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As a computing platform that can deal with problems independently and

adapt to di�erent environments, the brain-inspired function is similar to the

human brain, which can e�ectively make use of visual targets and their

surrounding background information to make more e�cient and accurate

decision results. Currently synthetic aperture radar (SAR) ship target detection

has an important role in military and civilian fields, but there are still great

challenges in SAR ship target detection due to the problems of large span of

ship scales and obvious feature di�erences. Therefore, this paper proposes an

improved anchor-free SAR ship detection algorithm based on brain-inspired

attention mechanism, which e�ciently focuses on target information ignoring

the interference of complex background. First of all, most target detection

algorithms are based on the anchor method, which requires a large number

of anchors to be defined in advance and has poor generalization capability

and performance to be improved in multi-scale ship detection, so this paper

adopts an anchor-free detection network to directly enumerate potential

target locations to enhance algorithm robustness and improve detection

performance. Secondly, in order to improve the SAR ship target feature

extraction capability, a dense connection module is proposed for the deep

part of the network to promote more adequate deep feature fusion. A visual

attention module is proposed for the shallow part of the network to focus

on the salient features of the ship target in the local area for the input SAR

images and suppress the interference of the surrounding background with

similar scattering characteristics. In addition, because the SAR image coherent

speckle noise is similar to the edge of the ship target, this paper proposes a

novel width height prediction constraint to suppress the noise scattering power

e�ect and improve the SAR ship localization accuracy. Moreover, to prove

the e�ectiveness of this algorithm, experiments are conducted on the SAR
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ship detection dataset (SSDD) and high resolution SAR images dataset (HRSID).

The experimental results show that the proposed algorithm achieves the best

detection performance with metrics AP of 68.2% and 62.2% on SSDD and

HRSID, respectively.

KEYWORDS

anchor-free, synthetic aperture radar, ship detection, brain-inspired, attention

mechanism

1. Introduction

The brain-inspired concept originates from the human

brain, which can focus on the target information while

selectively ignoring the interference of redundant information

when facing a large amount of information, and this attention

mechanism in the human brain can enhance the target

cognition and understanding. By imitating the processing mode

of information in the human brain, the brain-inspired can

improve the information acquisition ability of the target in

practical applications, and finally complete the cognitive and

understanding of the target.

In SAR ship detection, the target information usually

contains a large number of redundant interference components,

and being able to obtain the target information accurately plays

an important role in the detection results. Because the brain-

inspired ability to effectively pay attention to key regions in the

target scene, we take SAR ship detection as an example to explore

an algorithm that can effectively extract SAR ship information

and improve SAR ship detection accuracy.

Synthetic aperture radar (SAR) is an active microwave

imaging sensor that can effectively collect large area data under

any weather conditions, such as day, night, and foggy days, and

eventually generate high-resolution SAR images. Because of its

all-day and all-weather high-resolution imaging capability, SAR

plays an important role in marine ship target detection (Li et al.,

2016), such as marine rescue, marine law enforcement and other

civilian fields, as well as precise detection, ship target detection,

and other military fields. However, it is difficult to detect ship

targets in SAR images due to the large scale span of ship targets

and obvious feature differences. Therefore, an efficient target

detector is needed to detect SAR ship targets.

Traditional SAR target detection methods can be broadly

classified into three categories: threshold (Wang et al., 2016),

statistical (Song and Yang, 2015), and transform methods (He

et al., 2019). The main steps include the pre-processing stage

of processing the input image into a more recognizable image,

the candidate region extraction stage of extracting possible

target pixels as candidate targets, and the recognition stage

of identifying targets within the potential region. Among the

existing conventional SAR target detection algorithms, the

constant false alarm rate (CFAR) method (Wang et al., 2017)

is one of the most commonly used techniques, which is based

on the main idea of establishing a sea clutter distribution model

based on local sea clutter data and plotting the probability

density curve of the sea clutter distribution model, then

calculating the adaptive threshold based on the typical false

alarm probability, and finally using the adaptive threshold to

detect the target in the SAR image. Although the CFAR method

has been widely used for SAR ship target detection, it relies

on the modeling of sea clutter data and adapts to simple

scenarios, and does not adapt to multi-scale ship detection in

complex backgrounds.

With the rapid theoretical development of deep learning,

various deep learning models have emerged, which are

widely used in the field of image processing due to their

advantages such as powerful feature characterization ability and

automatic learning. For feature misalignment and variation of

target appearance in SAR multi-scale target detection, Tang

et al. (2022) proposed scale-aware feature pyramid network

with scale-adaptive feature extraction module and learnable

anchor point assignment strategy. For redundancy-oriented

computation and background interference in the remote sensing

domain, Deng et al. (2022) proposed fast anchor point

refinement network with rotational alignment module and

balanced regression loss function. To improve the SAR multi-

scale ship detection performance, Cui et al. (2019) proposed

dense attention pyramid network by fusing the convolutional

attention module with the features of each layer to highlight

the salient features of each layer. Since SAR ship targets are

difficult to distinguish from the surrounding background, Yang

et al. (2022) proposed robust detection network by introducing

coordinate attention approach to obtain more representative

semantic features. To obtain better detection performance in

practical industrial applications, Gao et al. (2022) proposed

efficient SAR ship detection network with targeted skill fusion

strategy based on Yolov4.

The above detection algorithms are all based on

anchor detectors, and although these methods achieve

better performance in target detection, there are still some

shortcomings. Firstly, the algorithms need to manually set

some hyperparameters according to the data, which are

sensitive to ship targets with large scale span. Secondly, the

algorithms usually generate a large number of anchor boxes
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on the image, while SAR ship targets account for a small

percentage of the image, and a large number of irrelevant

anchor boxes waste computational resources. Moreover, when

the targets are densely arranged, the overlapping area of

candidate anchor boxes is large, and some targets are missed

under non-maximum suppression. Therefore, it is necessary

to propose an efficient anchor-free detector in SAR ship

target detection.

The general anchor-free detector is designed based on

natural scene images, while SAR images are very different from

natural scene images, and the detection results are not good if

the anchor-free detector is directly applied to SAR ship target

detection. First of all, the SAR image coherent speckle noise

is relatively large, the ship target is relatively similar to the

clutter, and the island, port and building backgrounds have high

grayscale characteristics easily confused with the ship target,

so the SAR ship target features are difficult to extract, and

problems such as missed detection and false detection are easy

to occur in the detection results. In order to detect objects

more effectively in existing detection algorithms, Deng et al.

(2021) introduced dynamic weights to encourage the filters

to focus on more reliable regions during the training phase.

Han et al. (2019) added global context patches in the training

phase of the model to better distinguish the target from the

background. Zhao et al. (2017) adopted high confidence update

strategies and study mechanisms to avoid model corruption

and handle occlusion. Han et al. (2017) utilized a co-training

paradigm to formulate multi-feature templates with inherently

complementary information into a correlation filter model to

extract valid feature targets. Wang et al. (2022) introduced deep

residual networks into dictionary learning to extract rich image

information. Lin et al. (2017a) developed top-down architectures

with lateral connections for building high-level feature maps at

various scales. Although existing feature extraction networks can

effectively extract target features, they often lack the targeting

of different feature layers in the network. The deep part of the

network has a relatively large perceptual field and rich semantic

features, and we propose a dense connection module for the

deep part of the network to promote more adequate deep feature

fusion. The shallow part of the network has a relatively small

perceptual field and rich fine-grained details, and we propose a

visual attention module for the shallow part of the network to

focus on the salient features of the ship target in the local area

for the input SAR images and suppress the interference of the

surrounding background with similar scattering characteristics.

In addition, because the scattered power distribution of the

surrounding background in the near-shore scene of SAR images

is similar to the edge of the ship target, it is easy to lead to the

offset between some ship predicted positions and real positions,

and the ship target is not localized correctly. For this reason,

we propose a novel width height prediction constraint, which

considers the overlapping area of the predicted box and the real

box, the real difference between the width and length of the

edge and the loss gradient reweighting to improve the ship target

localization accuracy.

In conclusion, drawing on the idea that the brain-

inspired can effectively use visual targets and their surrounding

background information, we propose an improved anchor-free

SAR ship detection algorithm based on brain-inspired attention

mechanism. The main contributions are summarized as follows.

1. We propose an improved anchor-free SAR ship detection

algorithm, which directly enumerates potential target

locations and classifies them with better generalization

capability compared to the anchor method, and makes

targeted improvements to different feature layers of the

network to improve SAR ship detection accuracy.

2. We design a dense connection module and a visual attention

module for feature extraction. The deep part of the network is

richer in semantic features, and the dense connection module

promotes more adequate deep feature fusion. The shallow

part of the network is richer in fine-grained details, and the

visual attention module focuses on the salient features of

the target in the local area and suppresses the surrounding

background interference, which can eventually detect the

SAR ship target more effectively.

3. We design a novel width height prediction constraint, which

considers the overlapping area of the prediction box and

the real box, the real difference between the length and

width of the edge and the loss gradient reweighting, which

suppresses the influence of the near-shore background on

SAR ship target localization and improves the SAR ship target

localization accuracy.

2. Related work

Since the concept of deep learning (Hinton and

Salakhutdinov, 2006) was proposed, deep learning has

gradually shown great advantages over traditional methods for

various classification and regression tasks, and target detection

using deep learning has now become mainstream. Existing

target detection methods are mainly divided into two categories:

anchor-based detectors and anchor-free detectors.

In the anchor-based detectors, first a series of sliding

windows are predefined on the feature map, then they are

divided into positive and negative samples according to the

IOU values, and finally the detection results are obtained by

classification regression on the divided positive and negative

samples. The anchor-based detectors can be classified into

two-stage and one-stage detectors according to the number of

classification regression. Typical representatives of two-stage

detectors are Faster R-CNN (Ren et al., 2017), Cascade R-CNN

(Cai and Vasconcelos, 2018), etc., while typical representatives

of one-stage detectors are RetinaNet (Lin et al., 2017b), SSD

(Liu et al., 2016), etc. Generally speaking, two-stage detectors

can obtain higher accuracy, but the processing speed is slower.
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One-stage detectors have faster processing speed, but obtain

poorer accuracy.

Anchor-based detectors require a series of predefined sliding

windows before detecting targets, while brain-inspired detects

important area targets directly without predefined operations.

In addition, the predefined sliding windows are not suitable

for the targets with large scale span in remote sensing image

processing, so the anchor-free detectors have been developed

and researched.

In the anchor-free detectors, they can be mainly divided

into key point detectors and pixel point detectors. In this paper,

we focus on key point detectors, which detect the key points

of the same instance object after prediction by identifying the

location of bounding box characteristics as key points. The

typical representatives of key point detectors are CornerNet

(Law and Deng, 2018), ExtremeNet (Zhou et al., 2019b), and

CenterNet (Zhou et al., 2019a), etc. CornerNet predicts the top-

left and bottom-right points of the target and determines the

connection between the two points through the localization

vector to complete the target detection, but when the target is

irregular, the extracted information of the two points is weak.

ExtremeNet predicts the center point of the target and the

extreme points of the four edges of the target to complete the

target detection, but the network outputs a large number of

key points and requires a large number of extreme points to

be matched, resulting in a slow operation. Based on the above

methods, Centernet determines the target location directly by

predicting the center of the target without subsequent grouping

and post-processing, and the network will be described in

detail later. Although anchor-based detectors dominate in target

detection, the anchor-free detectors processing idea is more

scientific and have great potential for development.

3. Methods

The overall architecture of our proposed algorithm is shown

in Figure 1, using an anchor-free network with an encoder-

decoder structure, which performs targeted feature extraction

for the deep and shallow parts of the network with target width

and height prediction constraint to finally obtain detection

results. In the deep part of the network, a dense connection

module is made from the encoder layer En3 to the decoder layer

De3 to promote a more adequate deep feature fusion. In the

shallow part of the network, the encoder layer En2 is processed

with a visual attention module to focus on the salient features

of the local area ship targets for the input SAR images and

suppress the interference of the surrounding background with

similar scattering characteristics. In the prediction head part

of the network, the decoder layer De2 outputs heatmap, target

center offset, and constrained target width and height to obtain

the final detection results.

In this section, we first introduce the anchor-free network

with an encoder-decoder structure used as the algorithm

baseline. Next, the designed dense connection module and

visual attention module are described in detail. Then we present

a novel width height prediction constraint designed in the

prediction head.

3.1. Anchor-free network

The proposed algorithm builds on the key point anchor-

free detector, which determines the target center by key point

estimation and regresses at the target center to obtain other

target attributes, such as target center offset and target width

and height.

The feature extraction part uses an encoder-decoder

structure. In the encoder, Resnet101 is used for feature

extraction, and the extracted features are En1, En2, En3, En4,

En5, with scales corresponding to 1/2, 1/4, 1/8, 1/16, 1/32 of

the original image, reflecting the information of SAR image

from shallow to deep. The shallow features are richer in fine-

grained details and highlight the boundary of the target, while

the deep features are richer in semantic features and highlight

the location of the target. In the decoder, the features extracted

by the encoder are up-sampled three times to gradually recover

the featuremap resolution, and the up-sampled features are De4,

De3, De2, with scales corresponding to 1/16, 1/8, 1/4 of the

original image. The final network output features are not only

rich in feature extraction, but also have higher resolution, which

is convenient for target detection.

In the prediction head part of the network, the output

heatmap, target center offset and target width and height are

shown in Figure 1. Heatmap is used to locate the key points to

be determined in the input image, and the peak in the heatmap

is determined as the center of the target by sigmoid function

processing. Since the spatial resolution of the output heatmap

is 1/4 of the original image, the target center offset is used to

compensate for the pixel error caused by mapping the points on

the heatmap to the original image. The output target width and

height is used to predict the size of the target. Compared with

the anchor detector, the key point anchor-free detector directly

predicts the target center to determine the target, which is more

in line with the idea of brain-inspired attention mechanism.

3.2. Dense connection module

We design a dense connection module for feature extraction

to promote more adequate deep feature fusion. Traditional

feature extraction methods usually utilize lateral connection to

combine high-level semantic featuremappings from the decoder

with corresponding low-level detailed feature mappings from

the encoder, which can extract effective target features but lack
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FIGURE 1

Overall architecture of the proposed algorithm. The deep part of the network is densely connected, the shallow part of the network is processed

by the visual attention module (VAM), and the prediction head outputs heatmap, target center o�set, and constrained target width and height.

FIGURE 2

The dense connection module is used for feature extraction,

which can promote the deep feature fusion more fully.

correlation between adjacent layers and feature extraction is

not sufficient. For this reason, we design a dense connection

module, as shown in Figure 2, with decoder feature layers from

the encoder small-scale and same-scale feature mappings, and

large-scale feature mappings from the decoder or encoder layer

En5, to promote adequate feature fusion.

The encoder layer En1 is usually not considered in the

following feature extraction, while the shallow part of the

network En2 is not sufficiently extracted with still more

background interference, so we only process the deep part of the

network, i.e., the dense connection from the encoder layer En3 to

the decoder layer De3, to promote the deep feature fusion more

fully. Take how to build the decoder layer De4 as an example,

its input sources are, the encoder layer En3 after down-sampling

operation, the encoder layer En4 after lateral connection and the

encoder layer En5 after up-sampling operation, whose feature

maps have the same resolution for channel concatenation, and

the number of channels of each input feature layer is 64 in

order to unify the number of channels. To fuse the concatenated

feature maps more fully, a fusion process is applied to them,

i.e., a convolution of size 3 × 3 with 192 channels, batch

normalization and ReLU activation function. The formula for

constructing the decoder layer De4 is as follows:

De4 = FP(CONCAT(D(En3), L(En4),U(En5))) (1)

where D(·) denotes the down-sampling operation, L(·) denotes
the lateral connection, U(·) denotes the up-sampling operation,

CONCAT(·) performs channel concatenation on the three

processed feature maps, and FP(·) applies fusion processing

on the concatenated feature maps by convolution, batch

normalization with RELU activation function.

3.3. Visual attention module

We design a visual attention module to focus on local

area SAR ship target salient features, suppress surrounding

background interference, and finally detect the target effectively.

As shown in Figure 3, encoder feature e and decoder feature

d are input to the network for attention processing to obtain
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FIGURE 3

The visual attention module focuses on the salient features of the target in the local area, suppresses the surrounding background interference,

and detects the object e�ectively.

encoder feature ê that highlights important information, and

the processed encoder feature ê is then channel concatenated

and shuffled with decoder feature d, thus promoting sufficient

information mixing among different channels and finally

obtaining feature o for target detection.

In the shallow part of the network, the encoder layer En2

is rich in fine-grained details, but it is usually ignored in the

feature extraction due to insufficient feature extraction and

still more background interference. To extract richer features

in SAR target detection, we apply the visual attention module

to the encoder layer En2 and the decoder layer De3 with the

same scale after up-sampling, so as to obtain the effective

feature information of the encoder layer En2 and finally achieve

better detection results. In the visual attention module, the

encoder layer En2 is simplified as feature e and the processed

decoder layer De3 is simplified as feature d. First, they go

through a 1 × 1 convolution We and Wd, respectively to

change the channels into the same, followed by a weigh feature

fusion of both, i.e., a selective element-by-element summation

with differentiated fusion of different input features, and then

after a Relu activation function, a 1 × 1 convolution ψ of

the channel down to 1 and Sigmoid to obtain the attention

coefficients. By using the attention coefficients to weight the

encoder features e, the encoder features ê that highlight the

effective information are obtained, and the processed encoder

features ê are channel concatenated and shuffled with the

decoder features d, thus promoting information mixing among

different channels and finally obtaining feature o for target

detection. The visual attention module is processed by the

following equation:

WFF = Conv(
ω1 × I1 + ω2 × I2

ω1 + ω2 + ε
) (2)

ê = SIG(9(RELU(WFF(e×We, d ×Wd))))× (e×We) (3)

o = CS(CONCAT (̂e, d×Wd)) (4)

In (2), WFF represents weight feature fusion, where w is the

parameter we learn to distinguish the importance of different

input features I in the feature fusion process. In (3), ê represents

the encoder features with salient important information, where

SIG(·) denotes the sigmoid function. In (4), o represents the

features processed by the visual attention module for target

detection, where CS(·) denotes channel shuffle and CONCAT(·)
denotes channel concatenation.

3.4. Width height prediction constraint

In predicting the width and height of the target, the scattered

power distribution of the surrounding background in the near-

shore scene of SAR image is relatively similar to the edge of

the ship target, which is easy to have an impact on the ship

target localization. So we propose a new width height prediction

constraint, considering the overlapping area of the prediction

box and the real box, the real difference of width and height

edge and the loss gradient reweighting to improve the ship target

localization accuracy. The relative position of the prediction

box and the real box is shown in Figure 4. In wide and high

prediction, the network only computes the positive sample loss

values, so the prediction box overlaps with the true box at

the center.

The overlapping area of prediction box and real box is better

for ship targets with large scale differences, which can make

the width and height regressions have the same contribution at

different scales. The true difference of width and height edge

can minimize the difference between the width and height of

the prediction box and the true box to improve the detection

accuracy. Loss gradient reweighting is better when focusing

on high IOU targets by adaptively enhancing the weighting of

the loss and gradient of high IOU objects. The width height

prediction constraint loss function is as follows:

Lsize = 1− IOUα(A,B)+
ρ2α(w,wgt)

wc
2α

+
ρ2α(h, hgt)

hc
2α

(5)
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FIGURE 4

The relative position of the prediction box and the real box, both of which have the same center.

where Lsize represents the width height prediction constraint

loss value, IOU(A,B) considers the overlapping area of the

prediction box and the real box,
ρ2(w,wgt)

wc
2 +

ρ2(h,hgt)

hc
2 considers

the real difference of width and height edge, wc and hc denote

the width and height of the minimum external box covering

the prediction box and the real box, and α considers the loss

gradient reweighting, by adjusting the parameter α, the detector

can flexibly achieve different IOU target regression accuracy, the

parameter α is taken as 3.

4. Experiments

To evaluate the performance of the proposed algorithm,

we conducted experiments on the SAR ship detection dataset

(SSDD) and high resolution SAR images dataset (HRSID).

Firstly, the adopted dataset, experimental setup and evaluation

metric are described. Then ablation experiments are performed

on the algorithm to verify the effectiveness of the proposed

dense connection module, visual attention module, and width

height prediction constraint. Finally, it is compared with

multiple target detection methods to demonstrate that the

proposed algorithm can achieve better results in SAR ship

target detection.

4.1. Implementations

4.1.1. Dataset

SSDD is the first publicly available dataset at home and

abroad dedicated to SAR image ship target detection, which

can be used for training and testing to check algorithms and is

widely used. SSDD contains a total of 1,160 images, each image

size is about 500 × 500, with a total of 2,456 ships, and the

average number of ships per image is 2.12. The data mainly

has RadarSat-2, TerraSAR-X and Sentinel-1 sensors with four

polarizations of HH, HV, VV, and VH, and resolutions of 1–15

m, with ship targets in large areas of the sea and nearshore. We

choose the suffix images with indexes 1 and 9 as the test set (232

images). The images with index suffix 7 are set as the validation

set (116 images). The remaining images in SSDD are set as the

training set (812 images). The image size is resized to 512× 512

in our experiment.

HRSID is a high-resolution SAR ship detection dataset

that includes SAR images of different resolutions, polarization,

sea state, sea area, and coastal ports. The dataset is collected

by Sentinel-1 and TerraSAR-X satellites and contains a total

of 5,604 high-resolution SAR images and 16,951 labeled

ship targets. Based on the original report in the HRSID

dataset, the whole dataset is divided into training and test

sets according to 13:7. The image size is 800 × 800 in

our experiment.

4.1.2. Experimental setup

The proposed algorithm is implemented on pytorch 1.4.0,

CUDA 10.1, and NVIDIA TITAN RTX GPU. Adam is used

to optimize the target, the initial learning rate is 1.25e-4, the

batch size is 16, and the feature extraction backbone is Resnet-

101.

4.1.3. Evaluation metric

To evaluate the algorithm performance, we use the COCO

metrics, which are AP, AP50, AP75, APs, APm, and APl. The

average precision (mAP) is the area under the precision–recall

curve, which reflects the average precision of multiple types of

targets. mAP = AP since there is only one type of target for

SAR ships. The IoU threshold is calculated every 0.05 on the

interval from 0.5 to 0.95, and the final average is taken as the
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final result of AP. AP50 is the AP at IOU = 0.5 and AP75 is the

AP at IOU = 0.75. AP75 requires more stricter target localization

accuracy.APs,APm andAPl correspond to the AP of small-scale,

medium-scale and large-scale targets, respectively. The precision

and recall equations are as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP is the number of correctly detected ships, FP is the

number of false alarm ships, FN is the number of missed ships.

4.2. Ablation experiments

We performed ablation experiments on SSDD to analyze the

contribution of the proposed different modules. To ensure the

validity of the experimental results, all experimental settings are

the same. The results are shown in Table 1, and it can be seen

that the proposed different modules all significantly improve

the algorithm and enhance the SAR ship target detection

accuracy.

In the experimental results, by comparing the results in

the second row with the fifth row, the combination of the

dense connection module with the width height prediction

constraint improves more in the metrics APs and AP75, with

an increase of 1.7 and 1.0%, respectively. APs indicates the

extraction ability of small-scale ships, and AP75 requires high

target localization accuracy, which we believe is mainly due

to the consideration of the overlapping area between the

prediction box and the real box in the width-height prediction,

and the introduction of the loss gradient reweighting. The

overlapping area makes the target width and height regressions

have the same contribution at different scales, which avoids

the network from focusing too much on large scale ships and

ignoring the importance of small scale ships. The loss gradient

reweighting improves the loss of high IOU and improves the

target localization accuracy. By comparing the fifth row with

the last row of results, the combination of adding the visual

attention module improves more in the metric APm, which is

2.9% higher than before. The dense connection module acts

on deep features with relatively large sensory fields, which

usually correspond to the extraction of medium and large

scale targets, and we believe that the visual attention module

adds shallow detail information to the deep extracted features,

which enriches the network features and promotes the target

detection accuracy.

The detection results of the different modules proposed

are shown in Figure 5. The first row (Figures 5B,C) shows

the detection results without and with the dense connection

module, respectively. The dense connection module can detect

the missed ship target and improve the target detection

accuracy. The second and third rows (Figures 5B,C) show the

detection results without and with the width height prediction

constraint, respectively. The results in the second row show

that the width height prediction constraint can avoid the

small target with false alarm and improve the small target

detection accuracy. The results in the third row show that

the width height prediction constraint makes the ship’s tail

localization more accurate and improves the target localization

accuracy. The last row (Figures 5B,C) shows the detection

results without and with visual attention module, respectively,

and the visual attention module reduces the interference of

near-shore background and improves the target detection

accuracy.

4.3. Performance and analysis

In order to verify the effectiveness of this algorithm in SAR

ship target detection, this algorithm is compared with multiple

target detection methods. The feature extraction backbone is

used Resnet101 and keeps other parameters consistent. The AP

metric can reflect the overall performance of target detection,

and according to Table 2, the proposed algorithm achieves

68.2% AP on SSDD, which is 3.7, 5.4, 4.2, 2.6, and 1.2%

higher than Faster R-CNN, RetinaNet, FCOS, ATSS, and VFNet,

respectively, which proves the effectiveness of the proposed

algorithm on SAR ship target detection. In addition, the

proposed algorithm has higher detection accuracy than other

methods except in the metric APm which is lower than VFNet,

and metric APl which is lower than Faster R-CNN. According to

Table 3, the proposed algorithm achieves 62.2% AP on HRSID,

and the AP, AP50, AP75, APs, APm, and APl are 5.4, 3.2, 7.9, 6.2,

1, and 0.7% higher than those evaluated on baseline, respectively,

which proves the robustness of the proposed algorithm on

different datasets.

Figure 6 shows the detection results of other target detection

methods and the proposed algorithm. In the figure, green

indicates the truth box, red indicates the Faster R-CNNdetection

results, yellow indicates the RetinaNet detection results, blue

indicates the VFNet detection results, and purple indicates

the detection results of the proposed algorithm. In Figure 6,

the first row shows that the proposed algorithm has better

detection results for small-scale ships, the second and third

rows show that the proposed algorithm can effectively detect

targets in complex near-shore scenes, and the fourth and

fifth rows show that the proposed algorithm can get better

detection results for densely arranged ships, while the other

methods have poor detection results. The detection results

we obtained show that the proposed algorithm can be better

applied to small-scale targets, complex scenes, and densely

arranged targets.
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TABLE 1 Contribution of dense connection module, visual attention module, and width height prediction constraint to the algorithm on SSDD.

Dense connection Visual attention Prediction constraint AP AP50 AP75 APs APm APl

× × × 0.605 0.938 0.723 0.565 0.667 0.673
√

× × 0.665 0.964 0.804 0.632 0.715 0.733

×
√

× 0.622 0.965 0.734 0.582 0.679 0.746

× ×
√

0.629 0.942 0.750 0.594 0.680 0.712
√

×
√

0.672 0.965 0.814 0.649 0.707 0.716
√ √ √

0.682 0.968 0.817 0.647 0.736 0.717

Bold values indicate that the value is the largest in the same metric.

FIGURE 5

Detection results of di�erent proposed modules. (A) Ground truth. (B) Detection results without proposed modules. (C) Detection results with

proposed modules.
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TABLE 2 Performance of other target detection methods and the proposed algorithm on SSDD.

Method AP AP50 AP75 APs APm APl

Faster R-CNN 0.645 0.925 0.774 0.592 0.724 0.793

RetinaNet 0.628 0.943 0.741 0.568 0.726 0.661

FCOS 0.640 0.940 0.758 0.598 0.714 0.691

ATSS 0.656 0.958 0.770 0.603 0.741 0.744

VFNet 0.670 0.965 0.802 0.622 0.746 0.737

Proposed 0.682 0.968 0.817 0.647 0.736 0.717

Bold values indicate that the value is the largest in the same metric.

TABLE 3 Performance of the baseline method and the proposed algorithm on HRSID.

Method AP AP50 AP75 APs APm APl

Baseline 0.568 0.866 0.619 0.567 0.679 0.347

Proposed 0.622 0.898 0.698 0.629 0.689 0.354

Bold values indicate that the value is the largest in the same metric.

FIGURE 6

Detection results of di�erent detection methods. (A) Ground truth. (B) Detection results of Faster R-CNN. (C) Detection results of RetinaNet. (D)

Detection results of VFNet. (E) Detection results of the proposed algorithm.
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5. Conclusion

In this article, drawing on the idea that the brain-

inspired can effectively use visual targets and their surrounding

background information, we propose an improved anchor-

free SAR ship detection algorithm based on brain-inspired

attention mechanism. The proposed algorithm improves on

the anchor-free network, and in order to obtain richer target

information, the deep part of the network applies a dense

connection module to promote more adequate fusion of

deep semantic features, and the shallow part of the network

applies a visual attention module to extract features rich in

fine-grained details. And in order to enable more accurate

target localization in complex scenes, a novel width height

prediction constraint is proposed to finally improve the target

detection accuracy. After experimental validation, the proposed

algorithm achieves better detection results in SAR ship target

detection. In addition, there is a shortcoming during the

experiment, some densely arranged ships are missed, so we

will continue to improve the proposed algorithm in the future,

such as considering multimodal information of ship targets,

including but not limited to ship target detection under different

frequency bands.
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