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Objective: Multi-frequency steady-state visual evoked potential (SSVEP)

stimulation and decoding methods enable the representation of a large

number of visual targets in brain-computer interfaces (BCIs). However,

unlike traditional single-frequency SSVEP, multi-frequency SSVEP is not yet

widely used. One of the key reasons is that the redundancy in the input

options requires an additional selection process to define an e�ective set of

frequencies for the interface. This study investigates systematic frequency set

selection methods.

Methods: An optimization strategy based on the analysis of the frequency

components in the resulting multi-frequency SSVEP is proposed, investigated

and compared to existing methods, which are constructed based on the

analysis of the stimulation (input) signals. We hypothesized that minimizing

the occurrence of common sums in the multi-frequency SSVEP improves the

performance of the interface, and that selection by pairs further increases

the accuracy compared to selection by frequencies. An experiment with 12

participants was conducted to validate the hypotheses.

Results: Our results demonstrated a statistically significant improvement

in decoding accuracy with the proposed optimization strategy based on

multi-frequency SSVEP features compared to conventional techniques. Both

hypotheses were validated by the experiments.

Conclusion: Performing selection by pairs and minimizing the number of

common sums in selection by pairs are e�ective ways to select suitable

frequency sets that improve multi-frequency SSVEP-based BCI accuracies.

Significance: This study provides guidance on frequency set selection in

multi-frequency SSVEP. The proposed method in this study shows significant

improvement in BCI performance (decoding accuracy) compared to existing

methods in the literature.

KEYWORDS

brain-computer interface (BCI), brain-machine interface (BMI),

electroencephalography (EEG), dual-frequency, multi-frequency, optimization,

steady-state visual evoked potential (SSVEP)

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1057010
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1057010&domain=pdf&date_stamp=2022-12-21
mailto:j.mu@student.unimelb.edu.au
https://doi.org/10.3389/fnins.2022.1057010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1057010/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mu et al. 10.3389/fnins.2022.1057010

1. Introduction

A steady-state visual evoked potential (SSVEP) is brain

activity that frequency-locks to periodic visual stimulation

(Zander et al., 2009). SSVEP is widely used in brain-computer

interfaces (BCIs) due to its relatively high accuracy and

information transfer rate as well as minimal training required

of users compared to other modalities, such as motor imagery

(Nicolas-Alonso and Gomez-Gil, 2012).

A standard SSVEP-based BCI includes multiple stimuli in

the workspace that each flashes at a different frequency while

electroencephalography (EEG) is measured primarily from the

occipital lobe. The measured EEG reflects the frequency of

the stimulus the user is focusing upon visually, as well as the

harmonics of that frequency. The presence of the harmonics

provides more reference points in the decoding process, but

also presents additional complexities and challenges in the

design of SSVEP-based BCIs. For example, if a frequency

and its harmonic are both used in the same BCI for two

different stimuli, there will be common frequencies in the

recorded EEG from the two stimuli, which may confound the

decoding algorithm. Therefore, in the literature, some studies

intentionally avoided the use of frequencies with common

harmonics in the stimulation (Volosyak et al., 2009; Chen

et al., 2015). This harmonic issue, together with the limited

responsive frequency range of the human brain to periodic

visual stimulation (Regan, 1989), constrains the number of

unique frequencies that can be used in standard SSVEP-based

BCIs; i.e., low signal-to-noise ratio EEG recordings and small

frequency separation impairs decoding performance. Therefore,

it is challenging to use standard SSVEP-based BCIs in scenarios

that require large numbers of unique frequencies to label all

the targets.

To address this problem, multi-frequency stimulation

methods utilizing more than one frequency in each stimulus

have been introduced, with two frequencies (dual-frequency)

being the most widely used modality (Shyu et al., 2010; Zhang

et al., 2012; Chen et al., 2013; Hwang et al., 2013; Kimura

et al., 2013; Chang et al., 2014; Mu et al., 2021a). However,

these studies focused primarily on introducing multi-frequency

stimulation methods, and did not explore frequency selection

methods. The use of multiple frequencies on each stimulus or

targets can exponentially increase the number of targets that can

be represented in the work space as the number of frequencies

used to label each target increases. Multi-frequency stimulation

generates a complex periodic stimulation signal that triggers a

more complex SSVEP response. In Mu et al. (2021a), it was

demonstrated that multi-frequency SSVEP response contained

not only the input frequencies and their harmonics, but also the

integer linear combinations of the input frequencies with low

order interactions more likely to be observed in the recorded

SSVEP. Note that the order of interaction was defined as

the sum of absolute values of the coefficients in the linear

combination (Mu et al., 2021a). A dedicated decoding algorithm,

multi-frequency canonical correlation analysis (MFCCA), was

also introduced to decode complex multi-frequency SSVEP,

leveraging the linear combinations produced by the frequency

interactions (Mu et al., 2021b). A 20% increase in accuracy was

observed when linear combinations of frequencies were utilized

to capture the interactions between the input frequencies in

the decoding algorithm; however, the study did not investigate

whether this information could be used in frequency selection

to further improve the performance of the multi-frequency

SSVEP-based BCI.

While multi-frequency SSVEP can provide a large number

of inputs for the interface, there is a need to select the most

effective set of input frequencies to construct a high-performing

BCI. In traditional single-frequency SSVEP, frequency selection

is usually done following very simple rules: avoid harmonics

in the same set (Volosyak et al., 2009), as mentioned above,

and avoid small frequency intervals. In studies with a relatively

large number of targets (40 targets) by Chen et al. (2015),

Wang et al. (2016), and Liu et al. (2020), stimulation frequencies

were equidistantly selected in a range (8–15.8 Hz with 0.2

Hz intervals) that avoided the existence of harmonics in the

same range. Another common way to select frequencies in

constructing an SSVEP-based BCI is based on the refresh rate of

the screen (refresh rate divided by integer numbers; Bakardjian

et al., 2010; Zhu et al., 2010; Hwang et al., 2013). In dual-

frequency SSVEP, this problem was explored by minimizing the

maximum input (stimulation) signal correlation (Liang et al.,

2020). Although this optimization method demonstrated its

advantage in improving the accuracy of the interface, only the

optimization of input signals was investigated. Since multi-

frequency SSVEP response shows more complex frequency

interactions between the multiple frequencies used in the

stimulation, optimization that takes into account such frequency

interactions at the output signals may outperform techniques

that only take into account the stimulation signals.

This work built upon Liang et al. (2020) and investigated

whether optimizing on a known multi-frequency SSVEP feature

would result in different performance in the multi-frequency

SSVEP-based BCI. In this paper, the dual-frequency SSVEP is

considered as a special case of multi-frequency SSVEP. Under

such a setting, an optimization strategy based on not only the

input frequencies, but also their harmonics and the integer linear

combinations of the input frequencies, is proposed and tested.

The number of frequencies used in constructing the targets, i.e.,

whether to select frequencies to make all the pairs or to select

pairs directly from the range without any constraint, is also

considered along with the output-based optimization. This work

contributes toward the framework of increasing the number of

commands in “BCI as a processor,” where command processing

capacity is a key (Xu et al., 2021).
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2. Materials and methods

2.1. Definitions

To avoid confusion, some terms used in this paper are

defined below.

Selection by frequencies

A frequency selection approach where the minimum

number of frequencies in the given range are selected to

construct the required number of targets.

Selection by pairs

Select the required number of pairs directly from the

given frequency range (from all the possible pairs made by

the frequencies within the range). Selection by pairs provides

more freedom in frequency selection as opposed to selection by

frequencies. Selection by pairs ignores additional constraints the

system may have, for example, limited number of frequencies

that can be produced by the hardware, in which case selection

by frequencies would be preferred.

Frequency pair

In a dual-frequency application, the frequency pair refers to

the two stimulation frequencies used to represent one target.

Frequency set

The set of all frequency pairs used in the interface.

Common sums

The common frequencies resulted from the integer linear

combinations of different pairs of frequencies, where at least one

of the coefficients is not zero. The number of common sums

refers to the counted number of common sums between the

frequency pairs in the frequency set [bounded by order, where

order is the sum of absolute values of the coefficients in the linear

combination (Mu et al., 2021b)].

Optimization strategy

In this paper, optimization strategy refers to the optimization

problem formulations, which includes the cost function and the

parameters to tune.

The following example is provided to help illustrate use of

the terms. Given a 6-target setup and five frequencies to select

from, selection by frequencies selects four frequencies out of the

five because it needs at least four frequencies to make six targets

with dual-frequency stimulation (C42 = 6). For example, the

five frequencies are 5, 6, 7, 8, and 9 Hz. The frequencies 5, 6,

TABLE 1 Integer linear combinations up to order 2 in frequency set

{(5, 7), (7, 9)}.

Operation f1 f2 2× f1 2× f1 f1+f2 |f1−f2|

Frequency pairs (5, 7) 5 7 10 14 12 2

(f1 , f2) (7, 9) 7 9 14 18 16 2

7, and 9 Hz are selected from selection by frequencies, so the

resulting frequency set will be {(5, 6), (5, 7), (5, 9), (6, 7), (6,

9), (7, 9)}, where each parenthesis includes one frequency pair;

for example, (5, 6). On the other hand, selection by pairs selects

6 pairs from the C52 = 10 total pairs of frequencies available.

An example of the selected frequency set from selection by pairs

could be {(5, 6), (5, 8), (5, 9), (6, 7), (6, 8), (8, 9)}.

Common sums can be found among the frequency pairs,

for example between {(5, 7), (7, 9)}. Table 1 lists all the linear

combinations (up to order 2) from the 2 frequency pairs. We

can see from the table that there are three frequencies that are

common to the two pairs (the common sums): 7, 14, and 2.

Therefore, the number of common sums in the frequency set

{(5, 7), (7, 9)} is 3. Note: the term “order” refers to the sum of the

absolute values of the coefficients in the linear combination.

2.2. Hypotheses on frequency set
selections

In multi-frequency SSVEP, the resulting brain response

shows not only the input frequencies and their harmonics, but

also the interactions between the input frequencies, in the form

of the integer linear combinations of the input frequencies (Mu

et al., 2021a). These peak occurrences in the SSVEP response

increase the chances of the common sums as described above.

Common sums are significant as they introduce ambiguity as to

which frequency pair produces an identified SSVEP peak during

decoding. Hence, we expect to see an increase in decoding

accuracy when the number of common sums in the multi-

frequency SSVEP is reduced. It is also worth noting that, in some

SSVEP-based BCI setups, there are additional constraints, such

as a limited number of frequencies that can be produced by the

hardware. Therefore, we also consider the case where only the

minimum number of frequencies needed for constructing all

the targets can be selected (selection by frequencies). Selection

by frequencies has more constraints compared to selection

by pairs, so a less optimal result was expected, whereas the

result from selection by pairs is anticipated to be closer to

optimal. Therefore, in this work, two hypotheses on frequency

set selection in dual-frequency SSVEP are tested:

Hypothesis 1. The performance (accuracy) of the

multi-frequency SSVEP-based BCI

will be improved when the number of
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TABLE 2 Frequency set selection methods and the hypotheses.

Not minimizing the number of
common sums

Minimize the number of
common sums

Maximize the number of
common sums

Selection by
frequencies

Method 1 Method 2

Selection by
pairs

Method 5 Method 3 Method 4

common sums is minimized in the selected

frequency set.

Hypothesis 2. In frequency set selection in multi-

frequency SSVEP-based BCIs, selection by

pairs results in better performance than

selection by frequencies.

In order to test the two hypotheses, four cases are considered:

1. Selection by frequencies without minimizing the

number of common sums;

2. Selection by frequencies by minimizing the number of

common sums;

3. Selection by pairs without minimizing the number of

common sums;

4. Selection by pairs by minimizing the number of

common sums.

We have added a fifth case to the list — selection by pairs

by maximizing the number of common sums — to examine the

efficiency of optimizing on the number of common sums.

2.3. Frequency set selection methods

In this work, a frequency range of 11–16 Hz and a 15-target

arrangement were used. Single-frequency SSVEP was tested as

a benchmark.

The test range 11–16 Hz was selected because it is within

the most responsive range of SSVEP (5–25 Hz; Regan, 1989),

large enough to test a couple of scenarios but keeping the

experiment duration manageable and optimization not too

computationally heavy.

2.3.1. Single-frequency

The frequencies selected was evenly spaced within the range

with a varying 0.3 or 0.4 Hz interval between the frequencies:

[11.3, 11.7, 12.0, 12.3, 12.7, 13.0, . . . , 15.7, 16.0].

2.3.2. Dual-frequency

The entire dual-frequency set selection is based heavily on

the two hypotheses, which made the five cases for us to consider.

Therefore, we decided upon five methods in frequency set

selection. Table 2 illustrates the relationship between these five

methods and the two hypotheses. Details about the five methods

will be provided later in this section.

The decision tree method was selected for optimization

because it produces a similar result to the global search method

and is fast to calculate (Liang et al., 2020). In the decision

tree method, two matrices are first constructed. A matrix A is

constructed of size N × N, where N is the total number of pairs

available, and the value in each cell is the optimization parameter

between the two pairs whose indices are the row and column

indices. In our case, this is the number of common sums between

the two pairs. The other matrix is B that is initialized to be a

zero matrix of the same size asA. In each optimization iteration,

the minimum (or maximum, if maximizing) value in A is first

identified, then the value in this cell is updated to a large (or

small) value to avoid being selected in the following iterations,

and the value in the corresponding location in B is set to 1 (or

any non-zero value). The B matrix then goes through a check

to see if there exists a reduced B matrix, B′, of size NT that has

all elements non-zero. If there exists a B
′ matrix that does not

contain any zero elements, then the optimization is done and

the resultant frequency set is made up of the frequency pairs

whose indices are the selected rows and columns in the B to B
′

reduction. Otherwise, continue to the next iteration.

The number of common sums is calculated as the number

of times the linear combination frequencies are repeated in the

frequency set between the pairs up to a given order. In other

words, the number of common sums is the number of times a

frequency is repeated in the list of integer linear combinations of

all the pairs in the frequency set up to a given order, and only the

between-pairs repetitions are counted, any repetitions within a

pair is ignored.

Since we are using a 15-target setup, six frequencies should

be selected when selecting frequencies (C62 = 15) and 15 pairs of

frequencies should be selected when selecting pairs. To ensure

there are sufficient numbers of frequencies to select from and

not to over-complicate this problem, the frequency candidates

were designed to be 0.5 Hz apart within the range 11–16 Hz; i.e.,

[11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0].

The methods used in this study are listed below:

Method 1: Selection by frequencies with evenly spaced

frequency interval. Thus no effort was made to
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minimize the number of common sum.

Frequencies are selected from the full range

with even intervals (on the six integers).

Method 2: Selection by frequencies with unevenly spaced

frequency interval, which was designed to

enable the minimization of the number of

common sum.

Frequencies are selected from the range with

minimized number of common sums. The

number of common sums is first checked at

order 2, the pairs with the smallest number of

common sums are then checked at order 3, etc.

We bounded this process to check up to order 5.

Method 3: Selection by pairs with decision tree method

(Liang et al., 2020) optimizing (minimizing) the

number of common sums between the pairs.

Frequency pairs are selected from all possible

pairs made by the frequency candidates with

minimized number of common sums using

decision tree. The common sums are calculated

up to order 5.

Method 4: Selection by pairs with decision tree method

maximizing the number of common sums

between the pairs.

Frequency pairs are selected from all possible

pairs made by the frequency candidates to

maximize the occurrences of common sums

using decision tree. The common sums are

calculated up to order 5.

Method 5: Selection by pairs with decision tree method

minimizing the maximum correlation between

the input signals constructed with the pairs

(Liang et al., 2020).

Frequency pairs are selected from all possible

pairs made by the frequency candidates with

minimized maximum correlations between the

input signals using decision tree.

The resulting frequency sets and the their numbers of

common sums are listed in Table 3.

2.4. Experimental setup

In the experiments, participants sat 70 cm away from a

computer screen where the stimuli were shown. Participants

were positioned to be centered to the screen and height adjusted

to a comfortable level. All experiments were done in a dim,

quiet room.

2.4.1. Stimulation methods

Visual stimulation was delivered through an Alienware

monitor AW2518HF (24.5 inch, 1920 × 1080) running Unity

programmed interface at 120 Hz. White color was used for

all stimuli. The size of each stimulus was 108 × 108 pixels;

the distance between adjacent stimuli was 108 pixels both

horizontally and vertically. The 15 targets followed a 3 by 5

layout on the screen as shown in Figure 1.

Single-frequency stimulation was performed by presenting

50% duty cycle square waves on the screen at full brightness. All

signals commenced with zero phase shift.

In this work, we have chosen frequency superposition (Mu

et al., 2021a) as the multi-frequency stimulation method for its

simplicity. Multi-frequency SSVEP stimulated with frequency

superposition contains not only the input frequencies and

their harmonics, but also the integer linear combinations of

the input frequencies, with lower order interactions are more

likely to be observed (Mu et al., 2021a,b). Considering the

use of input frequencies with narrow frequency gaps (0.5 Hz),

ADD logic with equal brightness distribution was selected for

superimposing the input frequencies; i.e., in the dual-frequency

case, the two input frequencies each correspond to half of the full

brightness and the superimposed signal becomes the stimulation

signal. Square waves at 50% duty cycle and zero phase shift were

used in frequency superposition in this work.

2.4.2. Data acquisition

EEG data was recorded with g.USBamp EEG system and

g.SAHARA dry electrodes (g.tec medical engineering GmbH,

Austria). The recorded EEG signals were sampled at 512 Hz,

with 50 Hz notch and 0.5 − 100 Hz band pass filters on all

channels. A 16-channel measurement was taken (P3, Pz, P4,

PO3, POz, PO4, O1, Oz, O2, Fz, FCz, FC1, FC2, Cz, C1,

and C2); however, only the first nine channels were used for

SSVEP processing as these are closest to the visual cortex.

Reference and ground electrodes were placed at the left and right

mastoids, respectively.

2.4.3. Participants

Fifteen participants participated in the frequency selection

experiment; however, three of them did not complete the

experiment due to extremely low accuracy experienced in the

experiment (on average below three out of 15 trials correct,

which makes chance a factor that heavily affected the results).

Therefore, data from 12 participants (nine males, three females)

aged 22–34 years (28.08± 3.70) were included in the analysis.

The experiments were approved by the University of

Melbourne Human Research Ethics Committee (Ethics ID:

1851283). Written consent was collected from all participants

prior to the experiment.
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TABLE 3 Frequency sets obtained from optimization and their corresponding number of common sums.

Method Frequencies/frequency pairs Number of
common
sums

Selection by frequencies

1 11.0 12.0 13.0 14.0 15.0 16.0 355

2 11.0 12.0 12.5 14.5 15.5 16.0 282

Selection by pairs

3

(11.0, 14.5) (11.5, 14.0) (11.5, 15.0) (12.0, 14.5) (12.0, 15.5)

285(12.5, 15.0) (12.5, 16.0) (13.0, 15.5) (11.5, 15.5) (12.0, 16.0)

(13.5, 16.0) (11.0, 11.5) (11.0, 15.5) (11.5, 16.0) (15.5, 16.0)

4

(11.0, 11.5) (11.0, 12.5) (11.0, 13.0) (11.0, 13.5) (11.5, 13.0)

311(12.0, 12.5) (12.0, 13.0) (12.5, 15.0) (13.5, 16.0) (14.0, 15.5)

(14.0, 16.0) (14.5, 15.0) (14.5, 16.0) (15.0, 15.5) (15.5, 16.0)

5

(11.5, 13.5) (11.5, 15.5) (11.5, 12.0) (11.5, 14.5) (13.5, 14.5)

301(14.5, 15.0) (14.5, 16.0) (15.5, 16.0) (11.5, 15.0) (12.5, 14.5)

(12.5, 13.5) (12.5, 16.0) (13.5, 16.0) (11.0, 11.5) (13.5, 14.0)

FIGURE 1

Stimuli layout on the screen.

2.5. Experimental protocols

The experiment contained four sessions with each session

having six tests that evaluated the six stimulation frequency

setups (five dual-frequency and one single-frequency) once each.

Each test had 15 trials (15 targets, one trial per target). Each

trial started with a 1 s cue (green outline at intended target,

Figure 2A), followed by 5 s stimulation (with a fixation cross

at the center of the intended target, Figure 2B, all targets are

flashing during this stimulation period), then 1 s feedback (solid

green or red square for successful or erroneous identification,

respectively, Figures 2C, D), and 1 s rest. A score was shown to

the participant after each completed test indicating the number

of correct trials for the test (Figure 2E) with 0 indicating none of

the 15 trials was identified correctly and 15 indicating all trials

were correctly identified. 1 min breaks were provided after each

test, 5–10 min breaks were placed between the sessions. The

length of breaks were adjusted to the participant’s need.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.1057010
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mu et al. 10.3389/fnins.2022.1057010

FIGURE 2

Interface at di�erent stages. (A) Cue. (B) Fixation cross. All targets are flashing during stimulation. (C) Feedback (correct). (D) Feedback

(incorrect). (E) Score.

In each test, the participant was asked to go through each

of the 15 targets one-by-one following the cue. To simplify the

participant’s task, in each test, the trial sequence was always from

left-to-right, top-to-bottom, going through the targets in target

index ascending order (Figure 1). However, the stimulation

frequencies or frequency pairs were randomly shuffled among

the 15 targets.

To ensure the experimental results were not affected by

user fatigue, Sudokus were used to generate randomized

yet balanced test sequences. With six setups to test in this

experiment, 6-by-6 Sudokus in brickwall style, as shown

in Figure 3, were used. Numbers 1–5 in the Sudoku

match to methods 1–5 in dual-frequency selections,

and 6 matches to the single-frequency setup. These six

different setups will be henceforth referred to as test 1, 2,

. . . , 6.

The experiments were arranged so that each participant used

one row in each Sudoku and each session had a different Sudoku.

Therefore, with four sessions in the experiment, at least four

FIGURE 3

Example of a 6-by-6 Sudoku in brickwall style.

Sudokus were needed. In order to accommodate 12 participants,

eight Sudokus were used in total in this experiment to make 12

rows for the 12 participants.
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Participants were trained with up to two sessions with six

tests (one test per setup) in each session in a random sequence

before the experiment.

2.6. Data processing

During the experiments, 5 s of data was used for decoding

to produce feedback to the participants. Canonical correlation

analysis (CCA; Lin et al., 2006) with number of harmonics

set to 3 was used in single-frequency SSVEP decoding. Multi-

frequency canonical correlation analysis (MFCCA; Mu et al.,

2021b) with order set to 1 was used in dual-frequency SSVEP

decoding. The frequency candidate that gave the highest

correlation was taken as the decoder output.

Information Transfer Rate (ITR) is often reported in SSVEP

experiment results, defined as

ITR =
60

T

[

log2 N+p log2 p+(1−p) log2

( 1− p

N − 1

)

]

(bits/min),

(1)

where T is the time window (seconds) for a trial or time needed

to produce one result, N is the number of targets or possible

choices (N ∈ Z,N ≥ 2), p is the mean accuracy (p ∈ (0, 1));

(Wolpaw et al., 2000). In this work, since a consistent setting (15

targets; trials consisted of 1 s cue, 5 s stimulation, 1 s feedback,

and 1 s break) was used throughout both experiments, ITR is

a static conversion from accuracy and so conveys equivalent

information. Therefore, results are mainly shown in terms of

accuracy.

3. Results

The average dual-frequency SSVEPs recorded in test 1 were

plotted in both time domain and frequency-domain as shown in

Figures 4, 5. The plots shown in the figures are averaged across

all participants and all sessions. Figure 4 shows the first second

(starting from stimulation onset) of the averaged filtered SSVEP

(blue) in comparison to the waveform of the stimulation signal

(orange). The SSVEPs recorded from channel Oz were bandpass

filtered between 9 and 18Hz usingMATLAB function “bandpass”

with “ImpulseResponse” set to “auto,” 0.85 “Steepness,” and 60

dB “StopbandAttenuation,” then averaged across all participants

and all sessions. Figure 5 plots the averaged SSVEP recorded

from channel Oz in frequency domain. The crosses label the

two stimulation frequencies and their harmonics, circles label

the linear interactions (integer linear combinations) of the two

frequencies. The harmonics and linear interactions at different

orders NO (sum of absolute values of the coefficients in the

integer linear combination Mu et al., 2021b) are labeled with

different colors as explained in the figure caption.

Figure 6 plots the average accuracies and standard errors for

the frequency set selection experiment. The yellow dots in the

figure give the average accuracies for each subject. Tests 1–5

are dual-frequency methods with tests 1 and 2 implementing

selection by frequencies and tests 3–5 implementing selection

by pairs, and test 6 is single-frequency. Figure 6 shows that dual-

frequency setups have similar accuracies, except test 3, where the

number of common sums is minimized in selection by pairs. All

dual-frequency tests (tests 1–5) showed a lower average accuracy

compared to the single-frequency test (test 6).

Three-factor analyses of variance (ANOVAs) were

performed using data from tests 1–5 with factors subject, test,

and session, and the data was fitted using a linear mixed model.

The normality of data was confirmed with box plots. Tukey

correction was applied to correct for multiple comparisons in

the family of five estimates (tests 1–5). Significant differences

(adjusted p-value padj < 0.05) were found between tests 2 and

3 (padj = 0.02), and between tests 3 and 5 (padj = 0.019), as

labeled in the figure with *.

Table 4 lists the ITR from the six tests calculated based on 8s

trial duration and 15 targets. Note that the focus of this work is

not to increase ITR, but rather to explore and compare different

frequency set selection methods in multi-frequency SSVEP.

3.1. E�ectiveness of minimizing the
number of common sums

Our first hypothesis was that minimizing the number of

common sums in the frequency set can improve performance.

Here, we will check the effectiveness of minimizing the number

of common sums in both selection by frequencies and selection

by pairs cases.

3.1.1. Selection by frequencies: Even vs. uneven
frequency interval

As described in Section 2.3.2, both Method 1 (selection

by frequencies with even frequency intervals) and Method 2

(selection by pairs with minimized number of common sums)

were on selection by frequencies; Method 1 uses an even

frequency interval of 1 Hz and Method 2 selects the same

number of frequencies in the range with 0.5 Hz frequency

interval, which naturally gives uneven frequency intervals in the

selected frequency list. SinceMethod 1 selects frequencies evenly

in the full frequency range, there is no possibility of optimization

in Method 1. Method 2 selects frequencies from all candidates

using optimization (minimization) on the number of common

sums. From Figure 6, we can see that Method 1 did not have

a significantly different accuracy to Method 2 (padj = 0.98).

However, there are actually two factors that contribute to this

result: one is the optimization on the number of common sums,

the other is the frequency interval in the selected frequencies.

To make a comparison between even and uneven frequency

selection in the same frequency range, it is unavoidable to have
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FIGURE 4

Average SSVEP from Test 1 in time domain. Blue lines plot the average SSVEPs from channel Oz after bandpass filtered between 9 and 18 Hz.

Orange lines show the waveforms of the dual-frequency stimulation signals.

different frequency intervals in the two frequency sets. The

uneven frequency interval, while it minimizes the number of

common sums, may result in some intervals that are narrower

than that employed in the evenly spaced frequency selection

method (Method 1). Therefore, the potential advantage of the

optimization may be reduced by the smaller frequency interval.

3.1.2. Selection by pairs: E�ectiveness of
minimizing the number of common sums
compared to minimizing maximum correlation

In all selection by pairs methods (Methods 3–5), a consistent

0.5 Hz frequency interval was used. Therefore, the comparison

here potentially reflects the effectiveness of minimizing the

number of common sums better.

Methods 3 and 5 are based on different optimization

strategies: Method 3 optimizes (minimizes) on the number

of common sums while Method 5 optimizes (minimizes) on

the maximum correlation between input stimulation signals.

Hence, a comparison between Methods 3 and 5 demonstrates

the effectiveness of minimizing the number of common sums.

It can be seen in Figure 6 that the accuracy of Method 3

was significantly (padj = 0.019) higher than Method 5

by about 10%. This shows that minimizing the number of

common sums is an effective optimization strategy in selecting

frequency sets with selection by pairs, at least in dual-frequency

SSVEP using frequency superposition with ADD, where the two

single-frequency square-wave signals each corresponds to half

brightness are superimposed on the target.

While both Methods 3 and 5 use decision trees to perform

selection by pairs, the fundamental difference between these two

optimization strategies is the parameter that is being optimized.

Method 3 optimizes (minimizes) the number of common

sums, focusing on the frequency domain characteristics of the

input/stimulation signals. Method 5 minimizes the maximum

correlation between input (stimulation) signals, focusing on the

time domain characterization of the expected SSVEP response

elicited by the multi-frequency stimulations. Since the brain is a

highly non-linear system, optimizing the system output (EEG

signals) might further reduce the confusion in the decoding

process, hence the difference.

3.2. Selection by frequency vs. selection
by pairs with number of common sum
minimized frequency selection

The second hypothesis was that selection by pairs results

in better performance than selection by frequencies. Here, we

compare Methods 2 and 3 as both were optimized (minimized)
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FIGURE 5

Average SSVEP from Test 1 in frequency domain. Red crosses label the two stimulation frequencies. Crosses and circles indicate harmonics and

linear combinations of the two frequencies, respectively. Orders NO are shown with di�erent colors: red–NO = 1; blue–NO = 2; green–NO = 3;

cyan–NO = 4; magenta–NO = 5.

on the number of common sums and used 0.5 Hz frequency

intervals.

The result from Figure 6 shows that Method 3 had a

significantly (padj = 0.02) higher average accuracy compared

to Method 2. This showed that, when we have the freedom

to select pairs freely in the whole range of frequencies, we

could achieve higher accuracy in the interface compared to

when we were constrained on the number of frequencies that

could be selected. This difference might be amplified when there

are larger numbers of frequencies in the candidate set, more

frequencies superimposed on the same target, and/or numbers

of targets (NT) increase, because the number of frequency pairs

we can select from (NF) and the number of possible frequency

sets becomes larger as shown in Equations 2, 3.

NF,pair = C
NF
N , (2)

NF,set = C
NF,pair

NT
, (3)

where NF,pair is the total number of possible frequency pairs,

NF,set is the total number of possible frequency sets, N is the

number of frequencies superimposed on each target.

3.3. E�ciency of number of common
sum minimization

Methods 3 and 4 are explicitly designed to test the efficiency

of number of common sum minimization; Method 3 minimizes

the number of common sum and Method 4 maximizes the

number of common sum. The result from Figure 6 showed

an insignificant difference between the average accuracy of the

two tests after adjustment for multiple comparisons (padj =

0.21), which is unexpected. This will be discussed in Discussion

section.

4. Discussion

4.1. E�ciency of number of common
sum minimization

It is interesting to see that Methods 3 and 4 were not

significantly different, andMethod 4 resulted in a higher average

accuracy compared toMethod 5.We believe this was because the

decision tree method is not the most suited for finding optimal

frequency sets based on the number of common sums due to

the integer nature of these numbers, which are the number

of times the common sums are observed. As a performance
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measure in an optimization, this metric does not provide very

high resolution as it does not entertain fractions and decimals,

which are applied to Methods 3 and 4. Method 5, while also

utilizing the decision tree mechanism, uses the correlation

between input signals as its performance measure in the

optimization. This allows a high degree of resolution, as decimals

are allowed, providing better outcome of the optimization

process. As such, Method 3 and Method 4 do not perform

optimally. Table 3 reveals this issue to some extent, where it

can be seen that, toward the end, Methods 3 and 4 arrived

at the same frequency pair (15.5, 16) after the optimization

process even though they were designed to be doing completely

opposite tasks.

Method 3 is designed with what we expected to be

minimum number of common sums. As it was not optimal,

the accuracy was expected to be an underestimate of its

potential. However, compared to Method 5, it still yields

significantly higher accuracy. Method 4 is designed to maximize

the number of common sums. This was expected to yield

the lowest accuracy among Methods 3, 4, and 5. As it is

not optimal, the resulting accuracy was higher than what

was expected.

FIGURE 6

Accuracy from the six tests in frequency set selection

experiment. Heights of the bars represent the mean accuracy,

error bars show standard error of the average accuracies from

12 participants, and yellow dots label the average accuracy from

each participant. * Indicates significant di�erence (p < 0.05,

corrected) pair-wise between each two tests with ANOVA. Test

1: dual-frequency method 1; test 2: dual-frequency method 2;

test 3: dual-frequency method 3; test 4: dual-frequency method

4; test 5: dual-frequency method 5; test 6: single-frequency.

4.2. General SSVEP performance

In terms of time-domain waveform, in Figure 4, we can

see that some SSVEP waveforms are highly consistent with

the stimulation waveform (e.g., 11 and 12 Hz), whereas some

other waveforms are more complex. This is likely because the

human brain is a highly nonlinear system that produces complex

response to even simple single-frequency stimulation. For the

plots that show SSVEPs stimulated by dual-frequency signals,

it is expected that there will be more frequency components

(interactions between the two input frequencies) in the EEG

signal. Thus, when some frequency interactions are dominating

the response, the SSVEP waveform may look different to the

stimulation waveform.

While the focus of this study was not on boosting the SSVEP

performance, we are aware of the difference in performance

from our results compared to some studies in the literature

for both dual-frequency SSVEP (Liang et al., 2020) and single-

frequency SSVEP (Chen et al., 2015). One source of the

difference might be attributed to the use of dry electrodes in

our study as opposed to wet electrodes commonly used in

other studies. It has been shown that there is a 20% accuracy

drop when using dry electrodes compared to wet electrodes

even though the signals look similar in both time domain and

frequency domain (Zhu et al., 2021).

4.3. Limitations

Even though both hypotheses were validated, this work

was only tested with the selected multi-frequency stimulation

method (frequency superposition). This means that the result

may vary if a sufficiently different stimulation method which

triggers completely different multi-frequency SSVEP patterns

were used. We also acknowledge that only the decision tree

methodwas implemented in optimization in this study and it has

its own limitations though its effectiveness compared to global

search was already proven (Liang et al., 2020). Furthermore,

since MFCCA is the only purposefully designed generalized

multi-frequency SSVEP decoder, it was used in this study to

avoid extensive training and prolonged experiment duration.

However, the accuracies from the dual-frequency tests were at

a lower level compared to the single-frequency test. This is

not considered a problem here because this study focuses on

understanding the difference between different frequency set

selection methods in multi-frequency SSVEP and the single-

frequency test was included for bench-marking purpose only.

TABLE 4 Information transfer rate (ITR) from the six tests (mean ± standard deviation).

Test 1 2 3 4 5 6

ITR (bits/min) 11.5± 6.6 10.7± 5.5 14.2± 7.0 11.9± 7.3 11.1± 7.6 22.0± 6.3
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Nonetheless, this suggests that more effort should be spent

on developing generalized multi-frequency SSVEP decoding

algorithms to improve the overall performance of multi-

frequency SSVEP-based BCIs.

4.4. Future work

As part of future work, other optimization methods should

be explored to address the potential pitfall in the decision

tree when working with the number of common sums. Other

optimization strategies regarding the frequency set selection in

multi-frequency SSVEP should also be further explored. Last,

but not least, a comprehensive comparison between single-

frequency and multi-frequency SSVEP should be conducted

with finer frequency intervals and larger frequency coverage.

5. Conclusion

The results from the frequency set selection study showed

that selection by pairs (compared to selection by frequencies)

and optimizing (minimizing) the number of common sums

in selection by pairs significantly increased the accuracy of

the interface. Furthermore, a potential pitfall was observed

in the decision tree method in optimizing the number of

common sums, which resulted in a sub-optimal result from the

optimization process and subsequently a smaller than expected

difference between the best and worst case scenarios in the

number of common sums optimization.
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