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Introduction: Interpretable latent variable models that probabilistically link

behavioral observations to an underlying latent process have increasingly

been used to draw inferences on cognition from observed behavior. The latent

process usually connects experimental variables to cognitive computation.

While such models provide important insights into the latent processes

generating behavior, one important aspect has often been overlooked. They

may also be used to generate precise and falsifiable behavioral predictions as

a function of the modeled experimental variables. In doing so, they pinpoint

how experimental conditions must be designed to elicit desired behavior and

generate adaptive experiments.

Methods: These ideas are exemplified on the process of delay discounting

(DD). After inferring DD models from behavior on a typical DD task, the models

are leveraged to generate a second adaptive DD task. Experimental trials in this

task are designed to elicit 9 graded behavioral discounting probabilities across

participants. Models are then validated and contrasted to competing models

in the field by assessing the ouf-of-sample prediction error.

Results: The proposed framework induces discounting probabilities on nine

levels. In contrast to several alternative models, the applied model exhibits

high validity as indicated by a comparably low prediction error. We also

report evidence for inter-individual differences with respect to the most

suitable models underlying behavior. Finally, we outline how to adapt the

proposed method to the investigation of other cognitive processes including

reinforcement learning.
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Discussion: Inducing graded behavioral frequencies with the proposed

framework may help to highly resolve the underlying cognitive construct and

associated neuronal substrates.

KEYWORDS

reward discounting, delay discounting, computational models, behavioral model,
design optimization, adaptive design, homogenizing behavior, computational
psychiatry

Introduction

Behavioral latent variable models which describe an
individual’s trial-by-trial behavior in terms of well interpretable
generative equations have become increasingly popular in
neuroscience and psychiatry to quantify the mechanisms
underlying cognitive processes involved in decision-making
(Durstewitz et al., 2016; Huys et al., 2016). By inferring
such models from an individual’s choice sequence recorded
during an experiment, the underlying cognitive processes which
echo in these choices can be mapped onto an often low-
dimensional set of interpretable model parameters, the involved
sub-functions can be teased apart, and hypotheses directed at
the algorithmic principles of the given process may be addressed
(e.g., Huys et al., 2013; Collins et al., 2017; Koppe et al., 2017;
Thome et al., 2022).

Besides these clear advantages, as of yet, one important
aspect of such models has often been overlooked. Since they
attempt to fully explain trial-by-trial behavior, these models
typically incorporate all relevant factors necessary to describe
variations in behavior. This also means that they (implicitly)
predict how behavior would change if any of the relevant factors
is varied. On the one hand, such model-based predictions can
be leveraged to steer or induce behavior by manipulating the
experiment (by varying one or more of the above-mentioned
relevant factors), thus providing a formal recipe to generate
adaptive model-based experiments (Thome et al., 2022). On the
other hand, by comparing a broad range of these predictions to
actual behavioral observations, we obtain a formal framework
ideally suited to validate a given model. Here, we therefore build
on a previously introduced generic model-based framework to
improve the generation of adaptive experiments (Thome et al.,
2022), and couple it to a formal behavioral model validation
procedure.

We have illustrated the procedure in the context of delay
discounting. Delay discounting refers to the tendency of an
individual to favor immediate as compared to temporally distant
outcomes due to future outcome devaluation. Since individuals
differ strongly in their discounting behavior, adaptive tasks
which aim at adjusting trials to the individual to induce and
measure more homogeneous discounting behavior, have been

the means of choice for quite some time (Monterosso et al.,
2007; Ripke et al., 2012; Cavagnaro et al., 2016; Koffarnus
et al., 2017; Pooseh et al., 2018; Ahn et al., 2020; Knorr
et al., 2020). In a typical delay discounting task such as the
intertemporal choice task (ICT), participants are faced with a
series of choices between a delayed larger and immediate smaller
reward (e.g., Mazur, 1987). A common model of behavior in
the ICT assumes that choices are probabilistic draws based
on internal choice values with a higher likelihood for choices
of higher value (e.g., Pine et al., 2009; Prevost et al., 2010;
Miedl, 2012; Peters et al., 2012; Ahn et al., 2020). These
choice values are computed based on the presented rewards
and delays in the experiment, the discounting function, and
individual-specific discounting parameters which regulate its
behavior. A probabilistic function maps these latent values to
probabilities for immediate and delayed choices. By setting
the conditional probability for an immediate choice to a
given response probability for each unique participant, we can
resolve the model equations for a condition that expresses how
experimental stimuli need to be selected so that we can expect
to observe this response probability. For example, when setting
the discounting probability in an ICT to 0.5, this condition will
express how to adjust rewards and delays in a given participant
to obtain 50% discounted choices. We have recently successfully
applied this framework to induce a 0.3, 0.5, and 0.7 discounting
probability across individuals (Thome et al., 2022).

On the other hand, manipulating the experimental variables
simultaneously renders predictions over behavioral response
probabilities for a given model. The fields of statistical learning
theory and machine learning (ML) instruct us on how to make
use of such predictions to objectively assess model validity
(Hastie et al., 2009; Koppe et al., 2021). Validity here refers
to whether a function – for instance, a statistical model –
generalizes well to the population and has a low expected
prediction error (PE; Hastie et al., 2009; Koppe et al., 2021). In
short, a method or function is valid if we can infer it on a sample
and use it to predict new unseen measurements with low error
(Hastie et al., 2009). This corresponds well to the psychological
perspective on validity by which validity denotes the extent
to which evidence and theory justify the interpretation
of measurements (Schmidt-Atzert and Amelang, 2021). The
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appealing part about assessing a PE is that it provides an
objective way to assess predictive validity, and may further
yield quantitative information on how and where (i.e., in what
domain) a method is valid. Here, we thus extend our model-
based adaptive approach to (a) predict and induce a wider
range of behavioral response probabilities, and (b) use these
predictions to perform a formal assessment of the PE.

The advantages of such a procedure are manifold. For one,
the approach provides a recipe of how to generate adaptive
experiments that ensure similar behavioral probabilities
between participants. Effectively, such a procedure reduces
behavioral variance within experimental conditions and thereby
increases statistical power (Winer, 1971; Mumford, 2012). At
the same time, the proposed procedure relocates between-
subject variability into the adaptive experimental variables and
model parameters, such that this information is preserved and
can be systematically studied (Kanai and Rees, 2011; Hedge
et al., 2018). Second, by generating experimental conditions
which induce graded response probabilities, we may also induce
graded intensities of the underlying process, resolving it at
a finer level. This is beneficial when linking behavior to, for
instance, neuro(physio)logical mechanisms (Dagher et al.,
1999; Grinband et al., 2006; Wood et al., 2008; Hare et al.,
2009; Ripke et al., 2014; Grosskopf et al., 2021). Finally, the
formal assessment of model validity in terms of (out-of-sample)
estimates of the PE allows us to compare and select between a
class of available or novel models, and evaluate the models on a
wide range of the model domain.

The present work illustrates this procedure in the context
of monetary reward delay discounting, and expands it to a
broader class of cognitive domains. We address the hypothesis
whether by applying the proposed approach we can successfully
induce (relative) discounting frequencies on a 9-level graded
scale (ranging from 0.1 to 0.9) which, to the best of our
knowledge, has never been attempted before. We then illustrate
how to formally assess (predictive) model validity within
this framework by comparing predicted to induced response
frequencies, and evaluate several models on a group and single-
subject level. Finally, we outline how to adapt the approach to
latent variable models which are history dependent as well as
response models which are multi-categorical.

Materials and methods

Experimental design

General framework
The key aspect of the proposed framework is to

experimentally manipulate the latent process of a latent variable
model, and thereby generate precise and falsifiable hypotheses
about the data generating process (and associated cognitive
functioning) in a systematic manner. These hypotheses

(i.e., predictions) are statements about the frequency of
observed responses in consequence of the experimental
manipulation. Latent variable models which formalize the
latent process and its dependencies on experimental variables,
and probabilistically link this process to behavior, provide the
means for such a manipulation. This is because these models
let us track how changes in the experimental variables will
affect behavioral probabilities. By making use of this property,
we can systematically tune the experiment to generate a given
behavioral probability.

The framework proceeds in two experimental runs (see
Figure 1). The first run (termed ‘run A’) serves to generate data
to infer the models and thus the latent process of interest. The
models are then leveraged to generate predictions and associated
experimental manipulations which are then assessed in a second
run (termed ‘run B’). By separating run A and B in this way,
we ensure that the trial-generation procedure is not biased by
type of model applied, that is, the model is not inferred on
trials it has itself selected. Validity of the instrument is measured
by comparing these predictions to observations made in run
B (Figure 1B). We illustrate and evaluate the framework here
based on the case where we have a latent variable model with
no history dependence combined with a binary response model.
A transfer of the proposed approach to latent variable models
with history dependence and response models which are multi-
categorical is found in the Results section.

Binary response models with no
history-dependence

Delay discounting provides a prominent example of a
binary choice process in which the latent process does not
depend on history (i.e., each choice depends only on current
and not previous choice values). In the delay discounting
example, run A and run B consist of an ICT. In this task,
participants are faced with a series of binary choice trials
in which they are asked to choose between an immediate
smaller reward and a delayed larger reward (see Figure 1A).
The collected data set d thus consists of T pairs of observed
variables d = {(xi, yi), i = 1, 2,...,T}, where xi are predictor
vectors of immediate and delayed reward and delay pairs, and
yi are one-dimensional (dichotomous) observed responses of
immediate (yi = 1) and delayed (yi = 0) choices. The
sequence of observed choices Y = {y1, ..., yT} is modeled
as i.i.d. Bernoulli random variables yi ∼ Bi(1, µ(xi)), for
i = 1, 2,...,T, where µ(xi) is the probability of an immediate
choice given the predictor xi.

The probabilistic latent variable discounting model
estimates µ(xi) by mapping the observed predictor vectors
xi onto the conditional mean of the distribution of yi via
a latent process fλ, that is, µ̂(xi) : = E[yi|fλ(xi)]. fλ is a
discounting function mapping observable predictors xi onto
internally represented latent values vi of these predictors, and
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FIGURE 1

Schematic illustration of task and experimental framework. (A) Illustration of the reward discounting task. Participants are faced with a series of
binary choice trials, in which they are asked to choose between an immediate smaller reward and a delayed larger reward. (B) Illustration of
experimental protocol. Participants perform run A of the reward discounting task. Latent discounting models fλ are inferred on each
participant’s sequence of observed behavioral choices Y = {y1, ..., yT} in run A and used to generate trials of run B. Trials are systematically
manipulated by varying experimental inputs ut to induce discounting frequencies ranging from 0.1 to 0.9, based on the expectation of the
probability distribution gβ . Validity is assessed by comparing predicted and observed rel. choice frequencies.

µ̂(xi) maps these values onto the conditional mean of the
Bernoulli distribution.

As discounting model fλ, we chose a hyperbolic function
with exponential delay termed ‘modified hyperboloid model’
in the following (after Mazur, 1987; Rachlin, 2006). The
discounting model is a vector valued function mapping two
rewards r presented at two delays D (displayed in each trial of
the ICT and collected in predictors xi above) onto internally
represented values v for the two associated choices.

fλ(r,D) : = (
1

1 + κ · Ds )r (1)

where κ is a discount parameter capturing the individual
tendency to discount, and s is a scaling parameter, both ⊂ λ.
In each trial of the ICT, the discounting model thus maps an
immediate reward rimm (presented at 0 delay) and a delayed
reward rdel presented at delay Di onto immediate and delayed
values vimm and vdel for the respective choice. Since the
immediate reward has 0 delay, it is equal to its latent value, i.e.,
rimm = vimm. We will refer to the factor in front of r in the
following as the ‘discount factor.’ We have previously shown
that this model performs consistently better at predicting unseen
behavior than a number of other models (Thome et al., 2022;
see also Estle et al., 2006; Odum et al., 2006; Rachlin, 2006;
Rodzon et al., 2011; McKerchar et al., 2013; Cox and Dallery,
2016; Białaszek et al., 2020).

We choose a sigmoid function to map these two latent values
onto the conditional mean, that is, onto the probability for
selecting the immediate choice option.

µ̂(xi) =
1

1+ eβ(vdel− vimm)
(2)

where β is an individual-specific parameter which captures the
sensitivity to differences in choice values (see also Figure 2A).
Eqn. (2) maps differences in values to immediate choice
probabilities pimm (see Figure 2A), in close analogy to a

psychometric function (e.g., Wichmann and Hill, 2001). It
provides a condition which permits the systematic manipulation
of experimental conditions. By setting pimm to a given
probability, we obtain an equation which may be resolved for
an observable and tunable experimental variable. For instance,
solving Eqn. (2) for the immediate reward rimm by plugging in
the model assumptions, we obtain the following condition.

rimm = (
1

1+κDs )rdel +
log( pimm

1 −pimm
)

β
(3)

defined for 0< pimm < l. By inserting a set of fixed
delays and delayed rewards, as well as inferred subjective
parameters κ and β , Eqn. (3) expresses how to experimentally
manipulate the presented immediate reward to obtain a desired
immediate choice probability pimm in a given individual (please
see Figures 2A–C on operating principles of the method).
By aiming to construct experimental conditions with similar
immediate choice probabilities across participants, we are
effectively homogenizing behavior across participants. We make
the implicit assumption here that behavior is homogeneous if,
within an experimental condition, different participants display
similar frequencies, that is, they show similar probabilities, for
the available behavioral options.

For the conducted experiment, models inferred on
run A were applied according to this framework to
generate an ICT with nine experimental conditions
inducing graded immediate choice probabilities of
pimm = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} presented in
run B (see Figure 1), for simplicity referred to as ‘induced
frequencies’ in the following.

Experimental settings
Trials in run A followed a previously developed protocol

optimized to elicit discounting behavior across participants
(Thome et al., 2022) and optimized in line with results obtained
from a preliminary experiment (see Supplementary Text 2).
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FIGURE 2

Illustration of method principles. (A) Immediate choice probability [cf. Eqn. (2)] as a function of the difference between immediate and delayed
value for β estimates in our sample (color-coded from largest β = 2 in yellow to smallest β = 0.01 in dark red). The indifference point, i.e., the
point at which immediate and delayed choice probability (and immediate and delayed choice values) are equal, is at 0. If vimm/vdel immediate
choice probability is below/above 0.5. β regulates the steepness of the curve and thus the sensitivity toward differences in values.
(B) Discounted value of a reward of size 50 (y-axis) delayed at different time points (x-axis) and two exemplary κ ′s (κ = 0.005 in black and
κ = 0.05 gray). The method’s selected immediate rewards at a given delay are displayed as colored dots from blue to red with respect to the
induced choice probability from 0.1 to 0.9 (triangles/circles are associated with κ = 0.005/0.05, respectively). To induce the same probabilities
at different delays, the difference between the presented immediate choice values (depicted as colored dots) and delayed values (depicted on
the discounting curve) is constant [see Eqn. (2), vdel − vimm]. For participants with different κ , the reward and value ratios will therefore vary.
The left graph depicts selected rewards for a hypothetical β = 0.3 and (C) the right graph for β = 0.8. β thus regulates the precise difference
between immediate and delayed values, with higher β resulting in smaller differences, making the differentiation between the two more difficult.

Rewards and delays varied across trials. Delays were set to
D = {7, 30, 90, 180, 365} days and delayed rewards to
rdel = {5, 10, 20, 50, 100} £ (UK). Immediate rewards
were selected based on the described model guided procedure
[Eqn. (3)], chosen to elicit an equal probability for immediate
and delayed choices at 4 different population representative
discounting parameters. Run A thus consisted of 100 trials (5
delays × 5 delayed rewards × 4 discounting parameters). Trials
of run B were generated via Eqn. (3), and the parameters inferred
on run A, to induce 9 probability gratings ranging from 0.1 to
0.9. With nine gradings and using the same delays and delayed
rewards as in run A, run B consisted of 225 trials.

A few parameter and stimulus constellations could result
in immediate rewards smaller than 0, or equal immediate
and delayed rewards. To avoid such trials, the delays (and
corresponding immediate rewards) were iteratively adjusted in
the trial-generating procedure until reaching a minimum of 1 or
a maximum of 365 days. If still not resolved, negative immediate
rewards were set to 1 penny, while immediate rewards equaling
delayed rewards were reduced by 1 penny, respectively. This
adaptation could result in a slight deviation of the induced
frequencies (see Figure 3B, red line). Trials were self-paced,
allowing for a maximum decision phase of 10 s, with a 1 s
inter-stimulus-interval.

Model inference
Discounting models were inferred on run A and run

B separately via maximum likelihood estimation (MLE).
Given Bernoulli i.i.d. assumptions, the models’ likelihood is
given by p(Y|X, θ) =

∏T
i = 1 pθ (yi|v(xi)), where pθ (yi|v(xi)) is

given by Eqn. (2) in case that yi refers to the immediate
choice, and by 1 minus this probability for the delayed

choice, respectively. Under inspection of the preliminary
experiment (see Supplementary Text 2), parameters were
constrained to β ε [0.001, 2], s ε [0, 1], and κ ε [0, 1000],
and optimization was performed using a Quasi-Newton
algorithm (the limited-memory BFGS algorithm) implemented
via the optimize.minimize() function from the SciPy library1,
starting from multiple initial conditions.

Sample and data assessment

Fifty healthy participants (24 males, 25 females, and 1
undefined) participated in the study, recruited via the following
website: https://www.prolific.co. Participants were eligible if
they were between the age of 18 and 65 with current residency in
the United Kingdom (UK) and were reimbursed £7.50 per hour
to participate in the study. Please see Supplementary Tables 1,
3 for more information on the sample.

All participants accessed the study through a link on the
Prolific website. They completed a consent form, filled out
sociodemographic information, and took part in run A of the
experiment. After completing run A, the alcohol use disorder
identification questionnaire (AUDIT; Babor et al., 1992) and
the short version of the Barratt Impulsiveness Scale (BIS-15;
Spinella, 2007) were filled out, immediately followed by run
B of the experiment. The whole procedure took 28.4 (±8.39)
minutes on average. The study was approved by the local ethics
committee of the Medical Faculty Mannheim, University of
Heidelberg (2019-633N).

1 https://scipy.org/citing-scipy/
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FIGURE 3

(A) Relative frequency of immediate choices in run A. (B) Relative frequency of discounted choices (y-axis) as a function of model induced
frequencies (x-axis) averaged over all participants (mean and SEM are displayed in blue). The black dashed line marks the identity, while the red
dashed line shows the actual predicted frequencies according to the models. (C) Single participant curves. (D) Mean and SEM of reaction time
(RT) as a function of experimental conditions. (E) Mean and SEM of prediction error (PE) as a function of experimental conditions for modified
hyperboloid (yellow), hyperbolic (red), and hyperboloid control (blue) models. (F) Discount factor in run A (x-axis) and run B (y-axis) illustrated
for delay = 90, indicating a reliable estimate of discounting across runs. (G) Histograms of immediate choice behavior for 0.1 (top) to 0.9
(bottom) frequency conditions (conditions indicated by the red line).

Data analysis

Measured variables
We assessed the frequency of discounted choices (that

is, choices in favor of the objectively smaller outcome) and
median reaction time (RT) across run A, and for all 9
probability gradings (i.e., experimental conditions) in run B,
model parameters (i.e., β, κ, s) the discount factor(s), as well
as total scores of AUDIT and BIS/BAS questionnaires.

Inferential statistics
The agreement between experimentally induced frequencies

and observed behavioral frequencies was assessed via a general
linear model (GLM) with induced frequencies as linear
predictor variables. The hypothesized inverted U-functional
relationship between induced frequencies and RT was assessed
via a GLM with quadratic induced frequencies as curvilinear
predictor variables (hypothesizing higher/lower RT toward
more difficult/easy choices) in run B. We report t-statistics on
the regression coefficients of these models.

Prediction error assessment
Predictive validity was assessed by approximating the PE

using cross-validation (CV). Rooted in statistical learning theory
(Hastie et al., 2009; Efron, 2021), the PE quantifies the error

made when applying a prediction rule, here the statistical model,
to unseen (out-of-sample) data. Assuming that the (x, y) data
pairs in the ICT follow an (unknown) joint distribution F, the
PE quantifies the error made when drawing a new pair with only
the predictor variable x observed and predicting y with µ̂(x) (cf.
section “General framework”) based on the model. Given some
loss function L(y, µ̂(x)) which assesses the deviation between
observation and prediction, the PE is assessed as the expected
loss under F, i.e., Err = EF{L(y, µ̂(x))} (Hastie et al., 2009;
Efron and Hastie, 2021). Since this expectation goes over all
(x, y) pairs, this integral may not be computed directly, but is
in practice often approximated by resampling methods such
as CV. Using CV, here we approximate the PE by ÊrrCV =
1
T
∑T

i=1 L(yi, µ̂(xi)), where the summation runs exclusively over
data pairs observed in run B and the prediction is based on
models inferred on run A [denoted ‘PE (run B)’], and vice versa
[denoted ‘PE (run A)’]. As most appropriate for dichotomous
data, we employ as error function the binomial deviance (Efron,
2021), given by L(µ, µ̂) :=2{µlog µµ̂ + (1− µ)log( 1−µ

1−µ̂ )}, such
that the PE was assessed as

ÊrrCV =
2
T

T∑
i=1

{yilog
yi

µ̂(xi)
+ (1− yi)log(

1− yi

1− µ̂(xi)
)}, (4)

and µ̂(xi) ∈ [0, 1] was truncated to [1e-10, 1 – 1e-10] to
avoid infinities.
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Since the integral in the PE runs across all possible (x, y)
pairs, sampling a broad range of data pairs in run B – as achieved
here by including nine experimental levels – should improve the
estimation of Err by ÊrrCV . It furthermore allows to dissect and
examine the PE for different experimental conditions. PEs were
computed for each participant (i.e., at fixed parameter values),
and averaged over to obtain a population estimate.

Model comparisons
The two experimental runs and PE assessment allows the

objective comparison of different models in their prediction
ability. Several models which varied in the assumption
about the computation of the delayed values (and therefore
the latent variable model) were evaluated in terms of PE
(see Supplementary Table 2). These included the common
hyperbolic model (Mazur, 1987; Davison and McCarthy,
1988), the exponential model (Samuelson, 1937), the constant
sensitivity (CS) model (Ebert and Prelec, 2007), the modified
hyperboloid model used for trial-generation (Mazur, 1987;
Rachlin, 2006), the quasi-hyperbolic model (Phelps and Pollak,
1968; Laibson, 1997), the (conventional) hyperboloid model
(Loewenstein and Prelec, 1992; Green et al., 1994), the double
exponential model (van den Bos and McClure, 2013), and
a control model to the modified hyperboloid model with
β in Eqn. (2) fixed to 1. Details on these models can
be found in the Supplementary Table 2. In addition, to
investigate the model fit on a single participant level, we
counted the number of individuals best described by each
model.

Behavioral homogeneity
Reductions in behavioral variation within experimental

conditions (i.e., increase in behavioral homogeneity) was tested
by comparing variances of immediate choice frequencies via
F-Tests across conditions of run B between the experiment and
the preliminary data reported in the Supplementary Text 2.

Test–retest reliability
Finally, test–retest reliability was assessed by correlating the

inferred parameters β, κ, s, as well as the discount factor(s)
across runs A and B via Pearson correlation coefficients.
Elements greater than 3 scaled median absolute deviation away
from the mean were removed for these analyses to avoid
spurious correlations.

Results

The experiment is divided into two runs, run A and run
B, where trials of run B were generated based on models
inferred on single participant behavior in run A. Run B trials
were generated such as to induce nine levels of discounting
probability, ranging from 0.1 to 0.9. Most of the following results

therefore concentrate on analyzing the success of inducing these
probabilities in run B.

In run A, we observed an average frequency of discounted
choices of 54% (±16%; see Figure 3A). Only 4% of our
sample showed less than 20% discounted choices, rendering
good conditions for model parameters to converge (see also
Supplementary Tables 1, 3 and Supplementary Text 1 for
further information on effects of gender, or associations to
subjective measurements and sociodemographic information).

Inferential statistics

In run B, observed discounting frequencies increased
with induced frequencies on a group and individual level
[group level slope: T(7) = 13.91, p < 0.001; Figure 3B;
individual slopes: T(49) = 16.51, p < 0.001; Figure 3C].
On average, the offset and slope parameters obtained from
the GLM came close to what was theoretically expected
by the models, with an observed average offset of −0.017
[±0.23; T(7) = −0.51, p = 0.63] and a slope of 0.80 (±0.34)
(where the expected offset and slope lay at 0.07 and 0.84,
see Figure 3B red line). Median RTs moreover followed
an inverse quadratic curve [significance of inverse quadratic
predictor within GLM: T(6) = 7.41, p < 0.001; Figure 3D] as
hypothesized.

Examining test–retest-reliability, the parameters β, s, and
the discount factor (evaluated at D = 90) were significantly
correlated between runs (β : r = 0.60, p < 0.001; s 0.38,
p = 0.006; discount factor: r = 0.85, p < 0.001; see also
Figure 3F), but not κ (r = 0.23, p = 0.21). The lack in
reliability of κ was likely due to intercorrelations between κ

and s known for this model (run A: r = −0.47, p < 0.001;
run B: r = −0.4, p = 0.005; see also Thome et al., 2022),
which, however, do not affect reliability of the discount
factors.

Behavioral homogeneity

To investigate whether the experimental framework was
able to reduce variance within the induced experimental
conditions, we compared variances within conditions of run
B to the preliminary experiment (see Supplementary Text
2). All variances were either lower than or similar to those
in the preliminary experiment (please also see Figure 3G for
choice frequency distributions). Significantly lower variances
were observed at frequencies 0.3 and 0.7 [0.3: F(48,49) = 2.03,
p = 0.015, 0.7: F(48,49) = 1.8, p = 0.044], as well as marginally
lower at 0.1, 0.2, 0.6, and 0.9 [0.1: F(48,49) = 1.63, p = 0.091, 0.2:
F(48,49) = 1.7, p = 0.067; 0.6: F(48,49) = 1.72, p = 0.062; 0.9:
F(48,49) = 1.76, p = 0.051]. Collectively, these results suggest
that the induction protocol generated graded behavior which
centered (comparatively) narrowly around model predictions.
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Prediction error assessment

Corroborating these findings, we observed a comparatively
low PE in run B for the applied modified hyperboloid
models, that is, a low deviation between observed responses
and responses predicted by the models inferred on run A
(Figure 4A left). Statistically, the PE was lower than for the
hyperbolic model (p = 0.046), the exponential model (p = 0.021),
the double exponential model (p = 0.012), and the control
model (p < 0.001) (and marginally lower than for the quasi-
hyperbolic model; p = 0.084). This was largely consistent
with the PE assessed on run A based on models inferred
on run B (Figure 4A right), although here, the CS model
performed significantly worse (p < 0.001), and the double-
exponential model comparably (p = 0.173). These differences in
the prediction ability of the evaluated models were not observed
when applying the Akaike information criterion (AIC) as an in-
sample error estimate of the PE (see Figure 4B), suggesting the
AIC was less adequate to distinguish between models.

Interestingly, when examining the PE in the different
experimental conditions of run B, we observed an increase in
PE for higher induction frequencies (Figure 3E). Also, on an
individual level, not all participants were best described by the
hyperboloid models. In fact, we observed a wide spread over all
models when counting the number of participants with lowest
PE in each model (Figure 4C).

Application to other latent variable
models

Our framework to generate an adaptive experimental design
was described and evaluated here based on the special case
where the behavior generating model is characterized by a time-
independent latent variable model and a simple binary response
variable model. We therefore briefly outline here how to proceed
when transferring the proposed framework to other cognitive
functions and applications in which (a) the latent variable model
is history-dependent (as for instance during learning), or (b) the
response variable model is multi-categorical (as in tasks with
more than two response options).

History-dependent latent variable model
We will first consider the case in which the computation

of values within the latent variable model depends on previous
values and is thus history dependent. As a simple example, we
assume to be learning values toward two stimuli u1 and u2 via a
Rescorla–Wagner type model in which our latent variable model
fλ now describes the formation of associative memory traces
(=values) in time as a function of the reward prediction error,

fλ (ui) := vt (ui) = vt−1 (ui)+ λ(rt (ui)− vt−1 (ui)) (5)

where λ is a learning rate parameter, rt (ui) is a reward
or outcome associated with choosing the respective stimulus
ui, i = {1, 2} , at time t, and vt−1(ui) is its prediction (Rescorla
and Wagner, 1972). Eqn. (5) comes down to a recursive
relationship in time which we can expand to its initial value:

vt (ui) = (λ

t−2∑
n = 0

γ nrt−n(ui))+γ
t−1v1(ui) (6),

where γ : = 1− λ

For the response model, we select between these two stimuli
such that we again end up with a Bernoulli process. To obtain
a condition for generating adaptive trials which will induce a
desired probability for selecting u1 at time t, denoted here by p1

(in analogy to selecting the immediate choice with probability
pimm), we need to insert Eqn. (6) into a sigmoid such as in Eqn.
(2), and then solve for p1. If, for simplicity, we further define
ci := λ

∑t−2
n = 1 γ

nrt−n(ui) (which collects the history of rewards
obtained for selecting stimulus i), we obtain the following trial-
generating condition for this history dependent model:

rt(u1) =
log( p1

1 −p1
)

λβ
+rt (u2)

+
c2−c1+γ

t−1v1 (u2)− γ
t−1v1(u1)

λ
(7)

Eqn. (7) also makes sense intuitively. If we consider no
prior knowledge [i.e., v1 (ui) = 0] and no reward history
(i.e., ci = 0) and aim at generating trials which induce equal
response probabilities for both options, we need to equalize the
two rewards. If, in contrast, we have a higher initial value for
selecting stimulus 2, we will need to add reward to stimulus 1.
Finally, if we have already observed multiple rewards, the initial
values will lose and reward history (reflected in ci) will gain
importance. Such adaptive approaches may prove particularly
suitable to address and control inter-individual variability in
memory formation (e.g., Lonsdorf and Merz, 2017), and serve
as an effective alternative (or addition) to threshold-based
adaptation procedures.

Multi-categorical response model
In the second case, we consider a history-independent latent

variable model coupled to a multiple choice response model.
In such a case, the response probability pk of a response
yk, k = 1, ...,K, can be modeled in terms of a softmax function
as pk =

eβvk∑
i eβvi

, and the likelihood function will now follow a
multinomial distribution. If we want to generate trials which will
induce predetermined probabilities pk for response options yk

with associated values vk, we therefore obtain the trial generating
condition(s)

vk =
log
(∑K

j 6= k eβvj
)

β
+

log( pk
1 −pk

)

β
.
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FIGURE 4

Model comparisons. (A) Left: PE in run B based on models inferred on run A for different models (x-axis). Right: PE in run A based on models
inferred on run B for different models (x-axis). (B) AIC evaluated on run B (left) and run A (right). (C) Number of individuals (y-axis) with lowest PE
for each model (x-axis) for run B (top) and run A (bottom), applying a tolerance threshold of 0.01. Cases with multiple minima were counted
multiple times.

Since in this multi-categorical case, we aim at controlling the
probability of all K options simultaneously, we will also need to
solve these K equations simultaneously, for instance, by some
form of constrained optimization.

Discussion

A general challenge in psychological and other sciences
is that we want to uncover processes that are not directly
observable, also termed latent processes. We draw inferences
on these processes by observing behavior. In this context,
experiments serve to generate conditions, that is, experimental
manipulations, which differentially engage the latent process
and are hypothesized to manifest in behavioral differences which
allows us to study its nature in more detail. To draw an
accurate inference on the underlying process based on these
manipulations, we need to rely on our experiment and the latent
process model being valid.

In the current work, we propose a framework which
leverages interpretable probabilistic behavioral latent variable
models to guide experimental manipulations and address the
assessment of validity. By expressing the process in relation
to the experiment and linking it probabilistically to behavior,

these models allow us to generate precise and falsifiable
hypotheses, i.e., predictions, and tune experimental variables to
address these hypotheses (Thome et al., 2022). Predictions in
this context are formulated as observable behavioral response
probabilities. Assessing the deviation of predictions from out-
of-sample observations facilitates the objective assessment of
predictive validity. Here we apply the proposed approach to
predict and induce graded choice frequencies on an individual
participant level.

We illustrate the procedure in the context of delay
discounting. Delay discounting is an influential psychological
process, related to a variety of different traits such as impulsivity
(Keidel et al., 2021), self-control (Levitt et al., 2020), intelligence
(Shamosh and Gray, 2008), socio-economic status (Kohler et al.,
2022), or personality (Keidel et al., 2021). It measures the
tendency of an individual to devalue distant as compared to
close future outcomes (Ainslie, 1975; Frederick et al., 2002;
da Matta et al., 2012). Overly steep discounting has moreover
been used to explain maladaptive behavior in addiction
(Rabin and O’Donoghue, 1999; O’Donoghue and Rabin, 2000)
and alcohol risk (Kohler et al., 2022), serving as a biomarker
for the disease (Story et al., 2014; Bickel, 2015; Bailey et al.,
2021; Cheng et al., 2021). Delay discounting is therefore of
wide interest to both psychology and psychiatry. The general
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principle of the proposed framework in the context of delay
discounting is that since we can infer probabilistic models
which formalize how rewards are discounted as a function of
delays and rewards (the cognitive process), then if we know the
function (by model inference), we may determine how to vary
experimental components so as to influence behavior.

We applied the proposed model-based approach to invoke
discounting probabilities ranging from 0.1 to 0.9 in an (online)
monetary reward discounting paradigm in a sample of healthy
individuals. In line with model predictions, we observed a
continuous (mostly linear) average increase in discounting
frequencies coinciding with induced frequencies. Analyses of
mean RT – as indirect measure of processing time – supported
this notion as it followed an inverse U-function with higher
RT toward trials with induced frequencies close to 0.5. This
is to be expected since trials which induce equal or close
to equal probabilities for immediate and delayed options are
more difficult and may thus require more processing time (e.g.,
Ratcliff and Rouder, 1998). We also observed high test–retest
reliability for the discount factor, replicating previous findings
(Thome et al., 2022).

The model-based framework was successful at significantly
reducing between-subject variance within several of the
manipulated experimental conditions. This was observed
in terms of lower behavioral variability in run B compared
to a preliminary experiment with similar settings (see
Supplementary Text 2). Low variance within experimental
conditions is a prerequisite to obtain high power in associated
statistical tests (e.g., Winer, 1971). In that sense, the proposed
framework may also be seen as a tool which converts inter-
subject variability into homogeneous ‘treatment conditions,’
increasing statistical power of an experimental design (Winer,
1971; Jackson, 2011; Boslaugh, 2012). At the same time, it
does not eliminate important between-subject variability
per se (Hedge et al., 2018; Goodhew and Edwards, 2019).
Rather, between-subject variance is systematically relocated
and captured in the (interpretable) model parameters and
experimental variations. Relationships of this between-subject
variance to other variables such as brain mechanisms or societal
factors can therefore be explored.

The main strengths of the present framework though are the
possibility to induce graded levels of behavior and to formally
validate the trial-generating model and related models which
reflect variations of a latent process. Assessing graded levels of
behavioral probability benefits the resolution of the cognitive
process at a fine-grained level. This is because behavioral
probabilities reflect the intensity by which a cognitive process is
engaged (in this example, the strength of temporal discounting).
By studying fine gradings of behavioral probability, we may
study the process on a dimensional level from low to high
intensity. These intensities may be related, for instance, to
neuro(physio)logical recordings to map the finely resolved
latent process onto neural mechanisms (e.g., Ripke et al., 2014;

Grosskopf et al., 2021, p. 20; Batsikadze et al., 2022). This
may be of particular importance to psychiatry, where we
aim at slowly moving away from studying psychiatric entities
to stratifying patients in terms of dimensional alterations in
different functional domains (RDOC; Insel et al., 2010).

The validation of the framework is realized by the
implementation of two consecutive experimental runs which
permit an estimation of the PE by cross-validation. We exploited
this arrangement to validate the employed model by assessing its
PE and comparing it to several discounting models proposed in
the literature. The closely related hyperboloid models and the
constant sensitivity model generated particularly low average
PEs whereas the most commonly applied hyperbolic and
exponential models performed comparatively poorly (in line
with previous observations; Thome et al., 2022).

A modified hyperboloid (control) model with choice
parameter β fixed to 1 performed particularly poorly (see
Figure 4A). This emphasizes the importance of tuning β to the
individual participant for a valid behavioral induction protocol.
As outlined in the Supplementary Text 2, recovering β with
high precision comes at the cost of increasing trial numbers.
This is in line with a recent study by Pooseh et al. (2018)
which performed simulation analyses to illustrate that at least
50–120 iterations are necessary for parameters to converge to
their true values even when using an adaptive model-based
Bayesian delay discounting framework. It challenges recent
methods which infer discounting parameters in very few trials.
For instance, Ahn et al. (2020) proposed a method to infer
hyperbolic discounting models in less than 10 trials. While the
authors demonstrate remarkably high reliability in measuring
κ , they acknowledge poor reliability in β . It remains unclear
how recovering models on the basis of few trials affects validity
of other adaptive model-based designs. Unfortunately, most
studies which have developed adaptive designs do not provide
direct evidence for model validity, that is, they do not directly
report predicted and actually induced response frequencies,
(Monterosso et al., 2007; Cavagnaro et al., 2016; Koffarnus et al.,
2017; Pooseh et al., 2018; Ahn et al., 2020), making it difficult
to draw conclusions on validity of the available methods more
generally.

An interesting insight of the present study is that model
validity decreased particularly around hard trials, which are the
main target of most other adaptive delay discounting methods
(e.g., Ripke et al., 2012; Ahn et al., 2020; Knorr et al., 2020),
and around larger immediate choice frequencies. One possible
explanation for PE increases around hard trials is that the
slope of the probability curve is steepest around hard choices
(see Figure 2A where vimm = vdel). Small biases in the
inference of discounted values (e.g., due to biases in parameter
estimates) have the largest effect on changes in immediate choice
probabilities, possibly resulting in higher behavioral variability
in these conditions. This once more emphasizes the importance
of an unbiased valid recovery of model parameters.
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While it remains unclear why higher frequencies were
associated with a higher PE, the example shows how dissecting
the PE may uncover domains at which a method is less valid. In
fact, a particular advantage of the proposed adaptive approach
is that it allows to systematically perturb the different factors
relevant to a choice process, obtain model-based predictions
for these perturbations, and then validate the model thereon.
For instance, in the present example, one could analogously
vary the delay period (rather than immediate reward), and –
using the CV approach – formally validate a broad range of the
domain the discounting function is defined on. Effectively, we
can thereby improve the criterion we aim at predicting to assess
predictive validity.

In sum, the model evaluation results illustrate how the
framework may be leveraged to select among a set of available
models delineating variations of a given process model and
identify domains at which a model may fail based on out-of-
sample approximations of the PE (Hastie et al., 2009; Efron,
2021; Koppe et al., 2021). In the same way it could be used to
identify and validate novel models or, differentiate a given model
to alternative models (implicating discriminant validity). Out-
of-sample predictions are crucial for validation since in-sample
error estimates (as still commonly applied) have repeatedly been
shown to be strongly biased (Hurvich and Tsai, 1989; Kuha,
2004; Hastie et al., 2009). In the present context, the AIC did not
discriminate well between models whereas the out-of-sample
PE did.

The present study separates model inference which is always
based on the same constant set of trials in each participant (run
A), from model-based prediction and manipulation (performed
on run B). This differs from iterative approaches – most
often employed in psychophysics to identify a psychometric
function – which generate successive trials online based on an
underlying (often simple sigmoid) model which is assumed to be
true (Leek, 2001; Shen and Richards, 2012; see also Pooseh et al.,
2018). Such approaches are ill-suited to compare an applied
model to related models since the model-based procedure
already biases trial selection and may moreover result in unequal
trials and trial numbers per participant. Biased trial selections
may likely favor some models over others (Owen et al., 2021;
see also pitfalls of successive procedures Leek, 2001; Shen and
Richards, 2012).

Historically, psychophysics has originated in aspirations
to identify objective ‘laws of nature’ which map physical
objects to sensation, i.e., rules which are thought to apply to
everyone such as the Weber–Fechner law or Steven’s power
law (Weber, 1835; Fechner, 1860; Stevens, 1957). Physical
properties of experimental stimuli are therefore also typically
directly mapped to detection or discrimination probabilities
without an additional subjective transformation in between.
Although latent variable models have more recently been
applied to detect inter-individual differences (e.g., Taubert et al.,
2012; Chakroborty et al., 2021; Owen et al., 2021), they are
typically not used to generate adaptive trials (although see

Thomas et al., 2021). Evaluating among a larger class of different
subjective models has moreover not been of primary concern.

The latter may be specifically relevant to scientific disciplines
which focus on uncovering inter-individual differences in
(subjectively modulated) cognitive processes such as in the field
of psychiatry for instance (e.g., Kanai and Rees, 2011). Here
the focus often lies on how individuals (differentially) learn,
interpret, or attribute information and how these processes may
be subjectively modulated or biased (e.g., Koppe et al., 2017). In
the present study, inter-individual differences are also supported
by the observation of a high spread in the assignment of different
discounting models to the individual participants, indicating
different participants may best be described by slightly different
ways of assigning subjective value to delayed outcomes (see also
Cavagnaro et al., 2016).

While illustrated here on monetary delay discounting, the
proposed framework may be adopted to many other contexts.
Other popular and widely applied examples of interpretable
latent variable models are for instance variants of reinforcement
learning (RL) models which formalize the latent ‘learning’
process (e.g., Durstewitz et al., 2016; Sutton and Barto, 2018),
and drift diffusion models which formalize latent evidence
accumulation (Ratcliff, 1978). We outline here how to proceed
in the case of reinforcement learning where latent variable
models are history-dependent, as well as multi-categorical
response models, where responses are not simply binary. To
further name a few application examples in these contexts:
by adapting the design to environmental stimuli, one could
study the incentives at which individuals will cease to discount
future environmental outcomes with a given probability (i.e.,
certainty). Translating the paradigm to different cognitive
processes such as associative memory, one may aim at adjusting
stimuli to homogenize associative memory traces or induce
comparable learning speeds, which have been found to be highly
heterogeneous (see e.g., Lonsdorf and Merz, 2017). Finally, in
experiments of social interaction, one could even conceive of
constructing artificial agents that follow individualized model-
based behavioral suggestions which aim at inducing cooperative
behavior in their interaction partner. This could for instance
prove useful when training social skills or reducing negative
biases in a therapeutic context.

Conclusion

We propose a generic framework to manipulate and
validate experimental conditions based on a specific class
of interpretable behavioral latent variable models. These
models may be leveraged to generate precise and falsifiable
behavioral predictions which may be used to evoke graded
and homogeneous choice probabilities. Statistical learning
theory formally defines how to assess the degree of agreement
between observations and predictions and thus how indicative
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observations are of the latent process, sometimes referred to
as predictive validity (Yarkoni and Westfall, 2017). Assessing
validity in terms of PEs in this context has a number of
advantages. For one, since the PE may be used to uncover
domains at which an instrument may fail to be valid, it may
provide insights into how an instrument or model may be
improved. Also, a low PE provides evidence for the latent
process model itself, as experimental manipulations follow
proposed hypotheses. As illustrated earlier, this paves the way
to identify novel models, delineate differences to alternative
models, or improve current models by model selection. Finally,
improving validity in the above mentioned sense should help
us homogenize behavior between participants, as a more valid
experiment will generate more precise behavioral predictions by
which participants may be grouped. The proposed approach can
in principle be applied with little adaptation to other cognitive
domains including learning and other types of decision making,
as also outlined here.
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