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Piecewise quadratic neuron
model: A tool for
close-to-biology spiking
neuronal network simulation on
dedicated hardware

Takuya Nanami* and Takashi Kohno

Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Spiking neuron models simulate neuronal activities and allow us to analyze

and reproduce the information processing of the nervous system. However,

ionic-conductance models, which can faithfully reproduce neuronal activities,

require a huge computational cost, while integral-firing models, which are

computationally inexpensive, have some di�culties in reproducing neuronal

activities. Here we propose a Piecewise Quadratic Neuron (PQN) model based

on a qualitative modeling approach that aims to reproduce only the key

dynamics behind neuronal activities. We demonstrate that PQN models can

accurately reproduce the responses of ionic-conductance models of major

neuronal classes to stimulus inputs of various magnitudes. In addition, the

PQN model is designed to support the e�cient implementation on digital

arithmetic circuits for use as silicon neurons, and we confirm that the PQN

model consumes much fewer circuit resources than the ionic-conductance

models. This model intends to serve as a tool for building a large-scale

closer-to-biology spiking neural network.

KEYWORDS

silicon neuronal network, silicon neuron, spiking neuron model, FPGA, PQNmodel

1. Introduction

Spiking neural network (SNN) models can reproduce the information processing

of the nervous system at the cellular and synaptic level, enabling us to analyze

and understand the brain’s information processing and to realize the brain’s

intelligence for engineering applications. While large-scale simulations of SNN

models using general-purpose computers require extensive computational facilities

and are slow in simulation speed, the silicon neuronal networks (SiNNs), which

are electronic circuit systems specifically designed to simulate SNN models, enable

highly power-efficient and high-speed simulation. A main element of SiNNs is

the silicon neuron that simulates neuronal activities by using the spiking neuron

model. Silicon neurons using analog circuits (Schemmel et al., 2010; Arthur and

Boahen, 2011; Grassia et al., 2011; Brink et al., 2013; Qiao et al., 2015; Kohno

and Aihara, 2016; Moradi et al., 2018; Rubino et al., 2021; Schemmel et al.,

2021) show very high power efficiency, but have technical hurdles including
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fabrication mismatch and temperature dependence. In contrast,

silicon neurons using digital circuits are far less sensitive to

these factors. Although they tend to consume higher power

than analog silicon neurons, they are more portable, easy-

to-operate, and highly integratable. Large-scale networks have

been built using digital application-specific integrated circuits

(ASICs) (Merolla et al., 2014; Davies et al., 2018). In addition,

field-programmable gate arrays (FPGAs) have also been used

(Thomas and Luk, 2009; Cassidy et al., 2011, 2013; Li et al., 2012;

Khoyratee et al., 2019) due to their ease of implementation and

low cost.

In both SNN models and SiNNs, a variety of spiking

neuron models have been used due to the trade-off between

the reproducibility of neuronal activities and computational

efficiency. The ionic-conductance neuron models (Hodgkin

and Huxley, 1952; Plant, 1981; Wang, 1993; SCHUTTER

and BOWER, 1994; Pospischil et al., 2008) describe neuronal

dynamics at the level of each ion channel and can replicate

arbitrary electrophysiological properties. The nervous system

contains a wide variety of neuronal classes, each with

different electrophysiological properties, which are reported

(Cunningham et al., 2004; Benda et al., 2005; Grillner, 2007)

to play an essential role in information processing. Therefore

ionic-conductance models are used in SNN models (Markram

et al., 2015; Bezaire et al., 2016; Ecker et al., 2020) that attempt

to fully replicate certain brain regions. However, they consume

enormous resources in circuit implementation, making their

application to large-scale SiNNs difficult. In contrast, the Leaky

integrate-and-fire (LIF) model is one of the simplest spiking

neuron models and reproduces only simplified features such as

the perturbation by stimulus inputs over time and convergence

to the resting potential by the leak current. The LIF model

approximates the neuronal spiking process by resetting the state

variables and is therefore very computationally inexpensive.

It is used for SiNNs (Cassidy et al., 2011; Merolla et al.,

2014; Davies et al., 2018) that intend to realize large-scale

networks with limited power consumption. In addition, the

Izhikevich (IZH) model (Izhikevich, 2003) and the adaptive

exponential I&F (AdEx) model (Brette and Gerstner, 2005),

which are extensions of the LIF model, similarly approximate

the spiking process by resetting the state variables. They have

also been used in many SNN models (Thomas and Luk, 2009;

Schemmel et al., 2010; Cassidy et al., 2013; Qiao et al., 2015;

Moradi et al., 2018; Rubino et al., 2021; Schemmel et al.,

2021) because they cover several neuronal classes, although

they require a little more computational cost than the LIF

model due to their squared and exponential term. In these

integrate-and-fire-based (I&F-based) models, resetting the state

variables reduces their computational cost but also compromises

the reproducibility of neuronal activities. For example, it is

known that the amplitude of spikes is gradedly dependent on

the stimulus in some regions in the nervous system (Alle and

Geiger, 2006), which is referred to as graded response. It was

FIGURE 1

Phase-resetting curve of spiking neuron models. The horizontal

axis represents the phase at which the pulse stimulus was given,

and the vertical axis represents how much the phase was shifted

by the pulse stimulus.

shown theoretically (Rinzel and Ermentrout, 1998) that the Class

II in the Hodgkin’s classification (Hodgkin, 1948) can exhibit

the graded response. However, the I&F-based models, even in

their Class II modes, cannot realize the graded response because

it assumes the spike as a stereotyped event. Another example

is the phase-resetting curve (PRC) (Rinzel and Ermentrout,

1998), which represents how the phase of a neuron in an

oscillatory spiking state changes depending on the timing of

the pulse stimulus. The Class II modes of the IZH and AdEx

models reproduce the discontinuous frequency-current curve,

but the shape of their PRC is not the standard Type II, which

is typical for the Class II (Figure 1). Because neurons with

the Type II PRC tend to promote synchronous firing (Hansel

et al., 1995), it might be important to model the synchronous

activities in the brain. As shown in Figure 1, the Class II mode

of the ionic-conductance model has a biphasic (Type II) PRC,

while the PRC of the AdEx model is monophasic. The Class

II mode of the IZH model has a very small negative part

and 1(θ) is less than 0 when θ = 0. Furthermore, it was

reported (Nanami and Kohno, 2016) that the responses of

the intrinsically bursting (IB) class of the IZH model to step

stimuli are different from those of a typical ionic-conductance

model.

A qualitative modeling approach has a long history that

starts with the FitzHugh–Nagumo model (FitzHugh, 1961;

Nagumo et al., 1962) and was theoretically established by the

theory of nonlinear dynamics (Kepler et al., 1992; Rinzel and

Ermentrout, 1998; Izhikevich, 2007). The qualitative neuron

models (FitzHugh, 1961; Nagumo et al., 1962; Hindmarsh

and Rose, 1984; Nanami and Kohno, 2016) reproduce only

the key mathematical structures behind neuronal activities.

Although they have much less computational cost than the

ionic-conductance models, they can faithfully reproduce the

dynamics of the spiking process without resetting the state
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variables. In the FitzHugh–Nagumo model and Hindmarsh–

Rose model (Hindmarsh and Rose, 1984), the right-hand

sides of the differential equations for each state variable

are represented by polynomials of degree 3 or less. The

digital spiking silicon neuron (DSSN) model (Nanami and

Kohno, 2016) employs quadratic terms with piecewise and

step functions to achieve qualitatively equivalent dynamics, and

this approximation enables efficient implementation in software

and digital arithmetic circuits. In addition, while preceding

qualitative models represent a single neuron class, the DSSN

model is designed to represent a wide variety of classes by

tuning its parameters. The DSSN model covers the regular

spiking (RS), fast spiking (FS), low-threshold spiking (LTS),

IB, elliptic bursting (EB), and parabolic bursting (PB) classes.

In the FS mode, both the Class I and Class II in Hodgkin’s

classification are supported. Recently, a general framework of

qualitative models described by piece-wise polynomial formula

has been proposed (Tikidji-Hamburyan and Colonnese, 2021).

This framework, polynomial, piecewise-linear, step (PLS)-

framework, provides a generalized method of constructing,

describing, and discussing these models. In this framework,

the right-hand side of the differential equation is expressed

as any combination of polynomial, piecewise-linear, and step

functions.

In this study, we propose a Piecewise Quadratic Neuron

(PQN) model, a refined version of the DSSN model. Though

the DSSN model supports various neuronal classes, its ability to

reproduce their dynamical activity for a wide range of stimulus

intensity is limited. In addition, a number of parameters have

to be fitted to reproduce a wide variety of neuronal dynamics,

which makes the fitting difficult. Thus, a scaling parameter for

the stimulus input is inserted and six parameters are omitted

in the PQN model by assuming that the nullcline of each

state variable is continuous and smooth. Since the cellular

dynamics corresponding to these nullclines are expected to

be continuous and smooth, this assumption is biologically

natural. The reduction in the number of parameters leads to a

drastic reduction in the explore space in the parameter tuning,

facilitating better parameter sets. First, it is demonstrated that

the PQNmodel can reproduce the graded response and the Type

II PRC typically seen in the Class II neurons in the Hodgkin’s

classification. Next, it is shown that the PQN model reproduces

six major neuronal classes, RS, FS, LTS, IB, EP, and PB. Here,

we confirm that the PQN model can reproduce the activity of

ionic-conductance models of six neuronal classes in response

to step inputs of various magnitudes. Although these neuron

classes were also supported by the DSSN model, their responses

to step inputs with a wide range of intensity are not completely

reproduced. In addition, we show that the PQNmodel consumes

much fewer circuit resources than the ionic-conductance model

in the FPGA implementation due to its simple equations fitted

to the digital arithmetic circuits. Moreover, we provide the

python codes for the software simulation and VHDL codes for

hardware implementation and they are available at the following

links (PQN_pya1; PQN_vhdl2). Note that the model must be

computed using the fixed-point operation with the specified

bit-width, 28 bits for Class II and 18 bits otherwise, and the

Euler’s method with the specified time-step width, 1 ms for

PB and 0.1 ms otherwise. In Methods section, in addition

to the original form of the PQN model, equations using the

PLS-framework are also presented for a more comprehensive

perspective. This study intends to provide an easy-to-use tool for

constructing large-scale and close-to-biology SNN models and

SiNNs.

The remainder of this paper is organized as follows: Section 2

describes the details of themodel, Section 3 shows the simulation

results and comparison, and Section 4 provides a summary and

future perspectives.

2. Methods

2.1. Equations of the PQN model

In order to efficiently reproduce a variety of neuronal

classes, each with different dynamics, the PQN model has four

variations. The first one is the two-variable PQN model, which

is the basic form of the other variations. It supports the Class II

mode in the Hodgkin’s classification. Its equations are as follows:

dv

dt
=

φ

τ
(f (v)− n+ I0 + k Istim), (1)

dn

dt
=

1

τ
(g(v)− n), (2)

f (v) =

{

afn(v− bfn)
2
+ cfn (v < 0)

afp(v− bfp)
2
+ cfp (v ≥ 0),

(3)

g(v) =

{

agn(v− bgn)
2
+ cgn (v < rg)

agp(v− bgp)
2
+ cgp (v ≥ rg),

(4)

bfp =
afnbfn

afp
, (5)

cfp = afnb
2
fn + cfn − afpb

2
fp, (6)

bgp = rg −
agn(rg − bgn)

agp
, (7)

cgp = agn(rg − bgn)
2
+ cgn − agp(rg − bgp)

2, (8)

1 https://github.com/tnanami/PQN_py

2 https://github.com/tnanami/PQN_vhdl
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where v and n represent the membrane potential and recovery

variable, respectively. Parameter I0 is a bias constant. Istim

is the stimulus input and k is its scaling parameter. The

parameters τ and φ determine the time constants of the

variables. The parameters rg , ax, bx, and cx, where x is fn,

fp, gn, or gp, are constants that determine the nullclines of

the variables. Constants bfp, cfp, bgp, and cgp, are determined

by other parameters such that the nullclines are continuous

and smooth. All of the variables and parameters are purely

abstract with no physical units. The differences from the DSSN

model are that the four constants, bfp, cfp, bgp, and cgp,

are determined by other parameters to ensure continuity and

smoothness, and that the parameter k, which scales the stimulus

input, is inserted. The ionic-conductance models generally

require three or more state variables for the calculation of

the spiking process, and the differential equations include a

quartic term and exponential functions (Hodgkin and Huxley,

1952; Pospischil et al., 2008). On the other hand, the PQN

model requires only two variables with quadratic terms and can

be implemented with less computational cost in software and

hardware implementations.

The second one is the three-variable PQN model. A new

variable q is introduced to support the RS, FS, and EB classes.

Its equations are given by

dv

dt
=

φ

τ
(f (v)− n− q+ I0 + k Istim), (9)

dn

dt
=

1

τ
(g(v)− n), (10)

dq

dt
=

ǫq

τ
(h(v)− q), (11)

h(v) =

{

ahn(v− bhn)
2
+ chn (v < rh)

ahp(v− bhp)
2
+ chp (v ≥ rh),

(12)

bhp = rh −
ahn(rh − bhn)

ahp
, (13)

chp = ahn(rh − bhn)
2
+ chn − ahp(rh − bhp)

2, (14)

where q represents the slow variable. The parameter ǫq

determine its time constants and parameters rh, ax, bx, and cx,

where x is hn or hp, determine its nullcline. Constants bhp and

chp are determined by other parameters such that the nullcline

is continuous and smooth. Note that Equation (9) is the same as

Equation (1) except that the new variable q is inserted. Equation

(10) is the same as Equation (2). The difference from the DSSN

model is that the constants bfp, cfp, bgp, cgp, bhp, and chp are

defined by other parameters and k is inserted.

The third one is the four-variable PQN model. Another

variable u is introduced to support the PB class. Its equations

are

dv

dt
=

φ

τ
(f (v)− n− q+ u+ I0 + k Istim), (15)

dn

dt
=

1

τ
(g(v)− n), (16)

dq

dt
=

ǫq

τ
(h(v)− q), (17)

du

dt
=

ǫu

τ
(v+ v0 − αuu), (18)

where u is the slow variable and the slow subsystem consisting

of u and q is capable of producing oscillations. The parameter

ǫu determines the time constant of u. The parameters v0 and

αu determine the nullcline of u, respectively. Note that Equation

(15) is the same as Equation (9) except that variable u is

incorporated. Equations (16) and (17) are shared with the three-

variable PQN model. The differences from the DSSN model are

exactly the same as those in the three-variable mode.

The final variation is the extended four-variable PQNmodel,

which supports the LTS and IB classes. The only difference to

the four-variable PQN model is that the time constant of n is

dependent on u. Its equations are given by

dv

dt
=

φ

τ
(f (v)− n− q+ I0 + k Istim), (19)

dn

dt
=

η(u)

τ
(g(v)− n), (20)

dq

dt
=

ǫq

τ
(h(v)− q), (21)

du

dt
=

ǫu

τ
(v+ v0 − αuu), (22)

η(u) =

{

η0 (u < ru)

η1 (u ≥ ru),
(23)

where u is a state variable with a large time constant that

varies the structure of the fast subsystem consisting of v and

n. The η controls the time constant of n, whose value is

determined to be η0 or η1 depending on the value of u and

a threshold ru. In the DSSN model, the LTS class belongs to

the three-variable mode. In the PQN model, it is included in

the extended four-variable model to reproduce the rebound

bursting more faithfully. In the extended four-variable model,

the structure of the fast subsystem consisting of v and n is

shifted depending on the change in the time constant of the

state variable. In the DSSN model, the time constant of v is
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varied by u, whereas in the PQN model, the time constant of

n is varied instead to avoid increasing the calculation process

for v.

These differential equations are numerically integrated with

Euler’s method, whose time steps are 1 ms for the PB class and

0.1 ms for the other classes. The neuronal parameters are fitted

so that the model reproduces the properties of each class as

accurately as possible and consumes as few circuit resources as

possible in the digital arithmetic circuit implementation. The

parameters are determined by a semi-automatic optimization

method developed previously, the detailed protocol of which

is described in Nanami et al. (2017, 2018). Since the synaptic

current is not fitted in this study, the synaptic parameters α

and β are the same values used in the previous study (Li et al.,

2012). The neuronal parameters of all classes are listed in the

Supplementary material.

In the PLS framework, neuron models are described by

a combination of core functions P, L, and S, which represent

polynomial, piecewise-linear, and step functions, respectively.

For example, core functions P1, L1, and S1 are defined as follows:

P1(x, x0) = x0 − x, (24)

L1(x, x0, x1, x2) = x1 + x2(x− x0), (25)

S1(x, x0, x1, x2) =

{

x1 (x < x0)

x2 (x ≥ x0).
(26)

The Class II mode of the PQN model in the PLS-framework

is given by

τ

θ

dυ

dt
= S1

(

υ, 0, afn(P1(υ, bfn))
2

+ cfn, afp(P1(υ, bfp))
2
+ cfp

)

− n+ k Istim, (27)

τ
dn

dt
= S1

(

υ, rg , agn(P1(υ, bgn))
2

+ cgn, agp(P1(υ, bgp))
2
+ cgp

)

− n. (28)

Equations of the RS, FS, and EB classes are given by

τ

θ

dυ

dt
= S1

(

υ, 0, afn(P1(υ, bfn))
2
+ cfn, afp(P1(υ, bfp))

2
+ cfp

)

−n− q+ k Istim, (29)

τ
dn

dt
= S1

(

υ, rg , agn(P1(υ, bgn))
2

+ cgn, agp(P1(υ, bgp))
2
+ cgp

)

− n, (30)

τ

ǫq

dq

dt
= S1

(

υ, rh, ahn(P1(υ, bhn))
2

+ chn, ahp(P1(υ, bhp))
2
+ chp

)

− q, (31)

and equations of the PB classes are given by

τ

θ

dv

dt
= S1

(

υ, 0, afn(P1(υ, bfn))
2
+ cfn, afp(P1(υ, bfp))

2

+ cfp

)

− n− q+ u+ k Istim, (32)

τ
dn

dt
= S1

(

υ, rg , agn(P1(υ, bgn))
2

+ cgn, agp(P1(υ, bgp))
2
+ cgp

)

− n, (33)

τ

ǫq

dq

dt
= S1

(

υ, rh, ahn(P1(υ, bhn))
2

+ chn, ahp(P1(υ, bhp))
2
+ chp

)

− q, (34)

τ

ǫuαu

du

dt
= L1

(

υ, 0,
υ0

αu
,
1

αu

)

− u. (35)

Equations of the LTS and IB classes are written using the step

function as follows:

τ

θ

dv

dt
= S1

(

υ, 0, afn(P1(υ, bfn))
2

+ cfn, afp(P1(υ, bfp))
2
+ cfp

)

− n− q+ k Istim, (36)

S1

(

u, ru,
τ

η0
,

τ

η1

)

dn

dt
= S1

(

υ, rg , agn(P1(υ, bgn))
2
+ cgn,

agp(P1(υ, bgp))
2
+ cgp

)

− n, (37)

τ

ǫq

dq

dt
= S1

(

υ, rh, ahn(P1(υ, bhn))
2
+ chn,

ahp(P1(υ, bhp))
2
+ chp

)

− q, (38)

τ

ǫuαu

du

dt
= L1

(

υ, 0,
υ0

αu
,
1

αu

)

− u. (39)

2.2. Implementations of the PQN model

Here, the implementation of the extended four-variable

model, the most complex variant, is explained. Figure 2 shows

the block diagram of the PQN engine, which calculates the

state variables at the next time step. The symbols ×, +, M,

and C in the figure represent multipliers, adders, multiplexers,

and comparators, respectively. The vv is a square of v and

the n_0 is an intermediate result of calculation for nnext. The

v_c, n_c, q_c, u_c, and s_c_L, are constants, and they are

calculated in advance and stored. The signals v_vv_S, v_vv_L,

v_v_S, v_v_L, v_n, v_q, v_I, n_uS, n_uL, n_vv_S, n_vv_L,

n_v_S, n_v_L, n_n, q_vv_S, q_vv_L, q_v_S, q_v_L, q_q, u_v,

and u_u are the intermediate results of the calculation. They

are calculated by the multiplication of a signal and a coefficient,

which is implemented by shifters and adders. For example,

Figure 3 shows the calculation of the signal v_vv_S. If Yv_vv_S

is 0.037109375, and its binary representation is 0.000010011.

Therefore, calculating the sum of the sixth, fifth, and ninth

right-shift operations on the square of v is performed. The
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FIGURE 2

Block diagram of the PQN engine for the IB and LTS mode. The symbols ×, +, M and C represent multipliers, adders, multiplexers, and

comparators, respectively. The v, n, q, u and Istim are input for the PQN engine. The output vnext, nnext, qnext, and unext are values of the state

variables at the next time step.

results of the calculations are stored in registers for pipelined

design. Details of the signals, coefficients, and constants are

shown in Supplementary material.

In the first stage, the square of v is calculated using the

multiplier. The second stage involves the multiplication of

the variables and coefficients. In the third stage, the result
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FIGURE 3

An example of the multiplication of a state variable and a

coe�cient.

of the calculation of vnext, qnext, unextis obtained, In the

fourth stage, the value of snext is determined based on the

s and vnext the value of nnext is determined based on the u

and n0.

The PQN unit is a complex of a PQN engine and registers

for the state variables (Figure 4A). The registers are configured

as FIFO memory and the values are in turn passed to the PQN

engine. Here, N represents the number of neurons that one PQN

unit computes. The values of the state variables for the next time

step are returned to the FIFO memory and stored. Figure 4B

shows the pipeline usage of the PQN unit. In IB and LTS modes,

the time step is 0.1 ms. To perform the real-time simulation at

100 MHz clock, 10,000 cycles can be consumed to update all

state variables. Since the PQN engine takes 4 cycles and reads

and writes of the FIFO require 3 clocks, the N becomes 9993.

Since multiplications between a coefficient and state variable

are realized by shifters and adders, the values of the parameters

affect the circuit resources. Each additional number of ones

in the binary representation of the coefficients consumes an

additional pair of shifters and adders.

Except for the Class II mode, all state variables are expressed

in an 18-bit fixed-point with an 8-bit integer part. In the Class

II mode with the 18-bit fixed-point, the PRC is biphasic but not

smooth, so we used a 28-bit fixed-point with an 8-bit integer part

representation.

3. Results

3.1. Simulation results of the class II
mode

Class II mode in the Hodgkin’s classification is known

(Rinzel and Ermentrout, 1998) to show the graded response

to pulsed stimuli and has the biphasic PRC. Figure 5A shows

simulation results of the PQN model in response to five pulse

stimuli of different magnitudes. The maximum amplitude of the

spike increases as the magnitude of the pulse stimulus increases,

which is referred to as the graded response.

The PRC was evaluated by measuring phase shift while

varying the phase of the pulse stimulus. The phase of the pulse

stimulus θ and phase shift 1(θ) are defined as follows:

θ =
ti − ts

T
, (40)

1(θ) =
T − Ti

T
, (41)

where T represents the time length of the oscillatory spiking

cycle, and ts and ti are the time of the beginning of the cycle

and the time when the pulse stimulus was given, respectively

(Figure 5B). Ti represents the length of the resulting cycle

shifted by the pulse stimulus. Figure 5C shows the resulting

PRC, and it exhibits the standard Type II as well as the ionic-

conductance model.

3.2. Simulation results of the RS, FS, LTS,
IB, EB, and PB modes

The target models for the RS, FS, LTS, and IB classes are

the ionic-conductance models given in Pospischil et al. (2008).

For the EB and PB classes, the ionic-conductance models shown

in Plant (1981) and Wang (1993) are chosen, respectively. For

the RS class, we reproduced an excitatory cell and an inhibitory

cell shown in Pospischil et al. (2008), and thus we prepared

seven PQN model parameter sets in total. All the results were

obtained using a Xilinx Artix-7 XC7A35T FPGA on a Digilent

cmod-a7 board. The circuit was developed using Xilinx Vivado

2018.3 software. The clock signal of the FPGA is 100 MHz.

The input current was given from the PC to the PQN unit

on the FPGA via serial communication, and the value of the

membrane potential v of the PQN unit was sent back to the PC.

For comparison, we also prepared simulation results of DSSN

models for each class; the DSSN model presented in Nanami

et al. (2017, 2018) for the RS, FS, LTS, and IB classes, andNanami

et al. (2016) for the EB and PB classes. The DSSN models and

ionic-conductance models were simulated on a PC using the

python software.

Figures 6–12A show the responses of the membrane

potential in response to three different amplitudes of stimulus

for excitatory RS, inhibitory RS, FS, LTS, IB, EB, and PB

classes, respectively. The orange and blue plots represent

the membrane potentials of the ionic-conductance and PQN

models, respectively. The gray plots are the stimulus input

currents, whose unit in the ionic-conductance model is pA. In

the PQN model, they have no physical unit. In the excitatory

RS mode, both models exhibit spike-frequency adaptation.

Both models in the inhibitory RS mode show more intense

spike-frequency adaptation than those in the excitatory RS

mode. In the FS mode, weak spike frequency adaptation

is only seen immediately after the step input is given. In

the LTS mode, both models show a strong spike-frequency

adaptation in response to positive step stimuli. Immediately

after the long inhibitory input is removed, they show transient

burst firing, which is called rebound bursting. Both models
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A B

FIGURE 4

The structure and clock cycle of the PQN unit. (A) The internal structure of the PQN unit. The state variables are stored in the FIFO memory and

sent to the PQN engine in turn. (B) The clock cycle of the PQN unit.

A

B C

FIGURE 5

PQN model of Class II mode in the Hodgkin’s classification. (A) Graded responses to pulse stimuli. Pulse stimuli of various magnitudes were

given between 0.1 and 0.102 [s]. (B) Phase changes induced by the pulse stimulus. (C) PRCs of the PQN model and the ionic-conductance

model. The horizontal axis represents the phase at which the pulse stimulus was given, and the vertical axis represents how much the phase was

shifted by the pulse stimulus.

in the IB mode exhibit burst firing immediately after step

stimuli are given. In response to more intense inputs, they

show the periodic firings of the low frequency following

the bursting. In the EB mode, both models repeat burst

firings at constant intervals in response to constant stimulus

inputs. As the stimuli become more intense, the number of

spikes in the bursts becomes larger, and the intervals between

bursts become shorter. Both models in the PB mode show

repeated burst firings at constant intervals to the constant

stimulus inputs. During the intervals between burst firings, the
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FIGURE 6

Waveforms and spiking properties in excitatory RS mode. (A) Waveforms of the ionic-conductance model (orange) and the PQN model (blue).

Gray lines represent stimulus inputs, whose unit in the ionic-conductance model is nA. In the PQN model, they have no physical unit. (B) The

transitions of ISIs are shown while increasing the magnitude of the stimulus input. The horizontal axis represents the index of the ISIs, and the

vertical axis represents the magnitude of the ISIs. Orange, blue, and green lines represent the ionic-conductance, PQN, and DSSN models,

respectively. Markers were plotted to show the corresponding magnitude of the stimulus input. (C) The mean square errors of the PQN model

and the DSSN model with the ionic-conductance model over the data points shown in (B). (D) Values of the CV and LV were calculated from the

waveforms and plotted while varying the magnitude of the stimulus inputs. The waveforms used here are the same as that used in (B). (E) The

mean square errors of the PQN model and the DSSN model with the ionic-conductance model over the data points shown in (D).

subthreshold oscillation is seen in the EB class but not in the

PB class.

To quantitatively assess the differences in activities between

the ionic-conductance model and the PQN and DSSN models,

we employed several statistics. For the RS, FS, LTS, and IB classes

we initially measured and plotted the transition of inter-spike

intervals (ISIs) for each spike sequence (Figures 6–10B). The RS,

FS, and LTS classes exhibit spike frequency adaptation, and the

ISI slowly increases in response to constant input. We measured

the transition of ISIs because it can capture the characteristics

of the change in ISIs. In the IB class, the ISIs are small for

the first few spikes due to the initial bursting, and then ISIs
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FIGURE 7

Waveforms and spiking properties in inhibitory RS mode. (A) Waveforms of the ionic-conductance model (orange) and the PQN model (blue).

Gray lines represent stimulus inputs. (B) The transitions of ISIs are shown while increasing the magnitude of the stimulus input. (C) The mean

square errors of the PQN model and the DSSN model with the ionic-conductance model over the data points shown in (B). (D) Values of the CV

and LV were calculated from the waveforms and plotted while varying the magnitude of the stimulus inputs. The waveforms used here are the

same as that used in (B). (E) The mean square errors of the PQN model and the DSSN model with the ionic-conductance model over the data

points shown in (D).

become larger. ISIs were also measured and plotted in the IB

class to visualize these characteristics. The EB and PB classes

repeat burst firing in response to a constant stimulus. The

characteristics of repeated burst firing were quantified by the

number of spikes in a single bursting and the intervals between

bursting (Figures 11, 12B).

In addition, for all classes, we plotted the coefficient of

variation (CV ) and local variation (LV ) (Shinomoto et al., 2003).

The CV and LV are calculated as follows:

CV =

√

√

√

√

1

n− 1

n
∑

i=1

(Ti − T)2/T, (42)
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FIGURE 8

Waveforms and spiking properties in FS mode. (A) Waveforms of the ionic-conductance model (orange) and the PQN model (blue). Gray lines

represent stimulus inputs. (B) The transitions of ISIs are shown while increasing the magnitude of the stimulus input. (C) The mean square errors

of the PQN model and the DSSN model with the ionic-conductance model over the data points shown in (B). (D) Values of the CV and LV were

calculated from the waveforms and plotted while varying the magnitude of the stimulus inputs. The waveforms used here are the same as that

used in (B). (E) The mean square errors of the PQN model and the DSSN model with the ionic-conductance model over the data points shown

in (D).

LV =
1

n− 1

n−1
∑

i=1

3(Ti − Ti+1)
2

(Ti + Ti+1)2
, (43)

where Ti represents the ith ISI, and T is the average of Ti. n

corresponds to the number of spikes. The coefficient 3 in LV is

determined so that the expectation value of LV in the Poisson

spike sequence becomes one. The CV represents the standard

deviation divided by the mean ISI, and LV measures a local

fluctuation of the ISIs. Both CV and LV become zero for a spike

sequence whose ISIs are constant. The CV and LV are widely

used (Shinomoto et al., 2005a, 2009; Miura et al., 2006) to assess

the firing properties of neurons in the nervous system.
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FIGURE 9

Waveforms and spiking properties in LTS mode. (A) Waveforms of the ionic-conductance model (orange) and the PQN model (blue). Gray lines

represent stimulus inputs. (B) The transitions of ISIs are shown while increasing the magnitude of the stimulus input. (C) The mean square errors

of the PQN model and the DSSN model with the ionic-conductance model over the data points shown in (B). (D) Values of the CV and LV were

calculated from the waveforms and plotted while varying the magnitude of the stimulus inputs. The waveforms used here are the same as that

used in (B). (E) The mean square errors of the PQN model and the DSSN model with the ionic-conductance model over the data points shown

in (D).

In Figures 6–10B, the horizontal axes represent the index

of the ISIs, and the vertical axes represent the length of the

ISIs. Solid, dashed, and dotted curves represent the ionic-

conductancemodel, PQNmodel, andDSSNmodel, respectively.

Six different magnitudes of step inputs are given. Although

the DSSN model reproduces the mathematical structure of

each class, it is not intended to reproduce the transition

of spiking activities in response to the change in stimulus

magnitude. In these figures, the input to the DSSN model

is linearly transformed so that the number of spikes in the

DSSN model matches those in the ionic-conductance model

when the weakest input is applied in each figure. The response

of the DSSN model differs significantly from that of the

ionic-conductance model, while the response of the PQN
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FIGURE 10

Waveforms and spiking properties in IB mode. (A) Waveforms of the ionic-conductance model (orange) and the PQN model (blue). Gray lines

represent stimulus inputs. (B) The transitions of ISIs are shown while increasing the magnitude of the stimulus input. (C) The mean square errors

of the PQN model and the DSSN model with the ionic-conductance model over the data points shown in (B). (D) Values of the CV and LV were

calculated from the waveforms and plotted while varying the magnitude of the stimulus inputs. The waveforms used here are the same as that

used in (B). (E) The mean square errors of the PQN model and the DSSN model with the ionic-conductance model over the data points shown

in (D).

model is closer to the ionic-conductance model. Figures 6–

10C show the mean square errors of the PQN model and

the DSSN model with the ionic-conductance model over the

data points shown in Figures 6–10B. The value of the mean

square errors of the PQN model was about half of that of the

DSSN model for the IB class and less than one-fifth for the

other classes.

In Figures 11, 12B, the timing properties of bursting are

plotted while increasing the magnitude of the stimulus input.

The horizontal axes represent the intervals between the bursting

phases, and the vertical axes represent the number of spikes

in a burst. Six different magnitudes of constant inputs are

given. The inputs to the DSSN model were linearly transformed

so that the number of spikes in the DSSN model matches
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FIGURE 11

Waveforms and spiking properties in EB mode. (A) Waveforms of the ionic-conductance model (orange) and the PQN model (blue). Gray lines

represent stimulus inputs. (B) Properties of bursting. The horizontal axis represents the interval between bursts, and the vertical axis represents

the number of spikes in a burst. Stimulus inputs were increased by 0.25 from 2.75 to 4.25. (C) The mean square errors of the PQN model and the

DSSN model with the ionic-conductance model over the data points shown in (B). (D) Values of the CV and LV were calculated from the

waveforms and plotted while varying the magnitude of the stimulus inputs. (E) The mean square errors of the PQN model and the DSSN model

with the ionic-conductance model over the data points shown in (D).

those in the ionic-conductance model when the weakest

input shown in each figure is given. Figures 11, 12C show

the mean square errors of the PQN model and the DSSN

model with the ionic-conductance model over the data points

shown in Figures 11, 12B. The value of the mean square

errors of the PQN model was about a quarter of that of the

DSSN model.

In Figures 6–12D, the characteristics of the three models

are plotted on the CV -LV plane. The response data used in

Figures 6–12B were used here. Figures 6–12E show the mean

square errors of the PQN model and the DSSN model with

the ionic-conductance model over the data points shown in

Figures 6–12D. The value of the mean square errors of the

PQN model was about half of that of the DSSN model for
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FIGURE 12

Waveforms and spiking properties in PB mode. (A) Waveforms of the ionic-conductance model (orange) and the PQN model (blue). Gray lines

represent stimulus inputs. (B) Properties of bursting. The horizontal axis represents the interval between bursts, and the vertical axis represents

the number of spikes in a burst. Stimulus inputs were increased by 0.25 from 2.75 to 4.25. (C) The mean square errors of the PQN model and the

DSSN model with the ionic-conductance model over the data points shown in (B). (D) Values of the CV and LV were calculated from the

waveforms and plotted while varying the magnitude of the stimulus inputs. (E) The mean square errors of the PQN model and the DSSN model

with the ionic-conductance model over the data points shown in (D).

the IB and EB classes and less than one-quarter for the

other classes.

3.3. Resource utilization on the FPGA

Table 1 shows resource consumption of the PQN, DSSN,

and ionic-conductance models in the FPGA implementation.

Previous studies (Nanami et al., 2016, 2017, 2018) of the DSSN

model showed only the resources of the circuit of the DSSN

engine, which computes the values of the state variables in

the next step from the current values of the state variables.

Therefore, we show the resources of both the PQN engine and

the PQN unit for comparison. Here, look-up tables (LUTs)

are truth tables and digital signal processors (DSPs) are blocks

for complex calculations. Flip-flops (FFs) are memory elements
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and are mainly used for the registers. In the PQN and DSSN

models, LUTs are mainly used for addition, and the DSP is used

to calculate square v. The consumption of LUTs in the PQN

engines is larger than that of the DSSN engines, except for the

PB mode. This is because we focused more on reproducing

spiking properties than on reducing resources in parameter

tuning. Both the PQN and DSSN models consume only one

DSP. The PQNunit consists of the PQN engine, FIFOmemories,

and the controller part responsible for data transfer between

the PQN engine and FIFO memories, requiring more LUTs and

FFs than the PQN engine. The PQN unit operates at 100 MHz

clock at maximum and is capable of simulating 9993 neurons

in real-time. Since the time step of the PB mode is 1 ms, it

can be estimated that a single PQN unit of the PB mode can

compute 99,993 neurons, but due to the lack of capacity of

the block RAM, only 16,384 neurons are realized here. The

FPGA implementation (Khoyratee et al., 2019) of the ionic-

conductance model is programmable and can cover RS, FS,

LTS, and IB classes by varying parameters. However, it can only

simulate 500 neurons and requires a large amount of DSPs,

which can be a bottleneck in building large-scale networks.

4. Conclusion

In this study, we proposed the PQN model, which is a

refined version of the DSSN model. The PQN model has fewer

parameters than the DSSNmodel, and its parameter sets for each

class were renewed.

It was shown that the two-variable PQNmodel can properly

reproduce the Class II in Hodgkin’s classification. Both the

graded response to pulse stimulus and the standard Type II PRC,

which are typical in the Class II neurons, were confirmed. Note

that these properties cannot be reproduced by the I&F-based

models. For the other variants of the PQN model, parameters

were fitted to reproduce the spiking activities in the ionic-

conductance models of the RS, FS, LTS, IB, EB, and PB classes.

With the RS, FS, LTS, and IB classes, we measured the transition

of the ISIs of the spike sequences to evaluate characteristics of the

spike-frequency adaptation and initial bursting with subsequent

sparse firing. With the EB and PB classes, the bursting properties

were evaluated by the interval between bursts and the number

of spikes in a burst. In addition, statistical indicators for spike

sequence classification in theoretical neuroscience (the CV and

LV ) were evaluated for all classes. It is reported (Shinomoto

et al., 2003, 2005b) that spike trains recorded from different areas

of the cortex exhibit different values of CV and LV . CV focuses

on variations in the length of ISIs across entire spike trains, while

LV captures the change in adjacent ISIs. For example, in the

bursting neuron class including the EB and PB, LV shows larger

values than that in other classes because ISIs change extremely at

the beginning and end of bursts. These statistics showed that the

PQN model reproduces the activities of the ionic-conductance

models with dramatically higher accuracy than the DSSNmodel.

In Table 1, the circuit resources required for updating the

state variables for a single time step were compared between

the PQN and DSSN models. Since a single DSP supports the

multiplication of 25-bit by 18-bit, the Class II mode with 28-bit

state variables requires four DSPs. The other modes require only

one DSP as well as the DSSN model. The PQN model consumes

a larger number of LUTs and FFs than the DSSN model. This

is because the PQN model consumes more shifters and adders

to accurately reproduce the activities of the ionic-conductance

models. In addition, buffers in the pipeline process consume

more FF in the PQNmodel. Please note that the implementation

of the DSSN model was not pipelined in the previous studies

(Nanami et al., 2017, 2018) because the main goal of these

studies was to build parameter fitting methods of the model

and the implementation was done only to verify that it worked

correctly. Therefore, the maximum clock frequency and the

number of neurons that can be run in the real-time simulation

were not measured. The ionic-conductance unit consumes

much more FFs than the PQN unit. Their implementation uses

the coordinate rotation digital computer (CORDIC) algorithm

to calculate hyperbolic functions, which is an iterative algorithm

and requires long pipeline stages, thus consuming many FFs

for buffers. In addition, the ionic-conductance model generally

has more state variables, which also leads to an increase in FF

consumption.

Table 2 shows resource utilization of the FPGA

implementations of the IZH and AdEx models (Soleimani

et al., 2012; Heidarpour et al., 2016; Heidarpur et al., 2019;

Haghiri and Ahmadi, 2020). In Heidarpour et al. (2016) and

Heidarpur et al. (2019), they used the coordinate rotational

digital computer (CORDIC) algorithm to implement the

quadratic and exponential terms. In Soleimani et al. (2012)

and Haghiri and Ahmadi (2020), the differential equations

are approximated by piecewise linear functions and power

of 2-based functions to reduce circuit resources. All of these

implementations are pipelined and can operate at clocks above

100 MHz. They do not require a DSP and consume much

fewer LUTs than the PQN model. However, these IZH and

AdEx models do not reproduce all the classes that the PQN

models reproduced. They cover the RS, FS, and IB classes

and also exhibit the rebound bursting seen in the LTS class.

However, as far as we know, they do not cover the EB and PB

classes. In addition, there is a significant gap between covering

a certain class and faithfully reproducing the responses of the

ionic-conductance model or an actual cell of that class.

In order for the IZH and AdEx models to replicate

the responses of the ionic-conductance models with

inputs of various magnitudes, as the PQN model did here,

extensive modification of parameters and linear or nonlinear

transformations of the input stimuli are thought to be necessary.

Furthermore, as reported in the previous study (Nanami

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2022.1069133
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Nanami and Kohno 10.3389/fnins.2022.1069133

TABLE 1 FPGA implementation results of the PQN, DSSN, and ionic-conductance models.

Mode LUT FF DSP

PQN engine Class II 526 485 4

RS exci 1,407 480 1

RS inhi 1,630 474 1

FS 1,500 463 1

LTS 2,060 590 1

IB 1,779 571 1

EB 1,843 486 1

PB 1,919 596 1

DSSN engine (Nanami et al., 2016, 2017, 2018) RS exci 697 109 1

RS inhi 690 109 1

FS 681 109 1

LTS 938 120 1

IB 1,265 136 1

EB 1,320 110 1

PB 3,318 228 1

Mode LUT FF DSP N F (MHz)

PQN unit Class II 783 819 4 9,993 100

RS exci 1,771 963 1 9,993 100

RS inhi 1,995 957 1 9,993 100

FS 1,866 946 1 9,993 100

LTS 2,458 1,111 1 9,993 100

IB 2,177 1,092 1 9,993 100

EB 2,210 969 1 9,993 100

PB 2,089 1,094 1 16,384 100

ionic-conductance unit (Khoyratee et al., 2019) RS, FS, LTS, and IB 2,360 5,551 28 500 100

Available

(Xilinx Artix-7 XC7A35T)
20,800 41,600 90

TABLE 2 FPGA resource utilization of the IZH and AdEx models.

LUT FF DSP F (MHz)

IZH (Piecewise Linear-based) (Soleimani et al., 2012) 493 617 0 241.937

IZH (CORDIC-based) (Heidarpur et al., 2019) 229 410 0 183.4

AdEx (CORDIC-Based) (Heidarpour et al., 2016) 864 1,246 0 128.7

AdEx (Power-2 Based) (Haghiri and Ahmadi, 2020) 270 643 0 196

and Kohno, 2016), the responses of the IB class of the IZH

model differ significantly from those of the ionic-conductance

model, whose dynamical structure of the fast subsystem varies

depending on the value of themembrane potential. Therefore, in

order to reproduce the IB class of the ionic-conductance model,

the equation of the IZH model needs considerable modification.

A previous study (Jolivet et al., 2004) demonstrated that an I&F-

based model that has a quadratic term accurately reproduces the

ionic-conductance model of the FS class. However, the FS is the

class with a simplest dynamics. It is left unknown whether their

approach can reproduce the activities of the other classes with

more complex dynamical structures.

With the recent availability of a vast amount of anatomical

and physiological data, data-driven SNN models (Markram

et al., 2015; Bezaire et al., 2016; Ecker et al., 2020), which

aim to create a complete copy of the mammalian brain, have

been built. These data-driven SNN models consist of ionic-

conductance models and are designed to faithfully reproduce

target brain regions as precisely as possible. However, the

enormous computational cost of themodels precludes the casual
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use of the models and the construction of larger-scale networks.

For example, the model (Bezaire et al., 2016) that reproduces

a CA1 in a rat hippocampus runs on a supercomputer

consisting of 3,000 processors and requires 1 h of execution

time for a 1-s simulation. Since SiNNs using PQN models

can dramatically reduce power consumption and downsize

computational systems, without severely compromising the

reproducibility of neuronal activities, the PQNmodel is expected

to be a promising modeling tool for building data-driven SNNs,

and it will also expand the applicability of data-driven SNNs in

both scientific and engineering fields.

The ionic-conductance models of neurons in the Pre-

Bötzinger complex has been studied (Butera et al., 1999a,b;

Del Negro et al., 2001). These models exhibit activities of the

square-wave bursting class. We will analyze the mathematical

structure behind square-wave bursting and extend the PQN

model to reproduce these models. In addition, we will examine

efficient implementations of PQN models in the digital ASIC.

The ASIC versions of PQN units can be expected to achieve

higher power efficiency. Furthermore, we will study fully

automatic parameter fitting methods applicable to arbitrary

neuronal cells. In the PQN unit, all the parameters are

configured as circuits of adders and shifters rather than data,

thus a single PQN unit can simulate only a homogeneous

population of neurons. We plan to modify the PQN unit to

store a number of parameters as data so that it can simulate

heterogeneous populations that belong to the same neuron class

but have slightly different firing properties.
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