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Melatonin is a transducer of photic environmental information and

participates in the synchronization of various physiological and behavioral

phenomena. Melatonin can act directly in several areas of the central nervous

system through its membrane receptors coupled to G protein, called MT1

and MT2 receptors. In some structures, such as the retina, hypothalamus and

pars tuberalis, the expression of both melatonin receptors shows circadian

variations. Melatonin can act in the synchronization of the clock proteins

rhythm in these areas. Using the immunohistochemistry technique, we

detected the immunoexpression of the melatonin receptors and clock genes

clock protein Per1 in the inferior olivary nucleus (ION) of the Sapajus apella

monkey at specific times of the light-dark phase. The mapping performed

by immunohistochemistry showed expressive immunoreactivity (IR) Per1 with

predominance during daytime. Both melatonin receptors were expressed in

the ION without a day/night difference. The presence of both melatonin

receptors and the Per1 protein in the inferior olivary nucleus can indicate a

functional role not only in physiological, as in sleep, anxiety, and circadian

rhythm, but also a chronobiotic role in motor control mechanisms.

KEYWORDS

biological rhythms, melatonin, clock genes, primate, motor

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1072772
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1072772&domain=pdf&date_stamp=2022-12-20
https://doi.org/10.3389/fnins.2022.1072772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1072772/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1072772 December 20, 2022 Time: 8:14 # 2

Granado et al. 10.3389/fnins.2022.1072772

GRAPHICAL ABSTRACT

Inferior olivary nucleus: Melatonin receptors and Per1. The presence of both melatonin receptors, as well as the Per1 clock protein in the inferior
olivary nucleus, is an indicator for a chronobiotic role in motor control mechanisms.

1 Introduction

Melatonin, produced rhythmically by the pineal gland,
presents high circulating levels during the night and regulates
several physiological and neuroendocrine functions through
two G protein-coupled receptors (GPCRs), the MT1 and
MT2 receptors, which are widely expressed in different tissues
(Lacoste et al., 2015; Ng et al., 2017; Pinato et al., 2017). Both
receptors are thus involved in the physiology and pathologies of
different systems, including the central nervous system (CNS)
(Dubocovich et al., 2010; Tosini et al., 2014; Pinato et al., 2015;
Jockers et al., 2016; Hardeland, 2018).

In CNS, the MT1 and MT2 receptors have already been
described with substantial regional differences in expression
levels in the hypothalamus, thalamus (Thomas et al., 2002;
Gupta et al., 2013; Odo et al., 2014; Pinato et al., 2017),
cerebral cortex, putamen, caudate nucleus, nucleus accumbens,
amygdala, hippocampus, septal area, striatum, ventral tegmental
area, habenula (Uz et al., 2005; Lacoste et al., 2015), and pars
tuberalis (Schuster et al., 2001; Wu et al., 2006; Lacoste et al.,
2015).

The expression of melatonin receptors can be rhythmic in
some of these areas and present some variability in different
species (Gupta et al., 2013; Odo et al., 2014; Pinato et al.,
2017). This vast expression in the CNS indicates the involvement
of both receptors in the mechanisms underlying different
brain functions, whether under the action of endogenous or
exogenous melatonin and melatonergic agonists (Zlotos et al.,
2014; Liu et al., 2016).

The mammalian circadian clock system is based on cellular
oscillators in all body tissues organized hierarchically. A master
pacemaker located in the suprachiasmatic nucleus (SCN)
synchronizes peripheral tissue clocks and extra-SCN oscillators
in the brain with each other and with external time. Different
time cues (so-called Zeitgebers) such as light, food intake,
activity, and hormonal signals reset the circadian clock system

through the SCN or by direct action at the tissue clock
level. Several extra-SCN central oscillators were characterized
regarding circadian rhythm regulation and output. Some are
directly innervated by the SCN pacemaker, while others receive
indirect input from the SCN via other neural circuits or extra-
brain structures (Begemann et al., 2020).

With a degree of essentiality varying among species, the
role of melatonin in the control of circadian phenomena is in
regulating the circadian phase and maintaining rhythm stability
of SCN neurons (Reppert et al., 1988; Bell-Pedersen et al., 2005;
Pevet and Challet, 2011; Pfeffer et al., 2012; Adamah-Biassi
et al., 2014). In this process is included the induction of Per1
mRNA expression by melatonin (Weaver et al., 1989; Gillette
and McArthur, 1996; Dubocovich et al., 2003) influencing at
least the sleep/wake cycle and the circadian rhythm of locomotor
activity (Dubocovich et al., 2005).

Several extra-SCN central oscillators were characterized
regarding circadian rhythm regulation and output. Some of
them are directly innervated by the SCN pacemaker, while
others receive indirect input from the SCN via other neural
circuits or extra-brain structures. The specific physiological
function of these non-SCN brain oscillators and their role in
regulating the circadian clock network remains understudied
(Begemann et al., 2020).

The Per1 and other clock genes are rhythmically expressed
in other brain areas (Masubuchi et al., 2000; Campos et al., 2015;
Rawashdeh et al., 2018) where melatonin can modulate this
rhythmic expression through its receptors such as demonstrated
for clock gene Per1 expression in the pituitary gland (von Gall
et al., 2002), Per1, Per 2, Bmal1 and Cry 1 in the Pars tuberalis
(Jilg et al., 2005), and Per1 expression in the striatum (Uz et al.,
2003).

There is evidence for the emerging concept of melatonin
receptor dysfunction and the changes in the clock gene
expression as a permissive condition favoring the development
and/or progression of neurodegenerative diseases. Altered
expression of melatonin receptors or clock genes has been

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1072772
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1072772 December 20, 2022 Time: 8:14 # 3

Granado et al. 10.3389/fnins.2022.1072772

frequently reported in neurodegenerative diseases and
psychiatric disorders, including Alzheimer’s disease (AD)
(Wu et al., 2007; Cronin et al., 2017), Parkinson’s disease (PD)
(Adi et al., 2010; Li et al., 2017), and Huntington’s disease (HD)
(Pallier et al., 2007; van Wamelen et al., 2013).

On the other hand, the neuroprotective effect of endogenous
and exogenous melatonin has been demonstrated in several
neurodegenerative conditions, including amyotrophic lateral
sclerosis (Weishaupt et al., 2006; Zhang et al., 2013), PD (Naskar
et al., 2015), and HD (Escribano et al., 2014).

The requirement of melatonin receptors for the
neuroprotective action of melatonin has also been demonstrated
in a series of studies (Lee et al., 2010; Wang et al., 2011; Pinato
et al., 2015).

Melatonin would participate in the movement initiation
process due to the probable inhibition of dopamine secretion
through the MT1 receptor (Zisapel, 2001). Besides this, little
was described as melatonin receptors and their relationship
with clock genes in brain areas related to motor functions.
Both receptors and clock genes were found in the cerebellum
(Guissoni Campos et al., 2018), where the maximal expression
of melatonin receptors was found to coincide with that of Per
proteins, base nuclei, and the substantia nigra (Uz et al., 2003,
2005; Christiansen et al., 2016).

Considering the expression and localization of melatonin
receptors as the basis for investigations of their role in
neuronal functions, and that melatonin was one of the most
effective candidates for preventing neuronal death in several
pathologies, we investigated the day/night expression of
the Per1 protein, MT1, and MT2 melatonin receptors in
the inferior olivary nucleus (ION), essential in processing
motor learning, control and coordination of movements
(Rasmussen and Hesslow, 2014; Najac and Raman, 2015)
thought connections to the cerebellum (Reeber et al., 2013;
Rasmussen and Hesslow, 2014; Najac and Raman, 2015).

The results expand the repertoire of neuroanatomical
knowledge of these two pharmacological targets. The availability
of this information can contribute to further advances in the
therapeutic of motor diseases.

2 Materials and methods

In the present study, slices of the brains of six adult
male tufted capuchin monkeys (Sapajus apella) (2 to 3 kg) of
the same age, and weight, without visible motor alterations,
without a history of previous diseases, in physiological condition
were obtained from the Center of Tufted Capuchin Monkey
Procreation of the São Paulo State University (UNESP),
Araçatuba, SP, Brazil. The animals were kept in individual
cages under natural conditions of light (with dusk and dawn

natural light conditions), temperature and humidity during the
experiments and fed with a controlled diet consisting of eggs,
fruit, granulated ration with protein, and dried corn; water was
provided ad libitum. In this specific season, the sunrise time
during the experiments was approximately 06:00am and was
considered the Zeitgeber time 0 (ZT0) as a reference; the sunset
time started at approximately 06:00pm.

Following this time parameter, the animals were
anesthetized and perfused at ZT 0, (day point) and ZT 15
(night point), N = 3 per ZT. The procedures involving animal
use were compliant with the "Guidelines for the care and use
of mammals in neuroscience and behavioral research" (2003)
and were approved by the local ethics committee (process no

2013-00259/FOA-UNESP).

2.1 Animals

Analyzes of Per1, MT1, and MT2 immunoreactive cells
were performed in six capuchin monkeys (Sapajus apella)
(N = three per ZT). The animals were perfused following
the protocol described by Campos et al. (2014) with 0.9%
saline solution and 4% paraformaldehyde. After perfusion, the
brains were exposed and cut into blocks using a stereotaxic
apparatus. The blocks were removed from the skull and placed
in a cryoprotective solution containing 10% glycerol and 2%
dimethylsulfoxide in a 0.1 M borate buffer, pH 9.0, at 4◦C. After
three days, the blocks were transferred to a similar solution
containing an increased concentration of glycerol (20%). They
were incubated for four additional days, as previously described
(Rosene et al., 1986). After cryoprotection, the brain blocks
were cryosectioned into 30 µm-thick sections using a cryostat
(Leica CM 1850, Microsystems AG, Germany) and stored as 10
different stepwise series in anti-freeze solution until the time of
immunohistochemical processing or Nissl staining.

2.2 Immunohistochemistry

Brain sections were processed using immunohistochemical
techniques for melatonin receptors and Per 1. The sections were
washed using a solution TBS-TX buffer (0.05 M), incubated for
48 h at 4◦C in a solution containing 0.05 M TBS-TX buffer, 2%
normal serum (Vector Laboratories, USA), and the appropriate
primary antibody: anti-MT1 (1: 200, Santa Cruz), anti-MT2 (1:
200, Santa Cruz), anti-Per1 (1:500, Santa Cruz, USA) separately.
Next, the sections were washed with 0.05 M TBS-TX and
incubated in a secondary antibody Alexa 488 (1:200, Jackson
Immuno Research) and Cy3 (1:200, Jackson Immuno Research)
fluorescents specific for the primary antibody species, diluted
(1:200) in the same solution that the primary, for two hours.
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2.3 Data analysis

The ION was identified using brain sections stained with
Nissl and the atlases "A Stereotaxic Atlas of the Brain of Cebus
Monkey" (Cebus apella) (Manocha et al., 1968) and "The Rhesus
Monkey Brain in Stereotaxic Coordinates" (Paxinos et al., 2000).
The DAPI (Sigma Chemical) fluorescent staining methodology
and Nissl staining were used to identify the brain area. For
each animal, all the coronal sections of a series representing
the whole extension of the ION were placed in a rostrocaudal
order. After that, three sections of each animal, similar
across animals (representing the same rostrocaudal level), were
processed for each antibody. The sections representing different
levels of the rostrocaudal extension were adjacent among
antibodies. Each coronal section was analyzed under a light field
(Olympus BX50 microscope), and the images were acquired
with cellSens software (USA). The image was obtained with
adequate resolution, and evenly brightness and contrast were
changed using Adobe Photoshop CS6. Schematic drawings were
performed using the Canvas 6 software (Deneba, USA). Cell
Counter plugin – ImageJ (National Institutes of Health, USA)
was applied to count the number of neurons of the two ZTs.
The manual cell counting tool was used from a single color
fluorescence image-RGB color by clicking on the cell image.
Each click marks the cell with a colored square and adds the

cell to a tally sheet. Labeling intensity was measured by the optic
density (OD) analysis of the – ImageJ.

2.4 Statistical analyses

The data are expressed as the mean ± standard error of the
cell number of the three monkeys perfused in the same ZT. The
data are also presented as the mean ± standard error of the
relative number of neurons by the surface area of the nucleus
slices. The Mann-Whitney test or the Student’s t-test was applied
to compare the two ZTs. Values of p < 0.05 were considered
statistically significant.

3 Results

The cytoarchitecture and the boundaries of the ION
were evidenced by Nissl staining (Figure 1) and fluorescent
DNA marker (DAPI) (Figures 2A1-D1) which allowed the
identification of the design of the ION.

For the fluorescent immunohistochemistry of melatonin
receptors, the analyses showed similar results in the
immunoexpression between the MT1 and MT2 receptors
in the ION between day and night (Figures 2A–J). There
was no difference (p = 0.53) between the number of MT1-IR

FIGURE 1

Cytoarchitecture of the inferior olivary nucleus in the brain of the primate Sapajus apella. Photomicrograph of the frontal section of the brain of
the primate Sapajus apella stained with Nissl. Bar = 100 µm.
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FIGURE 2

Distribution of MT1 and MT2 receptors in the inferior olivary nucleus (ION) of the primate Sapajus apella. Immunofluorescence
photomicrographs of frontal sections of the primate’s brain Sapajus apella showing MT1-labeled cells (MT1-IR) in the ION day and night (A,B)
and MT2-IR cells day and night (C,D). In (E,H), the number of MT1 or MT2 immunoreactive cells in the ION. The relative number of day and night
MT1-IR and MT2 cells by the surface area of the ION (F,I). The intensity of staining day and night MT1-IR and MT2 cells (G,J) - optical density
(OD). Photomicrographs of the cytoarchitecture characterization of neuronal populations of the inferior olivary nucleus (ION) represented by
fluorescent staining in DAPI (blue) in A1, B1, C1, D1. Bar = 100 µm.
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FIGURE 3

Immunofluorescence photomicrographs of the frontal section of the inferior olivary nucleus (ION) of the primate Sapajus apella showing Per1 –
IR cells in (A). Mean of the number of immunoreactive cells to Per1 in 3 brain sections representative of anteroposterior extension of the inferior
olivary nucleus (ION) of the primate Sapajus apella (N = 3 ZT). Photomicrograph of the cytoarchitecture characterization of neuronal
populations of the ION represented by fluorescent staining in DAPI (blue) in A1 and B1, overlapping with A. Per-1 antibody showed the specificity
of labeling in neuronal populations, allowing the delineation of the ION (A,B). Per1 in neuronal populations of the ION (C). Relative number of
day and night Per1-IR cells by the surface area of the ION (D). Intensity of staining - OD (E). Bar = 100 µm.

cells quantified during the day (2413 ± 348.3) and night
(2840 ± 144.3) and between the number of MT2-IR cells
(p = 0.59) quantified during the day (2793 ± 277.5) and
night (2533 ± 389.6) (Figures 2E, H). No difference was
found either between day and night in the relative number
of MT1-IR or MT2-IR cells by the surface area of the ION
(MT1 day 0.0016 vs. MT1 night 0.0024, p = 0.20; MT2 day
0.0017 vs. MT2 night 0.0018, p = 0.20) (Figures 2F, I). Also,
when the staining intensity was investigated, there was no
difference between day and night MT1-IR and MT2-IR
(Figures 2G, J).

The Per1 immunoexpression was observed in the
anteroposterior levels of the ION, but not in adjacent areas,
demonstrating the specificity of Per1 in neuronal populations
of the ION (Figure 3). A larger amount of Per1–IR cells was
observed in the daytime (870.8 ± 40.8) than in the night
(677.3 ± 91.7) in the ION (Figure 3C). The same day-night
difference was found between the relative number of Per1-IR
cells by the surface area of the ION (day 0.0013 vs. night 0.0010,
p = 0.05) (Figure 3D). The difference (p = 0.01) between day
(40083863 ± 2539390) and night (31056641 ± 1330252) Per1
expression was also found when the intensity of staining was
investigated (Figure 3E).
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4 Discussion

The present study demonstrated MT1 and MT2 melatonin
receptors and Per1 immunoreactivity in ION in a physiological
condition. It was the first description of the presence of both
receptors in the ION of a primate and one of the few who
described melatonin receptors in motor areas. Even though the
functional and pharmacological role of melatonin receptors is
still unclear in motor areas, this finding indicates that in a health
condition, both melatonin receptors are present and can be a
target for melatonin in ION.

Abnormal expression of the MT1/MT2 receptor has been
reported in several neurological diseases (Savaskan et al.,
2001; Wang et al., 2011). In some experimental studies
of neurodegenerative diseases with motor deficits, like in
genetic models of HD (Wang et al., 2011) or amyotrophic
lateral sclerosis (Zhang et al., 2013), it was demonstrated
that disease progression was associated with the loss of both
melatonin and the MT1 receptor in striated and spinal cord
respectively. In these situations, exogenous melatonin can
attenuate the down-regulated expression of MT1 and neuronal
death. Also, MT1 has been shown to protect C6 astroglial
cells from oxidative damage and excitotoxicity (Das et al.,
2008).

The ION has long been considered major cerebellum
afferent from the brain stem. Besides being strongly connected
to the brain, integrating both somatic and visceral messages to
the cerebellum and playing an important role in the control of
movement and the processing of motor learning (Reeber et al.,
2013; Rasmussen and Hesslow, 2014; Najac and Raman, 2015).

The results showed no day-night difference between MT1-
IR and MT2-IR in the ION. The lack of rhythmicity does
not rule out these receptors like targets in treating diseases
involving the ION (Stankov et al., 1994; Fraschini et al., 1999).
Previously, these receptors had already been described in the
cerebellum, another area known to be involved in motor
control (Mazzucchelli et al., 1996; Guissoni Campos et al.,
2018). The presence of these receptors in this nucleus reinforces
the possible melatonin participation in controlling circadian
phenomena subserving motor performance (Stankov et al.,
1994), in addition to other functions already described (Reiter
et al., 2012; Cipolla-Neto et al., 2014).

In the present study, the expression of Per1-IR was higher
in the daytime than in the nighttime point analyzed in
ION of Sapajus apella, similar to the result observed in the
cerebellum of the same species (Guissoni Campos et al., 2018).
Previous studies have demonstrated in rats and mice a peak of
Per1proteins and Per1 genes expression at night (Mendoza et al.,
2010).

Possibly this difference may be related to the difference
in the activity habits of the diurnal primate Sapajus apella.
Moderate levels of Per1 expression were detected in many brain
regions, including the granular layer of the cerebellum, anterior

paraventricular thalamic nucleus, caudate-putamen, inferior
colliculus, pontine nuclei, ION, and nucleus of the solitary tract
(Masubuchi et al., 2000; Campos et al., 2015; Rawashdeh et al.,
2018).

Although the mechanism responsible for conferring
information on circadian time from the SCN to the ION
remains enigmatic, external cues such as feeding schedule,
neurotransmitters and neurohormones have been shown to
entrain extrahypothalamic oscillators in the brain (Verwey and
Amir, 2009). The presence of Per1 in the ION may indicate a
circadian action associated with local motor function. Since the
expression of clock genes found in the caudate and putamen
nuclei of rats has already been correlated to locomotor activity
(Masubuchi et al., 2000).

The present study’s data establish characteristics that can
impact how information is processed in the ION due to
day/night changes in clock protein Per1. The presence of
melatonin receptors in the ION showed a possible target for
melatonin or its agonists in this area and also indicated that
melatonin can be involved in the modulation of clock genes
expression in this motor area as demonstrated in other brain
areas, as pars tuberalis, and SCN (Coelho et al., 2015; Kandalepas
et al., 2016).

The limitation of the study is the number of periods and
the number of animals in each period which is common in
non-human primate studies. Comparing the results obtained
in this typical study with non-human-primate with other
models of pathologies will enable advances in scientific
knowledge in this area.
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