then, the multi-scale

bright feature maps, multi-scale dark feature maps, and the base

images of the multi-modal brain images are fused, respectively.

Finally, the fused bright feature map, dark feature map, and base

image are integrated together to generate our fused brain image.

The contributions of this study can be concluded in

three parts:

• Wepropose a new scheme to improve the feature extraction

ability of the guided image filter, i.e., using two guided

image filters with a local minimum map and a local

maximummap, respectively, as their guidance images. This

scheme can be incorporated with various guided filters or

other similar filters in pursuit of improving their feature

extraction ability.

• Based on the local extreme map guided image filter, we

further propose an effective image fusionmethod for fusing

multi-modal brain images. Moreover, the proposedmethod

can be easily adapted to fuse other modalities of images

while achieving superior fusion performance.

• Extensive experiments verify that our method performs

comparably to or even better than eight SOTA image fusion

methods (including three conventional methods and five

deep learning based methods) in terms of both qualitative

and quantitative evaluations.

The rest of this paper is organized as follows. In

Section 2, the constructed local extreme map guided

image filter and the proposed multi-modal brain

image fusion method are elaborated, respectively.

Then, the experimental results and discussions are
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FIGURE 1

Flowchart of our proposed local extreme map guided multi-modal brain image fusion method. (Note that the dark feature maps in this figure

have been illustrated as their absolute feature maps in order to properly visualize the dark features).

made in Section 3. Finally, this study is concluded in

Section 4.

2. Proposed method

The overall structure of the proposed method is illustrated

in Figure 1. The major procedures of the proposed method

include: First, the two multi-modal brain image are iteratively

smoothed by the local extreme map guided filter, respectively.

Then, different scales of bright and dark feature maps are

extracted, respectively, from the two multi-modal brain images,

and the two smoothed brain images in the last iteration

are taken as their base images, respectively. Afterwards, each

scale of bright feature maps of the two brain images and

each scale of dark feature maps of the two brain images

are fused by selecting their elementwise maximum values

and their elementwise minimum values, respectively. Further,

the fused multi-scale bright feature maps and dark feature

maps are integrated as a single bright feature map and

a single dark feature map, respectively, and the two base

image are fused as their elementwise maximum values as

well. Finally, the fusion image is generated by integrating

the fused bright feature map, dark feature map, and base

image together. In the following subsections, the local extreme

map guided image filter and our proposed image fusion are

elaborated, respectively.

2.1. Local extreme map guided image
filter

In the guided image filter based image fusion methods (Li

et al., 2013; Gan et al., 2015), the guided image filter was often

used to adjust the decision maps or weight maps for fusing the

feature maps of input images rather than directly extracting the

salient feature maps from the input images, due to its limited

feature extraction ability. Therefore, in this study, we focus on

improving the feature extraction ability of the guided image filter

by designing appropriate guidance images.

In the official demonstration of guided image filter (He

et al., 2012), the input image is smoothed under the guidance

of the input image itself to approach the edge preserving effect.

However, in this way, the feature map generated by subtracting

the filtered image from the input image is usually not salient

enough for the task of image fusion. In order to enhance the
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feature map, we have modified the guidance image from the

input image to its local extreme maps, so that the salient features

of the input image can be largely suppressed and accordingly

these salient features can be effectively extracted from the

difference image of the input image and filtered image. The

detailed construction method of our local extreme map guided

image filter is described as follows.

First, the input image is filtered under the guidance of the

local minimum map of the input image as:

I′f = guidedfilter (I, Imin, r) , (1)

where guidedfilter denotes the guided filter (He et al., 2012). I

and Imin are the input image and guidance image, respectively. r

denotes the size of the local window for constructing the linear

model between input image and guidance image. Moreover, Imin

denotes the local minimum image of I. Under the guidance of

the local minimum map, the salient bright features could be

sufficiently removed from the input image. Specifically, Imin can

be solved by the morphological erosion operation as:

Imin = imerode (I, se) ,

where imerode (·) denotes the morphological erosion operator.

se denotes the structuring element of flat-disk shape, radius of

which is denoted by k.

Then, I′
f
is further filtered under the guidance of its local

maximum map as:

If = guidedfilter
(

I′f , Imax, r
)

, (2)

where I′
f
and Imax are the input image and guidance image,

respectively, and Imax denotes the local maximum image of I′
f
.

Under the guidance of the local maximummap, the salient dark

features could be further removed from the finally filtered image.

Similar to the solution of Imin, Imax can be efficiently solved by

the morphological dilation operation as:

Imax = imdilate
(

I′f , se
)

,

where imdilate (·) denotes the morphological dilation operator.

In order to conveniently introduce the following image

fusionmethod, we denote by leguidedfilter (·) the function of our

constructed local extrememap guided image filter [composed by

Equations (1) and (2)], then smoothing an image with the local

extreme map guided image filter can be expressed as:

If = leguidedfilter (I, se, r) , (3)

where r and se correspond to the parameters in Equations (1)

and (2).

As is known, there exist both bright features and dark

features in an image, such as the bright person and the dark

roof in Figure 2A. Through sequentially smoothing the input

image guided by the local minimum map and local maximum

map, respectively, both the salient bright and dark features will

be removed from the input image and a well-smoothed image

will be obtained. Then, the salient features of the input image

can be obtained by subtracting the filtered image If from the

input image I according to Equation (4), and the positive part

of (I − If ) corresponds to the bright features, and the negative

part corresponds to the dark features.







Fb = max
(

I − If , 0
)

Fd = min
(

I − If , 0
) , (4)

where Fb and Fd denote the bright feature map and dark feature

map of I, respectively.

A demonstration example of the proposed local extreme

map guided image filter performed on an infrared image

is illustrated in Figure 2. In this figure, we have compared

the smoothed images (see Figures 2B–E), respectively, by the

original guided image filter, single local minimum map guided

filter, single local maximummap guided filter, and our complete

extreme map guided filter, and also compared the feature

maps extracted from their difference images with respect to

the original infrared image in Figure 2A. It can be seen from

Figures 2B–E that the smoothed image by our extreme map

guided filter has suppressed more salient features (textural

details) compared to those of the original guided filter, single

local minimum map guided filter, and single local maximum

map guided filter. Accordingly, the salient features (see

Figures 2I,M) extracted by our extreme map guided filter are far

more than those extracted by the original guided filter, single

local minimum map guided filter, and single local maximum

map guided filter. Moreover, intensities of our extracted feature

maps are much higher than those of feature maps extracted by

the other three filters. Overall, the results in this figure suggest

that our constructed local extreme map guided filter is able

to extract the input image’s bright and dark features well and

significantly outperforms the original guided filter, single local

minimum map guided filter, and single local maximum map

guided filter.

Naturally, the local extreme map guided image filter can be

extended to multiple scales by iteratively applying the image

filter guided with local minimummap and that guided with local

maximum map on the input image I according to Equation (5).

Iif = leguidedfilter
(

I
(i−1)
f

, sei, ri

)

, (5)

where i denotes the current scale of the guided filter, and i is

increased from 1 to n one by one. Ii
f
denotes the ith-scale filtered

image and especially I0
f
is the original input image I. sei and ri

denote the structuring element and size of the local window at

the ith scale, respectively.

Accordingly, different scales of bright and dark features can

be simultaneously extracted from the difference image of every
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FIGURE 2

Demonstration example of the local extreme map guided image filter (Toet, 2017). (A) Original infrared image. (B) Image smoothed by the image

filter guided by the input image itself. (C) Image smoothed by single local minimum map guided image filter. (D) Image smoothed by single local

maximum map guided image filter. (E) Image smoothed by our local extreme map guided image filter. (F–I) Bright feature maps extracted from

the di�erence images of (B–E) and (A), respectively. (J–M) Dark feature maps extracted from the di�erence images of (B–E) and (A), respectively

(Note that the dark feature maps in this figure have been illustrated as their absolute feature maps in order to properly visualize the dark features).

two continuously filtered images according to Equation (6).







Fb,i = max
(

Ii−1
f

− Ii
f
, 0

)

Fd,i = min
(

Ii−1
f

− Ii
f
, 0

) . (6)

Finally, the last scale of filtered image is taken as the base

image of I, as expressed in Equation (7).

Ibase = Iif . (7)

2.2. Local extreme map guided image
fusion

In this study, we aim to fuse two multi-modal brain images

(denoted by I1 and I2). According to the feature extraction

method introduced in the previous subsection, we can well

extract the multi-scale bright feature maps (denoted by F
j
b,i
) and

dark feature maps (denoted by F
j
d,i
) of each input image Ij, and

simultaneously obtain their base images (denoted by I
j
base

). j

denotes index of the input image, and is ranged from 1 to 2.

Then, the detailed procedures for fusing two multi-modal brain

images are introduced as follows.

As the high-frequency features of high intensities are

usually corresponding to the salient sharp features in the

image, thus we fuse each scale of bright feature maps of the

two multi-modal brain images by selecting their elementwise-

maximum values and fuse each scale of dark feature maps of

the two multi-modal images as their elementwise-minimum

values as:






F
fuse
b,i

= max
(

F1
b,i
, F2

b,i

)

F
fuse
d,i

= min
(

F1
d,i
, F2

d,i

) , (8)

Like other feature extractors, the proposed local extreme

map guided image filter cannot extract the entire bright and

dark features from the source images either, thus we have

enhanced the fused bright and dark features by multiplying

each scale of fused bright feature map and dark feature map by

an information-amount related weight. Further, the enhanced

bright feature maps and dark feature maps are integrated,
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respectively. The above two procedures can be mathematically

expressed as:















F
fuse
b

=

n
∑

i=1
wb,i · F

fuse
b,i

F
fuse
d

=

n
∑

i=1
wd,i · F

fuse
d,i

, (9)

where wb,i denotes the weight of the ith scale of bright feature

map and wd,i denotes the weight of the ith scale of dark feature

map. Generally, the feature map with more information should

be assigned to a large weight, thus wb,i and wd,i are set according

to the entropy of F
fuse
b,i

and F
fuse
d,i

, respectively, as:















wb,i =
eb,i

min
j

(

eb,j
)

wd,i =
ed,i

min
j

(

ed,j
)

, (10)

where eb,i denotes the entropy of F
fuse
b,i

and ed,i denotes the

entropy of
(

−F
fuse
d,i

)

. In this way, the minimum weight, i.e.,

weight of feature map with the lowest entropy, will be 1,

and weights of other scales of feature maps will all be higher

than 1. Accordingly, most scales of bright and dark feature

maps will be enhanced to some degree according to their

information amount.

As for the low-frequency base images, we directly fuse them

by computing their elementwise-maximum values according

to Equation (11). In this manner, most basic information of

the multi-modal medical images will preserved into the final

fusion image.

I
fuse
base

= max
(

I1base, I
2
base

)

. (11)

Finally, the fusion image can be generated by combining

the fused bright feature map, dark feature map, and base image

together as expressed in Equation (12). In this way, our fused

image can not only preserve as much as basic information of

the multi-modal source images, but also well enhance the salient

sharp features of the multi-modal source images.

Ifuse = F
fuse
b

+ F
fuse
d

+ I
fuse
base

. (12)

2.3. Parameter settings

In our method, there are mainly three parameters, including

the scale number n, the size of the local window ri in the

guided image filter, and the radius of the structuring element ki

in the morphological erosion and dilation operations. In order

to balance the time cost and fusion effect of the multi-modal

brain images, n is set to five in this study, i.e., n = 5. As

for ri and ki, we keep them same with each other, i.e., ki =

ri, in in each iteration i of local extreme map guided image

filtering. Moreover, in order to effectively extract the salient

image features, we set ri = 2×i+1 where i is gradually increased

from 1 to n in this study. The extensive experimental results

verify the above settings are effective for fusing the multi-modal

brain images.

3. Experimental results and
discussions

In order to verify the effectiveness of the proposed image

fusion method, we have compared it with eight representative

image fusion methods on three commonly used multi-modal

brain image datasets (Xu and Ma, 2021). The detailed

experimental settings, implementation details, results, and

discussions are introduced in the following five subsections.

3.1. Experimental settings

At first, we take 30 pairs of commonly used multi-modal

brain images from http://www.med.harvard.edu/aanlib as our

testing sets, including 10 pairs of CT and MR brain images, 10

pairs of PET and MR images, and 10 pairs of SPECT and MR

images. The three used datasets have been shown in Figures 3–5,

respectively. In particular, the spatial resolution of the images in

the three datasets are all 256× 256.

Second, we have compared our method with eight SOTA

image fusion methods, including the discrete wavelet transform

based method (DWT) (Li et al., 1995), the guided-filter based

method (GFF) (Li et al., 2013), the Laplacian pyramid and sparse

representation base method (LPSR) (Liu et al., 2015), the unified

image fusion network (U2Fusion) (Xu et al., 2020a), the GAN

based method (DDcGAN) (Ma et al., 2020), the general CNN

based image fusion network (IFCNN) (Zhang et al., 2020), the

enhanced medical image fusion network (EMFusion) (Xu and

Ma, 2021), and the disentangled representation based brain

image fusion network (DRBIF) (Wang et al., 2022). Moreover,

in order to verify the efficacy of the guidance of local extreme

maps, we have also added our method without the guidance of

local extreme maps (denoted by LEGFF0) for comparison.

At last, qualitative evaluation heavily depends on the

subjective observation which is inaccurate and laborious, thus

11 commonly-used quantitative metrics are further used to

objectively compare the 10 methods’ performance. The 11

quantitative metrics are spatial frequency (SF) (Li and Yang,

2008), average absolute gradient (AbG), perceptual saliency

(PS) (Zhou et al., 2016), standard deviation (STD), entropy

(E), Chen-Blum Metric (QCB) (Chen and Blum, 2009), visual

information fidelity (VIFF) (Han et al., 2013), edge preservation

metric (Qabf) (Xydeas and Petrovic, 2000), gradient similarity

metric (QGS) (Liu et al., 2011), weighted structural similarity

metric (WSSIM) (Piella and Heijmans, 2003), and multi-

scale structural similarity (NSSIM) (Ma et al., 2015). Among
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FIGURE 3

Ten pairs of images in the CT-MR image dataset.

FIGURE 4

Ten pairs of images in the PET-MR image dataset.

FIGURE 5

Ten pairs of images in the SPECT-MR image dataset.

these metrics, SF, AG, PS, and STD quantify the amount

of details reserved in the fusion image, E measures the

intensity distribution of the fusion image, QCB measures

the amount of the preserved contrast information of the

fusion image compared to the source images, VIFF measures

the information fidelity of the fusion image with respect

to the source images, Qabf measures the amount of the

preserved edge information of the fusion image compared to

the source images, QGS measures the gradient similarity of

the fusion image and the corresponding source images, and

WSSIM and NSSIM both measure the structural information

of the fusion image preserved from the source images.

Overall, the 11 selected metrics can quantitatively evaluate

the fusion images of different image fusion methods from

various aspects, and the larger values of all the 11 metrics

indicate the better performance of the corresponding image

fusion method.

3.2. Implementation details

Among the 10 comparison methods, IFCNN and DRBIF

can be directly used to fuse color images, and the other eight

fusion methods can only fuse gray-scale images directly. Thus,

DWT, GFF, LPSR, U2Fusion, DDcGAN, EMFusion, LEGFF0,

and our method can be directly applied to fuse the pair of gray-

scale CT and MR images in the CT-MR image dataset. As for

fusing images in the PET-MR and SPECT-MR image datasets,

the color image (PET or SPECT image) is first transformed from

the RGB color space to the YCbCr color space. Then, these
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FIGURE 6

Comparison example on the CT-MR image dataset. (A,B) are the original CT image and MR image, respectively. (C–L) are the fusion results of

DWT, GFF, LPSR, U2Fusion, DDcGAN, IFCNN, EMFusion, DRBIF, LEGFF0 , and our method, respectively.

eight methods fuse the Y channel of the color image and the

gray-scale MR image together. Finally, the fused color image is

generated by concatenating the fused gray-scale image and Cb

and Cr channels of the original color image, and transforming

the fused image in the YCbCr color space back to the RGB

color space. Moreover, most quantitative metrics are designed

to quantify the quality of gray-scale fusion images. Thus, during

computing the quantitative metric values on the PET-MR and

SPECT-MR image datasets, we covert the color source image and

the corresponding color fusion image to the YCbCr color space

and take their Y channels to compute the metric value of this

color fusion image. Finally, code of our proposed method will be

released on https://github.com/uzeful/LEGFF.

3.3. Qualitative evaluation results

In this subsection, the 10 image fusion methods are

evaluated by the qualitative method, i.e., comparing their fusion

results through visual observation. Specifically, we have shown

three comparison examples of the 10 image fusion methods in

Figures 6–8, respectively.

Figure 6 shows a set of fusion results of the 10 image

fusion methods on the CT-MR image dataset. It can be seen

from Figure 6C that the fusion image of DWT demonstrates

severe blocking effect around the head. Figures 6D,F reflect

that the fusion images of GFF and U2Fusion are of relatively

low contrast. Figure 6G shows that the background of the

DDcGAN’s fusion image becomes gray and leads to low-contrast

effect. It can be seen from Figures 6I,K that EMFusion and

LEGFF0 fail to integrate the textures of soft tissues in the

skull region of the original MR image into their fusion images.

Figure 6J shows that DRBIF fails to integrate several parts of

skull region of the original CT image into its fusion image.

Finally, the fusion images of LPSR, IFCNN, and our method

in Figures 6E,H,J achieve the best visual effect among all the

fusion images, i.e., having better contrast and integrating the

salient textures of the originalMR image andCT image into their

fusion images.

Figure 7 shows a set of fusion results of the 10 image fusion

methods on the PET-MR image dataset. It can be seen from
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FIGURE 7

Comparison example on the PET-MR image dataset. (A,B) are the original PET image and MR image, respectively. (C–L) are the fusion results of

DWT, GFF, LPSR, U2Fusion, DDcGAN, IFCNN, EMFusion, DRBIF, LEGFF0 , and our method, respectively.

Figure 7C that the intensities of the bottom part of DWT’s fusion

image are significantly lower than that of the original MR image

in Figure 7B. Figure 7E shows that the intensities of the bottom

right of LPSR’s fusion image are slightly lower than that of the

original MR image in Figure 7B. The fusion results of U2Fusion

and DDcGAN in Figures 7F,G have much lower contrast than

those of other methods. Figure 7H shows that the color style of

IFCNN’s fusion image is significantly changed as compared to

that of the original PET image in Figure 7A. Figures 7J,K show

that DRBIF and LEGFF0 fail to integrate some dark features

of the MR image into their fusion images. Overall, the fusion

images of GFF, EMFusion, and our method in Figures 7D,I,L

integrate most salient features of the original PET and MR

images into their fusion images, but contrast of EMFusion’s

fusion image is a little lower than that of GFF’s fusion image

and ours.

Figure 8 shows a set of fusion results of the 10 image fusion

methods on the SPECT-MR image dataset. We can see from

Figure 8C that the fusion image of DWT loses a few textures

around the center regions of the two eyes. It can be seen from

Figures 8D,E that GFF and LPSR only integrate a few details

of the bottom skull region of the original MR image into their

fusion images. The fusion image of U2Fusion and DDcGAN

in Figures 8F,G still have the defect of lower contrast and gray

background. The fusion image of IFCNN in Figure 8H is of low

contrast compared to the original SPECT and MR images in

Figures 8A,B. Figure 8J shows that the color style of DRBIF’s

fusion image is significantly different from that of the original

SPECT image in Figure 8A and DRBIF fails to integrate a

few bright features of the original MR image into its fusion

image due to its relatively high intensity. Figure 8K shows that

LEGFF0 fails to integrate many bright features of the original

MR image into its fusion image. Overall, the fusion images of

DWT, EMFusion, and our method in Figures 8C,I,L exhibit the

best visual effects among all the fusion images, but the salient

features integrated in our fusion image are more complete than

those integrated in the fusion images of DWT and EMFusion.

The three comparison examples could verify that the

proposed method can effectively fuse the salient bright and dark

features of the multi-modal brain images into a comprehensive

fusion image, and outperforms the eight SOTA image fusion

methods according to the visual comparison results. Moreover,

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.1055451
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2022.1055451

FIGURE 8

Comparison example on the SPECT-MR image dataset. (A,B) are the original SPECT image and MR image, respectively. (C–L) are the fusion

results of DWT, GFF, LPSR, U2Fusion, DDcGAN, IFCNN, EMFusion, DRBIF, LEGFF0 , and our method, respectively.

through visually comparing the fusion results of LEGFF0 and

our method, it could be verified that the incorporation of

the local extreme map guidance is critical for improving the

feature extraction ability and feature fusion ability of the guided

image filter.

3.4. Quantitative evaluation results

The quantitative metric values of the eight image fusion

methods are first calculated according to their fusion results

on each dataset, then the average metric values of the

eight methods on each dataset are listed in Tables 1–3,

respectively. In each table, the values in the bold, underline,

and italic fonts indicate the best, second-best and third-best

results, respectively.

It can be seen from Table 1 that the proposed method has

achieved the best performance on two metrics (i.e., VIFF and

NSSIM), obtained second-best performance on three metrics

(i.e., PS, QGS, and WSSIM), ranked the third place on the

STD metric on the CT-MR image dataset. To be specific, the

largest VIFF and NSSIM values and second-largest QGS and

WSSIM values of our method suggest that our fusion images

have preserved relatively more edge and structural information

from the original CT and MR images than the fusion images

of other methods. The second-largest PS value and the third-

largest STD value of our method indicate that the fusion images

of our method have slightly more textural details than those

generated by the other eight comparison methods. Since in our

method the base images of the source images are fused as their

elementwise-maximum values, thus intensity distribution of our

fusion images might be not that uniform along the gray-scale

space leading to relatively lower E and QCB values. Besides

our method, LPSR has achieved the best performance on three

metrics (i.e., SF, PS, and QCB) and the second performance on

twometrics (i.e., STD andMSSIM) and IFCNN has achieved the

best performance on three metrics (i.e., AbG, QGS, andWSSIM)

and the second performance on three metrics (i.e., SF, QCB,

and Qabf). Overall, consistent to the qualitative comparison

results, the quantitative evaluation results in Table 1 shows

LPSR, IFCNN, and our method perform slightly better than the

other seven methods on fusing the CT and MR images.
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TABLE 1 Quantitative evaluation results on the CT-MRI dataset.

Metrics
Methods

DWT GFF LPSR U2Fusion DDcGAN IFCNN EMFusion DRBIF LEGFF0 Ours

SF 33.6948 28.4859 35.7214 22.6498 21.2063 34.0565 21.8423 29.4565 31.3377 32.8535

AbG 16.6486 12.8718 14.7253 12.7615 13.8349 16.7553 11.7355 14.5474 12.8055 15.1338

STD 69.4181 62.5530 86.7440 55.0136 63.6475 76.6713 76.1188 83.2861 89.8708 84.8222

QPS 41.6377 35.8390 47.8699 30.9477 29.9360 43.2325 35.6807 42.0657 44.8173 44.9017

E 5.0467 4.3135 3.7990 4.6787 4.9987 4.2717 4.5214 4.3620 3.1752 4.2705

QCB 0.5436 0.6598 0.7074 0.2906 0.1683 0.6843 0.6699 0.6562 0.6603 0.6342

VIFF 0.3539 0.2733 0.4280 0.3185 0.2002 0.4256 0.3992 0.4318 0.4539 0.4800

Qabf 0.5538 0.7319 0.7394 0.6503 0.5934 0.7598 0.7247 0.7461 0.7821 0.7170

QGS 0.8796 0.8521 0.9000 0.8088 0.7776 0.9135 0.8053 0.8580 0.8766 0.9054

WSSIM 0.7113 0.8245 0.8178 0.3525 0.1931 0.8456 0.8088 0.8266 0.8139 0.8415

MSSIM 0.8731 0.8460 0.9395 0.8736 0.6584 0.9384 0.8819 0.9095 0.8926 0.9505

TABLE 2 Quantitative evaluation results on the PET-MRI dataset.

Metrics Methods

DWT GFF LPSR U2Fusion DDcGAN IFCNN EMFusion DRBIF LEGFF0 Ours

SF 33.5860 35.0668 34.5411 10.0922 6.2573 33.4545 29.6977 28.2939 34.7476 38.0866

AbG 22.2784 22.6448 22.4732 7.2796 4.5950 22.9097 20.2215 18.6718 21.5265 25.0111

STD 68.8455 74.7923 73.3129 27.8267 24.9354 72.8165 68.6928 72.6768 80.3887 79.2849

QPS 36.7423 40.6313 39.2959 13.9280 10.4126 38.0456 34.6725 35.4353 41.2365 42.5936

E 4.8620 4.9216 4.8230 4.6586 4.9882 5.1515 5.3884 5.4553 4.5049 4.8948

QCB 0.5747 0.5968 0.6075 0.3435 0.2272 0.5997 0.5989 0.3475 0.5683 0.6145

VIFF 0.4784 0.4248 0.4926 0.1779 0.0446 0.4969 0.4018 0.4702 0.4403 0.5175

Qabf 0.6443 0.7340 0.7070 0.4017 0.3277 0.7118 0.7171 0.6761 0.7346 0.7392

QGS 0.8905 0.9256 0.9123 0.7595 0.7164 0.9142 0.9015 0.8954 0.9128 0.9344

WSSIM 0.6754 0.7170 0.7027 0.3623 0.1611 0.7098 0.7052 0.6569 0.6708 0.7201

MSSIM 0.9238 0.9003 0.9463 0.6364 0.3814 0.9387 0.8983 0.9216 0.8817 0.9436

Table 2 shows that our method has achieved the best

performance on eight metrics (i.e., SF, AbG, PS, QCB, VIFF,

Qabf, QGS, and WSSIM) and the second-best performance on

twometrics (i.e., STD andMSSIM). As addressed previously, the

E metric value of our method is relatively lower than those of

other methods, due to our usage of the elementwise-maximum

strategy for fusing the base images. Overall, the quantitative

evaluation results on the PET-MR image dataset suggest our

method significantly outperforms the other nine methods by a

large margin in particular on fusing the PET and MR images.

This conclusion is also consistent to the visual comparison

results from Figure 7.

Finally, it can be seen from Table 3 that our method has

ranked the first place on six metrics (i.e., SF, AbG, QCB, Qabf,

WSSIM, and MSSIM), ranked the second place on the QPS,

VIFF, and QGS metrics, and ranked the third place on the STD

metric. Besides, DRBIF have obtained the best performance on

five metrics (i.e., STD, QPS, E, VIFF, and QGS) and the second

place on three metrics (i.e., SF, AbG, and MSSIM). These results

suggest the fusion images of our method and DRBIF have more

textural details and persevered more structural information

from the original SPECT and MR images compared to those

of the other eight methods. Moreover, the quantitative results

in Tables 1–3 indicate that our method with the local extreme

map guidance significantly outperforms that without the local

extreme map guidance. Thus, the incorporation of the local

extreme map guidance is effective for fusing the multi-modal

medical images.

Besides, in order to test the efficiency of our proposed

method, we have compared the average time cost of eachmethod

on the SPECT-MRI image dataset. All methods were evaluated

on the same computation platform with Intel Core i7-11700K

CPU and NVIDIA GeForce RTX 3090 GPU. The evaluation

results have been listed in Table 4. It can be seen from Table 4
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TABLE 3 Quantitative evaluation results on the SPECT-MRI dataset.

Metrics Methods

DWT GFF LPSR U2Fusion DDcGAN IFCNN EMFusion DRBIF LEGFF0 Ours

SF 16.4700 16.4841 16.6859 8.0194 6.4764 15.6082 13.2987 17.1988 14.7571 18.5201

AbG 11.4319 11.0090 11.3386 5.7527 4.9230 11.7558 9.6794 12.7670 9.0886 13.4389

STD 40.8780 46.4581 47.2084 24.2069 39.5366 42.6516 42.9472 64.6827 49.2280 48.9651

QPS 21.4775 23.2906 23.4398 12.5464 12.7030 20.3133 18.7972 26.1537 21.7281 24.3273

E 4.4663 4.2638 4.4474 4.5896 5.6676 5.1628 5.2005 5.7996 4.3966 4.9760

QCB 0.5633 0.5926 0.5858 0.3456 0.2249 0.5838 0.5807 0.3706 0.5380 0.6000

VIFF 0.4749 0.4230 0.4873 0.2327 0.2141 0.4814 0.4411 0.7241 0.4531 0.5646

Qabf 0.5656 0.6269 0.6137 0.3996 0.2824 0.6860 0.6461 0.6501 0.5976 0.6866

QGS 0.9194 0.9332 0.9368 0.8646 0.8368 0.9353 0.9184 0.9461 0.8984 0.9411

WSSIM 0.6371 0.6509 0.6546 0.4302 0.2113 0.6512 0.6425 0.5305 0.5936 0.6548

MSSIM 0.9299 0.8973 0.9411 0.7797 0.5437 0.9475 0.9372 0.9496 0.8949 0.9556

TABLE 4 Time cost comparison.

Methods DWT GFF LPSR U2Fusion DDcGAN IFCNN EMFusion DRBIF LEGFF0 Ours

Time costs 0.0077 0.1035 0.0021 0.3019 0.7935 0.0391 0.1323 0.0997 0.0401 0.1230

that LPSR and DWT run much faster than the other methods.

As for our method, it costs about 0.1230 s to fuse a pair of

multi-modal brain images, and it is slightly faster than three

deep learning based methods including U2Fusion, DDcGAN,

and EMFusion. Therefore, in term of time cost evaluation, the

proposed method is relatively time-efficient as compared to the

other nine comparisonmethods. Moreover, in order to verify the

generalization ability of our method, we have apply it to fuse

other modalities of images, including the multi-focus images,

infrared and visual images, multi-exposure images, and green-

fluorescent and phase-contrast protein images. Figure 9 shows

that our method can well integrate the salient features of each

pair of source images into the corresponding fusion images.

Thus, the good fusion results in Figure 9 can verify the good

generalization ability of our method for fusing other modalities

of images. Overall, both qualitative and quantitative evaluation

results indicate that ourmethod performs comparably to or even

better than eight SOTA image fusion methods and owns good

generalization ability.

3.5. Limitations and future prospects

Even though the experimental results validate the advantages

of our image fusion method, there still exist several limitations

in our method. At first, our local extreme map guided image

filter is constructed on the basis of the guided image filter,

thus the feature extraction ability of our filter will be inevitably

impacted by that of the original guided image filter. Second,

compared to LEGFF0 (which uses the original guided filter

solely for feature extraction and image fusion), the time cost

of our image fusion method increases by a large margin due

to iterative calculation of local extreme maps. In future, with

the development of guided image filter, performance of our

image fusion method can be further boosted by incorporating

more advanced guided image filter. Moreover, integrating the

local extreme map guidance and the deep-learning frameworks

is another way to simultaneously improve the performance

and efficiency of the local extreme map guided image fusion

methods. Finally, the proposed image fusion method does not

contain the image denoising and registration procedures, thus

before applying our method in the clinical scenarios the pair of

multi-modal source images should be denoised and aligned first.

4. Conclusion

In this study, we propose an effective multi-modal brain

image fusion method based on a local extreme map guided

image filter. The local extreme map guided image filter can

well smooth the image, thus it can further be used to

extract the salient bright and dark features of the image.

By iteratively applying this local extreme map guided image

filter, our method is able to extract multiple scales of bright

and dark features from the multi-modal brain images, and

integrate these salient features into one informative fusion

image. Extensive experimental results suggest that the proposed

method outperforms eight SOTA image fusion methods from
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FIGURE 9

Our fusion results on other modalities of images. (A) Shows a pair of multi-focus images (Nejati et al., 2015). (B) Shows a pair of visual and

infrared images (Toet, 2017). (C) Shows a pair of over- and under-exposed images (Xu et al., 2020b). (D) Shows a pair of green-fluorescent and

phase-contrast protein images (Tang et al., 2021). (E–H) are the fusion results of (A–D), respectively.

both qualitative and quantitative aspects and it demonstrates

very good generalization ability to fuse other modalities

of images. Therefore, the proposed method exhibits great

possibility to apply in the real clinical scenarios.
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