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The Temporal Voice Areas (TVAs) respond more strongly to speech sounds

than to non-speech vocal sounds, but does this make them Temporal “Speech"

Areas? We provide a perspective on this issue by combining univariate,

multivariate, and representational similarity analyses of fMRI activations to a

balanced set of speech and non-speech vocal sounds. We find that while

speech sounds activate the TVAs more than non-speech vocal sounds, which

is likely related to their larger temporal modulations in syllabic rate, they do

not appear to activate additional areas nor are they segregated from the

non-speech vocal sounds when their higher activation is controlled. It seems

safe, then, to continue calling these regions the Temporal Voice Areas.
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1. Introduction

It is a well-replicated finding that the Temporal Voice Areas (TVAs) of secondary

auditory cortex are significantly more active in response to human voices compared to

non-vocal environmental sounds (Belin et al., 2000; Kriegstein and Giraud, 2004; Andics

et al., 2010; Frhholz and Grandjean, 2013; Pernet et al., 2015).

Neuroimaging voice localizers typically include speech in the human voice category

of stimuli, as well as vocalizations withminimal linguistic content (here after, non-speech

vocal sounds) such as coughs, laughs, or simple sustained vowels. TVA responses to non-

speech vocal sounds are typically smaller than speech sounds (Belin et al., 2002; Fecteau

et al., 2004; Bodin et al.’s, 2021), and in some cases not significantly stronger than control

sounds (Belin et al., 2002). This has led some researchers to doubt that the TVAs are

sensitive to vocal sounds, in general, and suggest that they are in fact Speech Areas, that is,

responsive to the phonemic and/or semantic content of the input signal [e.g., component

5 in Norman-Haignere et al. (2015) study].

Yet, other results indicate that even non-speech vocal sounds induce greater TVA

activity than control sounds (Bodin et al.’s, 2021) or lead to above chance classification

into vocal/non-vocal categories (Rupp et al., 2022), suggesting a selectivity to this

category of sounds in the TVAs.

Here, we provide a perspective on this issue by performing additional analyses of a

published dataset (Bodin et al.’s, 2021), in which the same number (n = 12) of individual

speech and non-speech vocal sounds were used along with 24 non-vocal sounds.
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Visualization using symmetrical colormaps (−max < t-

value < max; allowing easy visual comparison of activation

location differences between contrasts irrespective of

significance threshold) of whole brain fixed-effects group

t-maps of speech sounds vs. non-vocal sounds contrast

FIGURE 1

BOLD activations. Fixed-e�ects t-maps projected on the MNI152 surface of the speech vs. non-vocal contrast (A), non-speech vs. non-vocal

contrast (B), and the speech vs. non-speech contrast (C). Colormaps were adjusted to be symmetrical, with limits corresponding to the maximal

t-value in each contrast. Areas with significant (p < 0.05, corrected) activation to each contrast are outlined in black.

(Figure 1A) and non-speech vocal sounds vs. non-vocal sounds

contrast (Figure 1B) reveals topographically similar patterns

of activation in both contrasts, suggesting that TVA activity

is not limited to speech sounds. T-maps of both contrasts

closely resemble those obtained by contrasting human voices
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vs. other types of sounds [compared with figure 1G from

Bodin et al.’s (2021) study]. There is no clear visual evidence

for supplementary regions recruited by speech stimuli, and

both contrasts share the same maximum of activation in the

left superior temporal gyrus. The main difference between the

two contrasts is the higher general level of activation when

using speech instead of non-speech vocal sounds. The speech

vs. non-speech vocal stimuli contrast (Figure 1C) confirms

this observation, as well as the apparent absence of additional

regions activated by speech.

The larger general activation elicited by speech compared to

non-speech vocal sounds might imply that speech sounds have

a special status in the TVAs. To further investigate the role of

speech and non-speech vocal sounds in the TVAs, we examined

how a voice/non-voice decoder based on TVA activation

performs for speech and non-speech vocal sounds, even when

controlling for activation level differences between speech and

non-speech. We also examined whether the representational

geometry in the TVAs groups together speech and non-speech

relative to non-vocal sounds.

2. Materials and methods

This analysis was performed on data collected in a previous

study, which was designed for comparative neuroimaging

between humans and nun-human primates (explaining the small

sample size), but allowed distinct analyses of the activity evoked

by speech and non-speech vocal sounds (Bodin et al.’s, 2021).

Please refer to that study for a detailed description of materials

and methods. The following sections present methodology that

is specific to the present analysis.

2.1. Participants

Five native French human speakers were scanned [one

man (author RT) and four women; 23–38 years of age].

Participants gave written informed consent and were paid for

their participation.

2.2. Auditory stimuli

The analysis was performed on fMRI events corresponding

to a subset of the stimulus set used in Bodin et al.’s (2021)

study. Two main categories of sounds were used: human voices

and non-vocal sounds, each containing 24 stimuli, for a total

of 48 sound stimuli. Each main category was divided into

two subcategories of 12 stimuli, forming four subcategories in

total (cf. Supplementary Table 1). Human voices contained both

speech [sentence segments from the set of stimuli used inMoerel

et al.’s (2012) study, n = 12] and non-speech vocal sounds [vocal

affect bursts selected from the Montreal Affective Voices dataset

(Belin et al., 2008), n = 12].

Non-vocal sounds included both natural and artificial

sounds from previous studies from our group (Belin et al.,

2000; Capilla et al., 2013) or kindly provided by Petkov et al.

(2008) and Moerel et al.’s (2012). Supplementary Figure 1 shows

spectrograms and waveforms of the speech and non-speech

vocal stimuli.

2.3. fMRI protocol

Detailed description of the fMRI protocol can be found

in Bodin et al.’s (2021) study. In brief, functional scanning

was done using an event-related paradigm with clustered-

sparse acquisitions on a 3-Tesla MRI scanner (Prisma, Siemens

Healthcare), equipped with a 64-channel matrix head-coil. To

avoid interference between sound stimulation and scanner

noise, the scanner stopped acquisitions such that three

repetitions of a 500-ms stimulus (inter-stimulus interval of

250 ms) were played on a silent background. Then, seven whole-

head functional volumes were acquired (TR = 0.945 s). Two

functional runs, each containing one repetition of each stimulus,

were acquired for each participant. Participants were instructed

to stay still in the scanner while passively listening to the stimuli.

2.4. fMRI general linear modeling

General linear model estimates of responses to speech

stimuli vs. non-vocal sounds, to non-speech vocal stimuli vs.

non-vocal sounds, and to speech stimuli vs. non-speech vocal

sounds were computed using fMRISTAT (Worsley et al., 2002).

2.5. Decoding

We tested whether support vector classification with a linear

kernel [SVC: Chang and Lin (2011)] was able to predict, from

beta values in primary auditory cortex (A1) and TVAs, whether

fMRI events corresponded to the presentation of vocal or non-

vocal sounds. We first tried this decoding using only speech

vocal sounds and then using only non-speech vocal sounds. To

have a balanced frequency in each category tested (n = 12), only

half of the non-vocal sounds were used during classification.

As the dataset consisted of sessions containing two functional

runs during which a repetition of each stimulus was presented,

we used a two-fold cross-validation, with each run serving

successively as train and test sets. For each participant, the

classifier was first trained on data from one functional run and

tested on the other, and the other way around in a second

fold. The reported classification accuracy is the average of the

scores obtained in two-fold cross-validation. Above significance
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threshold in classification accuracy was determined by building

a bootstrapped distribution of classification scores obtained on

100,000 iterations of two-fold dummy classification tests with

random labels. Comparisons between different classification

results were tested using Wilcoxon signed-rank tests.

2.6. Representational similarity analysis

Representations of dissimilarities within the stimulus set

in A1 and TVAs were assessed using the representational

similarity analysis (RSA) framework (Kriegeskorte et al., 2008;

Nili et al., 2014). Representational dissimilaritymatrices (RDMs)

capturing the pattern of dissimilarities in fMRI responses, and

generated by computing the Euclidean distance between stimuli

in multi-voxel activity space, were compared with three binary

categorical models: (1) a “human" model in which human

voices are categorized separately from non-vocal sounds, with

an equal contribution of speech and non-speech vocal stimuli;

(2) a “speech" model categorizing speech apart from all other

sounds (i.e., non-vocal and non-speech vocal stimuli); and (3)

a “non-speech" model categorizing non-speech human voices

apart from other sounds (i.e., non-vocal and speech stimuli).

We also compared brain RDMs with an acoustical RDM

reflecting the pattern of differences between the modulation

power spectra [Thoret et al. (2016); MPS: quantifies amplitude

and frequency modulations present in a sound] of the 48 stimuli

(see Supplementary Figure 2).

Planned comparisons were performed using two-sample

bootstrapped t-tests (100,000 iterations, one-tailed) that

compared the within vs. between portions of the brain and

acoustical RDMs, as shown in Supplementary Figure 3.

2.7. Regions of interest

RSA and SVC were performed in two regions of interest

(ROI): primary auditory cortex (A1) and Temporal Voice Areas

(TVAs) in each hemisphere.

In each participant and hemisphere, the center of the A1

ROI was defined as the maximum value of the probabilistic map

(non-linearly registered to each participant functional space)

of Heschl’s gyri provided with the MNI152 template (Penhune

et al., 1996). The 57 voxels in the functional space that were the

closest to this point and above 50% in the probabilistic maps

constituted the A1 ROI.

In each participant and hemisphere, the TVAs’ ROI was the

conjunction of three TVAs (posterior, middle, and anterior).

TVA locations vary from one individual to another and were

therefore located functionally. The center of each TVA region

corresponded to the local maximum of the human voice > all

other sounds t-map [computed using both speech and non-

speech events, see Bodin et al.’s (2021)], whose coordinates were

the closest to the corresponding TVA reported in the study of

Aglieri et al. (2018). The 19 voxels in the functional space that

were the closest to this point and above significance threshold in

human voice > all other sounds t-map constituted a TVA ROI.

The TVAs’ ROI for one hemisphere was the conjunction of the

three TVA ROIs of 19 voxels, forming a ROI of 57 voxels.

2.8. Standardization

To assess the contribution of either categorical or

topographical differences in stimulus activation, activity

patterns of each ROI (RSA: 48 stimuli × 57 voxels; SVC:

96 events × 57 voxels) were standardized using two methods

before running RSA and SVC: a standardization along stimuli,

where z-scores were computed for each voxel along the

stimulus (RSA) or event (SVC) dimension [which is the default

standardization in machine learning packages; Pedregosa

et al. (2011)], and a standardization along voxels, where

z-scores were computed for each stimulus (or event) along

the voxel dimension (see Supplementary Figure 4). For RSA,

standardization was performed on activity patterns before

computing RDMs. For SVC, standardization was performed on

all events (both runs) before splitting data in train-test sets.

3. Results

3.1. Decoding stimulus categories

Decoding results are shown in Supplementary Figure 5. For

both standardization methods, when attempting to classify

fMRI events in speech or non-vocal categories, the SVC

performed poorly in A1 and well above significance level in

TVAs (mean scores for standardization method along stimuli

and along voxels, respectively. A1: x = 0.58 and 0.57; TVAs:

x = 0.89 and 0.84). When using non-speech events instead

of speech events, performance in A1 remained poor and

performance in TVAs dropped to values close to significance

level (A1: x = 0.56 and 0.61; TVAs: x = 0.65 and 0.64). The

differences in SVC performance when using speech or non-

speech vocal stimuli were not significant for both A1 and

TVAs. However, in the TVAs, classification accuracy was

higher for speech than for non-speech vocal sounds for all

the participants, suggesting that this difference may become

significant with a larger sample of participants. The differences

in SVC performance between standardization methods were not

significant for both A1 and TVAs.

3.2. Representational similarity analysis

The visual representation of the pattern

of Spearman correlations among brain RDMs
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FIGURE 2

Representational similarity analysis (RSA) in A1 and the TVAs. Cerebral RDMs showing percentile dissimilarities in pairwise fMRI response to the

48 stimuli, for both ROIs and standardization methods (A). Portions of the RDMs corresponding to the main and sub-categories of stimuli are

indicated next to the bottom right RDM. Cerebral RDMs were compared (Spearman correlations) with three categorical model RDMs (B) and

one acoustical RDM (C), for each standardization method. These comparisons are represented via multidimensional scaling (D).

(Figure 2A), categorical models (Figure 2B), and

acoustical RDM (Figure 2C) was performed via

multidimensional scaling (MDS, Figure 2D) for both

standardization methods.

Using standardization along stimuli, cerebral RDMs

computed in the left and right TVAs cluster together close to

the “speech" (especially for TVAs-L) and “human" categorical

models, and separated from the “non-speech" categorical model,
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the acoustical model, or the A1 brain RDMs. All three planned

comparisons (see Supplementary Figure 3) were significant in

the TVA RDMs (all p-values are below 0.01 after Bonferroni

correction for 24 comparisons), while nothing was significant

in A1.

Using standardization along voxels, TVA RDMs are less

separated from A1 RDMs and closer to the “human" than the

“speech" model. Only speech vs. non-speech test was significant

in the TVAs, while nothing was significant in A1.

4. Perspective

The univariate analysis suggests that speech sounds activate

the same set of regions as non-speech vocal sounds, simply more

strongly. There is no clear evidence of additional areas activated

specifically by speech sounds, as shown in Figure 1C, in which

the contrasts of speech vs. non-speech vocal sounds show the

same distribution of regions as the classical speech vs. non-vocal

sounds contrast. This voice network appears to be recruited by

both speech and non-speech vocal sounds, but more strongly by

speech sounds.

The classification analysis confirms this notion: while

classification accuracy for vocal vs. non-vocal sounds was larger

on average for speech than for non-speech vocal sounds, the

difference was not significant (likely due, though, to our small

number of participants), and both were above chance level.

Controlling for differences in activation level between stimuli

with the standardization along voxels did not change this pattern

(Supplementary Figure 5).

The Representational Similarity Analysis helped refine

this picture. While A1 RDMs did not show any similarity

with any of the categorical model RDMs (Figure 2B), the

TVA RDMs were strongly associated, in both hemispheres,

with the “speech” model, categorizing speech apart from

all other sounds including non-speech voice. However,

when controlling for stimulus activation levels via the

voxelwize standardization (Supplementary Figure 4), the

picture changed and the “human" model, grouping speech

and non-speech vocal sounds together and apart from the

non-vocal sounds, was the most closely associated to both left

and right TVAs.

Overall, our analyses indicate that speech does not have

a special status compared to non-speech vocal sounds in the

TVAs, apart from the fact that they drive them to a higher

activation level. This particular result needs to be further

investigated in future studies, but is likely related to the more

complex spectro-temporal structure of speech compared to

non-speech vocal sounds (Supplementary Figure 1), with more

pronounced temporal modulations around 4 Hz, close to

the syllabic rate in English, (Supplementary Figure 2). Spectro-

temporal complexity is indeed known to increase the strength

of activation in non-primary auditory fields (Samson et al.,

2011). It seems safe, then, to continue calling these regions

the Temporal Voice Areas. Furthermore, using the more

encompassing term of “voice" instead of “speech" to name

these areas, opens up more questions and hypotheses for

future studies using dedicated experimental designs with larger

sample size, that will help to understand how spectro-temporal

complexity, linguistic content, or attention to distinct voice

features (von Kriegstein et al., 2003) modulate the cortical

processing of voice.
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