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Spiking neural networks (SNNs), as one of the algorithmic models in

neuromorphic computing, have gained a great deal of research attention

owing to temporal information processing capability, low power consumption,

and high biological plausibility. The potential to e�ciently extract spatio-

temporal features makes it suitable for processing event streams. However,

existing synaptic structures in SNNs are almost full-connections or spatial 2D

convolution, neither of which can extract temporal dependencies adequately.

In this work, we take inspiration from biological synapses and propose a

Spatio-Temporal Synaptic Connection SNN (STSC-SNN) model to enhance the

spatio-temporal receptive fields of synaptic connections, thereby establishing

temporal dependencies across layers. Specifically, we incorporate temporal

convolution and attention mechanisms to implement synaptic filtering and

gating functions. We show that endowing synaptic models with temporal

dependencies can improve the performance of SNNs on classification tasks. In

addition, we investigate the impact of performance via varied spatial-temporal

receptive fields and reevaluate the temporal modules in SNNs. Our approach

is tested on neuromorphic datasets, including DVS128 Gesture (gesture

recognition), N-MNIST, CIFAR10-DVS (image classification), and SHD (speech

digit recognition). The results show that the proposed model outperforms the

state-of-the-art accuracy on nearly all datasets.

KEYWORDS

spiking neural network (SNN), Spatio-Temporal Synaptic Connection (STSC), spike

response filter (SRF), Feedforward Lateral Inhibition (FLI), attention mechanism,

neuromorphic recognition, backpropagation (BP)
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1. Introduction

Spiking neural networks (SNNs) are regarded as the third

generation of neural networks (Maass, 1997), with the purpose

of addressing the fundamental mysteries of intelligence and the

brain by emulating biological neurons and incorporating more

biological mechanisms (Roy et al., 2019). The two fundamental

components of SNNs are spiking neurons and synapses,

which create a hierarchical structure (layers) and subsequently

construct a network. SNNs have attracted a significant deal

of academic interest in recent years due to their prospective

properties, such as the ability to process temporal information

(Petro et al., 2019), low power consumption (Roy et al., 2019),

and biological interpretability (Gerstner et al., 2014). Currently,

SNNs are capable of processing event stream data with low

latency and low power (Pei et al., 2019; Gallego et al., 2020).

However, there is still a performance gap between SNNs and

traditional Artificial Neural Networks (ANNs). Recent SNN

training techniques based on surrogate gradients and back-

propagation have significantly enhanced the performance of

SNNs (Wu et al., 2018; Fang et al., 2021c), while also promoting

the further integration of ANNs’ modules into SNNs (Hu et al.,

2021; Yao et al., 2021; Zheng et al., 2021), greatly accelerating

the development of SNNs. However, it remains challenging

to connect these computational techniques with the biological

properties of SNNs.

Due to the time-dependent correlation of neuron dynamics,

it is believed that SNNs naturally process information in

both temporal and spatial dimensions (Petro et al., 2019; Roy

et al., 2019). Further researches are necessary to harness the

spatio-temporal information processing capabilities of SNNs.

Combining ANNs’ modules has significantly increased the

performance of SNNs in several research studies. In terms of

spatial information processing, CSNN (Xu et al., 2018) was

the first to validate the application of convolution structure on

SNNs, followed by the proposal of NeuNorm to improve SNNs’

usage of convolution through auxiliary neurons (Wu et al.,

2019). In the time dimension, Zheng et al. (2021) implements the

time-dependent batch normalization (tdBN) module to tackle

the issue of gradient vanishing and threshold balancing, and

Yao et al. (2021) uses the Squeeze-and-Excitation (SE) block

(Hu et al., 2018) to realize the attention distribution of the

temporal dimension in order to improve the temporal feature

extraction. Notably, Zhu et al. (2022) proposes Temporal-

Channel Joint Attention (TCJA) to concurrently process input

in both temporal and spatial dimensions, which is a significant

effort for SNNs’ spatio-temporal feature extraction. These

studies effectively improve the performance of SNNs by

transplanting established ANNs’ modules and methodologies.

However, applying these computational modules to SNNs

from the standpoint of deep learning dilutes the fundamental

biological interpretability, bringing SNNs closer to a mix

of existing concepts in machine learning, such as recurrent

neural networks (RNNs), binary neural networks (BNNs), and

quantization networks.

From a biological standpoint, some works focus on the

synapse models, investigating the potential of SNNs in respect

of connection modes and information transmission. Shrestha

and Orchard (2018), Fang et al. (2020a), and Yu et al. (2022)

integrate impulse response models with synaptic dynamics,

hence enhancing the temporal information representation of

SNNs; Cheng et al. (2020) implements intra-layer lateral

inhibitory connections to improve the noise tolerance of

SNNs; from the standpoint of synaptic plasticity, Zhang and

Li (2019) and Bellec et al. (2020) introduce bio-plausible

training algorithms as an alternative to back-propagation (BP),

allowing for lower-power training. Experiments revealed that

the synaptic models of SNNs have a great deal of space

for modification and refinement in order to handle spatio-

temporal data better (Fang et al., 2020a). We propose a

Spatio-Temporal Synaptic Connection (STSC) module for

this reason.

Based on the notion of spatio-temporal receptive fields,

the structural features of dendritic branches (Letellier et al.,

2019) and feedforward lateral inhibition (Luo, 2021) motivate

this study. By merging the ANNs’ computation modules

(temporal convolutions and attention mechanisms) with SNNs,

we propose the STSC module, consisting of Temporal Response

Filter (TRF) module and Feedforward Lateral Inhibition (FLI)

module. As shown in Figure 1, the STSC can be attached to

spatial operations to expand the spatio-temporal receptive fields

of synaptic connections, hence facilitating the extraction of

spatio-temporal features.

The main contributions of this work are summarized as

follows:

• We propose STSC-SNN to implement synaptic

connections with extra temporal dependencies and

enhance the SNNs’ capacity to handle temporal

information. To the best of our knowledge, this study

is the first to propose the idea of synaptic connections with

spatio-temporal receptive fields in SNNs and to investigate

the influence of synaptic temporal dependencies in SNNs.

• Inspired by biological synapses, we propose two plug-

and-play blocks: Temporal Response Filter (TRF) and

Feedforward Lateral Inhibition (FLI), which perform

temporal convolution and attention operations and can

be simply implemented into deep learning frameworks for

performance improvements.

• On neuromorphic datasets, DVS128 Gesture, SHD, N-

MNIST, and CIFAR10-DVS, we have produced positive

results. Specifically, we acquire 92.36% accuracy on SHD

with a simple fully-connected structure, which is a great

improvement above the 91.08% results obtained with
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FIGURE 1

Illustration of receptive fields in synaptic connections. (A) The receptive fields of typical spatial operations used in SNNs, e.g., fully-connected

layers (full) and 2D convolutional layers (sparse); (B) The STSC modules proposed to extend spatial operations with spatio-temporal receptive

fields.

recurrent structure and reaches performance comparable to

ANNs.

2. Methods and materials

2.1. The networks components and
training methods in spiking neural
networks

2.1.1. Learning algorithms for SNNs

In recent years, many works have explored the learning

algorithms of SNNs, which can be generally categorized as

biologically inspired approaches (Diehl and Cook, 2015; Zhang

and Li, 2019; Bellec et al., 2020), ANN-to-SNN conversion

methods (Orchard et al., 2015; Sengupta et al., 2019; Han

et al., 2020), and surrogate-based direct training methods (Wu

et al., 2018; Neftci et al., 2019; Fang et al., 2021c). Bio-

inspired algorithms are represented by spike-timing-dependent

plasticity (STDP; Diehl and Cook, 2015; Vaila et al., 2020)

which performs local learning through the learning rules of

synaptic plasticity, and is often used in unsupervised learning.

Some biologically inspired algorithms that integrate local and

global learning also provide more efficient training methods,

such as ST-RSBP (Zhang and Li, 2019) and e-prop (Bellec

et al., 2020). These methods further enhance the low power

consumption and biological interpretability of SNNs, although

they are not yet capable of producing competitive outcomes

in refined tasks like pattern recognition. The ANN-SNN

conversion strategies aim to convert the trained ANNs into

SNNs and then exploit the low power consumption of SNNs to

improve inference (Orchard et al., 2015; Sengupta et al., 2019;

Han et al., 2020; Zhang et al., 2021b). The main advantage of

conversion methods is that they can directly achieve larger-

scale and higher-performance tasks inherited from ANNs.

However, they disregard the temporal dynamics and temporal

interdependence of spiking neurons and always need hundreds

of time steps to approximate the performance of trained ANNs;

consequently, hybrid training methods that further optimize

converted SNNs were developed (Rathi et al., 2020; Rathi and

Roy, 2021; Zhang et al., 2021a). Direct training methods utilize

surrogate gradients to tackle the issue of non-differentiable

spike activity (Wu et al., 2018), allowing error back-propagation

(BP) through time to interface the gradient descent directly

on SNNs for training. Those BP-based methods show strong

potential to achieve high accuracy in a few timesteps by making

full use of spatio-temporal information (Wu et al., 2019; Fang

et al., 2021c). However, more research is required to determine

how to better extract spatio-temporal features for enhanced

processing of spatio-temporal data; this is what we want

to contribute.

2.1.2. Attention modules in SNNs

The attentionmechanism distributes attention preferentially

to the most informative input components, which could be

interpreted as the sensitivity of various inputs. The SE block

(Hu et al., 2018) offers an efficient attention approach to

improve representations in ANNs. Xie et al. (2016) and

Kundu et al. (2021) introduced spatial-wise attention in SNNs;

then, TA-SNN (Yao et al., 2021) developed a temporal-wise

attention mechanism in SNNs by assigning attention factors

to each input frame; more subsequently, TCJA (Zhu et al.,

2022) added a channel-wise attention module and proposed

temporal-channel joint attention. These studies demonstrate

the usefulness of attention mechanisms in SNNs by achieving

state-of-the-art results on various datasets. Moreover, based on

these investigations, it is desirable to study other correlations

between the attention mechanism and the biological nature of

SNNs, which is the objective of our research. We employ the

attention module as a feedforward lateral inhibitory connection

(Luo, 2021), which develops a gating mechanism for the synapse

model, and enables non-linear computation by the synapse.
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2.1.3. Synaptic models in SNNs

As one of the fundamental components of SNN, the

synaptic model has drawn the interest of several researchers.

Shrestha and Orchard (2018), Fang et al. (2020a), and

Yu et al. (2022) established temporal relationships between

response post-synaptic currents and input pre-synaptic spikes,

therefore improving temporal expressiveness. Those temporal

relationships are the extension of fully-connected synapses

which are based on the assumption that there is only

one connection between two neurons. Nevertheless, synaptic

connections are often complex, and there are typically many

paths connecting the axons and dendrites of neurons (Letellier

et al., 2019; Luo, 2021). We apply temporal convolution to

describe the more sophisticated impulse response model and

generate time-dependent post-synaptic currents, taking into

consideration biological features and computational simplicity.

2.2. Frame-based representation

Event steam consists of both a spatial and a temporal

dimension, with the spatial dimension expandable to higher

dimensions depending on the data type. The spatial dimension

of event streams based on sound data is typically one-

dimensional, corresponding to different frequency channels;

whereas the spatial dimension of event streams based on image

data is typically three-dimensional, consisting of coordinates

representing spatial positions and polarities representing

brightness changes. The binary spike pattern is represented

by the tensor E ∈ BT
′×S, where T′ represents the original

resolution in the temporal dimension, and S represents the

resolution in the spatial dimension. For a frame with a time span

of 1t, the events in the time interval t′ ∈ [(t − 1)× 1t, t × 1t)

can be mapped to the network input X0 at time t by

x0(t) = q({E(t′)|t′ ∈ [(t − 1)× 1t, t × 1t)}) (1)

where t ∈ {1, 2, ...,T} is timesteps, and the aggregation

function q(·) could be chosen as non-polarity aggregation

(Massa et al., 2020), accumulate aggregation (Deng et al., 2020),

AND aggregation (He et al., 2020), etc. Here, we choose to

accumulate all event streams inside a frame.

2.3. Spiking neurons in SNNs

The Leaky-Integrate-and-Fire (LIF) model was introduced

as an extremely simplified model of biological neurons (Dayan

and Abbott, 2005), which has the essential qualities of potential

integrating, leaking, and spike firing. The LIF model is used

extensively in SNNs and neuromorphic engineering because of

its ability to recreate essential neural functions at a minimal cost

of computation. The LIF model is defined in the differential

form, as

τ
dv(t)

dt
= −v(t)+ I(t) (2)

where v(t) is the membrane potential of the neuron at time t,

I(t) is the integrated current input from the pre-synaptic neuron

at time t, and τ is the time constant that governs the pace

of potential change. Solving the differential equation directly

will incur additional costs. STBP (Wu et al., 2018) employs

a simplified iterative representation and implements the LIF

model on the Pytorch framework (Paszke et al., 2019), which

supports the integration of SNNs and standard ANNs’ modules

and significantly speeds the construction of BP-based SNNs and

training techniques. The explicit iterative LIF is expressed as

Vl (t) =

(

1−
1

τ

)

×Vl (t − 1) ×
(

1− Sl (t − 1)
)

+ Il (t) (3)

Sl (t) = 2

(

Vl (t) − Vth

)

(4)

where l and t are indices of layer and time, τ is the time

constant, V is the membrane potential, Vth is the threshold

constant, S is the binary tensor of spikes, I is the input from

the preceding layer, and 2(·) is the Heaviside step function that

satisfies 2(x) = 1 when x ≥ 0, otherwise 2(x) = 0. Noting

that the firing process, 2(·), is not differentiable, surrogate

methods are often utilized in SNNs’ direct training to achieve

error propagation by creating various pseudo-derivatives for

2(·) (Neftci et al., 2019). Experiments conducted by STBP (Wu

et al., 2018) demonstrate that the performance of each surrogate

gradient is comparable. This work leverages arc tangent (ATan)

as the pseudo-derivative of 2(·), which is well-supported in the

SpikingJelly framework (Fang et al., 2020b).

2.4. Spatio-temporal receptive fields in
SNNs

The receptive field is often used to comprehend convolution

procedures. In the process of convolution, the receptive fields

describe the range of the nearby input for identifying an output

element, i.e., how much spatial neighboring position it can

perceive. For static pictures, the receptive field could explain

the projection range of the convolution operations and aid in

the comprehension of the spatial feature extraction procedure.

Similarly, the concept of receptive fields could be applied to

event streams (or dynamic images) with an additional temporal

dimension. This work leverages the concept of spatio-temporal

receptive fields to aid comprehension of SNNs’ spatio-temporal

feature extraction procedure. As shown in Figure 1A, typical

synaptic connections employ 2D convolution, pooling, full-

connections, and other inter-layer computations to process
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FIGURE 2

The standard layer inserted with the STSC module and its unfolded formulation. Note that all parameters are shared at all timesteps. STSC

modules are set before spatial operations to process the latest temporal information.

information in the spatial dimension, which we refer to as spatial

operations, and their receptive fields are restricted to the spatial

dimension. To strengthen the spatio-temporal information

processing capabilities of SNNs, it is essential to expand the

receptive fields of these spatial operations into the temporal

dimension.

2.5. Spatio-Temporal Synaptic
Connection for SNNs

In general, the processing of temporal information in

SNNs is attributed to spiking neurons since their dynamic

model has a natural dependence on the temporal dimension;

however, the level of this dependence is primarily reliant on

the degree of neural complexity, while the LIF neurons only

support very weak temporal linkages. Not just in neurons,

but also in biological synapses, a great deal of the processing

of latent temporal characteristics occurs (Letellier et al., 2019;

Luo, 2021). This work focus on using temporal dimension

operations in SNNs to broaden the spatio-temporal receptive

fields of synapses, to enhance the spatio-temporal feature

extractions of SNNs. Temporal operations are calculations

connected to the time dimension, and they are contained

in a pluggable module, referred to as the Spatio-Temporal

Synaptic Connection (STSC). The STSC module is designed

to be placed before spatial operations in order to aggregate

temporal information and enlarge the spatio-temporal receptive

fields while maintaining the original spatial operations (see

Figure 2). The STSC module consists of two modules: Temporal

Response Filter and Feedforward Lateral Inhibition, which carry

the filtering and gating mechanisms of the synaptic model,

respectively (see Figure 3). The two modules receive X as input

tensor and conduct the operations C = f (X) and D = g(X),

followed by element-wise product to produce output Y = C⊙D

(see Figure 3A). As shown in Figure 4, our starting point is to

reconstruct the synaptic connection of the neural circuit in order

to get a simplified computing model comprised of TRF and FLI

modules while preserving the temporal operations of synaptic

computing to the greatest extent. Consequently, our synaptic

model provides a further appropriate imitation of biological

neural networks with biological interpretability; it also enhances

the model’s capabilities for spatio-temporal feature extraction

by incorporating additional temporal computations. Figure 5

provides an illustration of the model’s dataflow.

2.5.1. Temporal response filter

The synapses in biological neural networks are intricate.

The complexity of synapses is not only reflected in the
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FIGURE 3

Operation details of STSC modules. (A) Connection Implementation between TRF, FLI, and Spatial Operations, where ⊙ denotes broadcast

element-wise multiplication; (B, C) Tensor Computations in TRF and FLI modules, where T,C,H,W refer to tensor dimensions of time, channel,

height, and width.

non-topological spatial relationship of synapses (how neurons

connect with one another) but also in the complicated temporal

dependency of spike transmission (how neurons communicate

with one another; Letellier et al., 2019). The axon terminals

and dendrites of a pair of connected neurons are typically

connected by multiple pathways, as shown in Figure 4A. Since

the spike responses (including time delays and kernel shapes)

in the various pathways are diverse from one another, this

implies that more complicated temporal dynamic dependencies

can be shaped among them (Luo, 2021). This work assumes

that the diverse spike responses of the various pathways can

be combined into a single, adaptable response (Figure 4A).

Thereby, we propose the Temporal Response Filter (TRF) to

establish the integrated linear response of spikes over time

by employing convolution in the time dimension, in order to

expand the temporal receptive field in the most direct way.

TRF offers a filtering path for STSC with temporal convolutions

(see Figure 3). Figure 3B depicts the specific implementation

of TRF. In detail, as for the 2D spatiotemporal tensor in

the fully-connected structure, it performs temporal depth-wise

1D convolution independently on each spatial channel and

generates an output tensor of the same size. To ensure that

all spatial elements inside a channel have the same temporal

response, for the 4D spatiotemporal tensor in the convolutional

structure, temporal depth-wise 3D convolution is performed on

each channel with kernel size of KG × 1 × 1. Mathematically,

the filter operation is denoted as f (·), and it performs C = f (X)

with input X and output C having the same size as RT×N or

RT×C×H×W . Depending on the spatial dimension (1D or 3D)

of the input X, the following calculation formulae apply:

As for the 1D case,

C (t, n) =

KF−1
2

∑

tf=−
KF−1

2

WF
tf ,n

× X
(

t − tf , n
)

(5)

As for the 3D case,

C
(

t, c, h,w
)

=

KF−1
2

∑

tf=−
KF−1

2

WF
tf ,c

× X
(

t − tf , c, h,w
)

(6)

where n,c,h, and w are spatial location indices and t is a time

index. KF denotes the kernel size of the temporal convolution,
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FIGURE 4

Modeling TRF and FLI modules from biological circuits into computational models. (A) The motivation of TRF that integrating

multi-compartment axon-dendrite connections with di�erent spike responses into a single linear response filter. (B) The function of FLI that

transmitting the spike activities of pre-synaptic neurons into inhibitory neurons to obtain gating factors.

FIGURE 5

Computation visualization. The input is an audio sample from the SHD dataset.
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which is equal to the temporal receptive fields of TRF. The

padding of the convolution is set to KF−1
2 for maintaining the

same size.

2.5.2. Feedforward lateral inhibition

The mechanisms of feedforward lateral inhibition

mechanisms exist in biological neural networks (Luo, 2021),

which construct a lateral route to suppress feedforward input.

To further boost synaptic expression, we attempted to emulate

the feedforward lateral inhibition mechanism (see Figure 4B).

We devised a computational strategy that replicates the

function of inhibitory neurons by exploiting the near-time spike

patterns of pre-synaptic neurons to determine the inhibition

coefficients, also known as gating factors, which are utilized to

regulate the transmission intensity of signals. While the TRF

module based on temporal convolution is a straightforward

linear computation, the FLI module incorporates non-linear

components, resulting in a non-linear relationship between

temporal dependencies that improves spatio-temporal feature

extraction. We notice that the function of this structure closely

resembles that of the attention module; therefore, we refer

to the attention blocks (Hu et al., 2018; Yao et al., 2021; Zhu

et al., 2022), and propose the FLI module to replicate the gating

mechanism in synaptic connections. The module details are

shown in Figure 3C. Regarding the 2D spatiotemporal tensor

in the fully-connected structure, temporal-wise 1D convolution

is utilized first to extract temporal features, followed by linear

combination through sigmoid to acquire the gating coefficients

(see Figure 3C). As for the 4D spatiotemporal tensor in the

convolutional structure, spatial-wise average pooling is first

conducted to obtain the channel-wise spatial sparsity of spikes;

then, the 1D case FLI is performed. Finally, channel-wise gating

factors are computed and transmitted to each channel’s spatial

locations. Mathematically, gating is denoted as g(·), and X is

the input tensor of size RT×N or RT×C×H×W , D = f (X) is the

output gating factors with values in the range (0, 1) that have the

same shape with X. Depending on the spatial dimension (1D or

3D) of the input X, the following calculation equations apply:

As for the 1D case:

S (t,m) =

KG−1
2

∑

tg=−
KG−1

2

N
∑

n=1

WG1
tg ,n,m

× X
(

t − tg , n
)

(7)

D (t, n) = Sigmoid





M
∑

m=1

WG2
m,n × ReLU (S (t,m))



 (8)

As for the 3D case:

X̂ (t, c) =
1

H ×W

H
∑

h=1

W
∑

w=1

X
(

t, c, h,w
)

(9)

D̂ = g1D

(

X̂
)

(10)

D
(

t, c, h,w
)

= D̂ (t, c) for ∀h ∈ H,∀w ∈ W (11)

where n,c,h and w are spatial location indices, t is a time index,

m is the index of the intermediate feature tensor S with spatial

dimension M. M is determined by the spatial sizes N with

reduction ratio r, as N
r . KG denotes the kernel size of the

convolution, which is equivalent to the receptive fields of FLI.

The padding of the convolution is set to KG−1
2 for maintaining

the same size. Notably, in order to reduce computational cost in

the 3D case, we employ the same gating factor for all H × W

neurons in each channel, feed the spiking space sparsity into

the FLI module (Equation 9), and broadcast the output to all

neurons inside the channel (Equation 11).

2.6. Training framework

Denote the simulating timesteps as T, size of output layers

as Lout and classes number as C, we utilize the voting strategy

(Wu et al., 2019) to decode the network output O ∈ BT×Lout

with the constant voting matrixM ∈ RC×Lout . The loss function

is defined by the mean squared error (MSE), as

L =

∣

∣

∣

∣

∣

∣

∣

∣

yi −
1

T

∑

Mi,nO (t, n)

∣

∣

∣

∣

∣

∣

∣

∣

2

(12)

where y is the one-hot target, with yl = 1 for target class

l, and yi = 0 for i 6= l. The predicted label lp is then

given by lp = argmaxi
1
T

∑

Mi,nO (t, n) for evaluation. In

the experiment, we adopted the simplest voting strategy and

obtained
∑

Mi,nO (t, n) through average pooling.

3. Experiments

3.1. Experiment setup

3.1.1. Datasets

We evaluate the classification performance of STSC-SNN on

a variety of neuromorphic datasets, including DVS128 Gesture

(Amir et al., 2017; gesture recognition), N-MNIST (Orchard

et al., 2015), CIFAR10-DVS (Li et al., 2017; image classification),

and SHD (Cramer et al., 2020; speech digit recognition), all

of which are event datasets but are generated using different

methods. DVS128 Gesture is a gesture recognition dataset

that uses DVS cameras to record actual human gestures. The

event-based image datasets, N-MNIST and CIFAR10-DVS, are

converted from the static dataset by using DVS cameras to scan

each sample. Spiking Heidelberg Digits (SHD) is a spike-based

speech dataset consisting of English and German spoken digits

transformed from the audio recordings using an artificial inner

ear model.
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TABLE 1 Experimental details.

Datasets SHD and CIFAR10-DVS and
DVS128 Gesture and
N-MNIST

Representation Frames with accumulative aggregation

Learning algorithm STBP (Wu et al., 2018) and BPTT

Surrogate gradient ATan (Fang et al., 2021c)

Loss function Voting (Wu et al., 2019) and MSE

Frameworks SpikingJelly and Pytorch

3.1.2. Settings

Table 1 summarizes the experimental details of the SNNs

training process. We use the SpikingJelly (Fang et al., 2020b)

and Pytorch (Paszke et al., 2019) frameworks to develop and

evaluate SNNs. We utilize the Adam optimizer (Kingma and

Ba, 2014) to accelerate the training process. Table 2 displays the

respective hyper-parameters and Table 3 displays the network

architectures for different datasets. The adequate numbers of

epochs are utilized to assure the models’ steady convergence

(Table 2). The settings of network architecture are various in

related works, and the network structures we use (Table 3) have

been proven to perform quite well on each dataset [specifically,

SHD refers to TA-SNN (Yao et al., 2021), N-MNIST refers to

PLIF (Fang et al., 2021c), CIFAR10-DVS and DVS128 Gesture

refer to TCJA-SNN (Zhu et al., 2022)]. All Conv2d layers are set

as kernel size = 3, stride = 1, and padding = 1, followed by batch

normalization (BN) layers. The voting layers are implemented

using average pooling for classification robustness (Fang et al.,

2021c).

3.2. Comparison with existing SOTA
works

Table 4 shows the performance comparison of the proposed

methods (STSC-SNN with TRF and FLI) and other competing

methods on neuromorphic datasets, N-MNIST, CIFAR10-DVS,

DVS128 Gesture, and SHD. The trials indicate that STSC-

SNN can achieve similar or even better results under the same

conditions as SOTAs. These results demonstrate that our work

is comparable to SOTAs’ and reveal that our models inspired

by biological synapses are practical and feasible. As shown in

Table 4, we achieve the highest accuracy on all datasets except

CIFAR10-DVS. The SOTA results implemented in CIFAR10-

DVS are based on the work of TET (Deng et al., 2022), which

proposes a new loss function to enable the model to converge

on a flatter local minimum with generalizability; TCJA (Zhu

et al., 2022) also demonstrates its efficacy on CIFAR10-DVS.

To preserve the consistency of this work, we continue to utilize

MSE (Equation 12) as the loss function, and outperform the

TABLE 2 Hyper-parameter setting.

Hyper
parameter

SHD N-
MNIST

CIFAR10-
DVS

DVS128
Gesture

Epoch 200 300 1,000 1,000

Batch size 256 16 16 16

Learning rate 1e-4 1e-3 1e-3 1e-3

T 15 10 10 20

τ 10 2 2 2

Vth 0.3 1.0 1.0 1.0

KF 5 3 3 3

KG 3 3 3 5

r 1 1 2 2

TABLE 3 Network structure.

Dataset Network structure

DVS128 Gesture Input-128C3-MP2-128C3-MP2-128C3-

MP2-128C3-MP2-128C3-MP2-0.5DP-

512FC-0.5DP-110FC-Voting-11

CIFAR10-DVS Input-64C3-128C3-AP2-256C3-256C3-

AP2-512C3-512C3-AP2-512C3-512C3-

AP2-100FC-Voting-10

SHD Input-128FC-128FC-100FC-Voting-20

N-MNIST Input-128C3-AP2-128C3-AP2-0.5DP-

2048FC-0.5DP-100FC-Voting-10

xCy/MPy/APy denotes the Conv2D/MaxPooling/AvgPooling layer with output channel

= x and kernel size = y × y, nFC denotes the fully connected layer with output feature

= n, mDP is the spiking dropout layer with dropout ratio m. The spiking neurons are

added behind all xCy and nFC. The STSCmodules are inserted before all xCy on DVS128

Gesture, CIFAR10-DVS, and N-MNIST; while inserted before all nFC on SHD.

comparable result. Notably, the experiments on SHD show

that we have enhanced the vanilla SNN from 78.71 to 92.36%

using STSC (with 65 epochs), which is the state-of-the-art result

compared to the highest available result (91.08% by TA-SNN).

Moreover, it is a significant improvement that even reaches the

best result achieved by ANNs on this dataset [92.4% by CNN

(Cramer et al., 2020)].

The SHD dataset contains rich temporal information, which

challenges the model’s capacity to extract temporal features

(Cramer et al., 2020); hence, there is considerable effort required

to develop SNN models using recurrent structures (Cramer

et al., 2020; Yin et al., 2020, 2021; Perez-Nieves et al., 2021).

Based on the recurrent structure, TA-SNN employs temporal-

wise attention and a particular LIF neuron [LIAF by Wu et al.

(2021) that directly transmits membrane potential] to get an

excellent result on SHD (91.08%), outperforming LSTM [89%

by Cramer et al. (2020)] but falling short of the result (92.4%)

produced by CNN processing (directly as 2D image input).

In contrast, instead of the recurrent layers, we use a simple

fully-connected network with two hidden layers and successfully
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TABLE 4 Performance comparison between the proposed method and the state-of-the-art methods on di�erent datasets.

Method SHD N-MNIST CIFAR10-DVS DVS128 Gesture

T Acc. (%) T Acc. (%) T Acc. (%) T Acc. (%)

Slayer (Shrestha and Orchard, 2018) - - 300 99.22 - - 1,600 93.4

HATS (Sironi et al., 2018) - - - 99.10 - 52.4 - -

DART (Ramesh et al., 2019) - - - 97.95 - 65.8 - -

NeuNorm (Wu et al., 2019) - - - 99.53 - 60.5 - -

Rollout (Kugele et al., 2020) - - 32 99.57 48 66.97 240
97.27

(10 classes)

DECOLLE (Kaiser et al., 2020) - - - - - - 500 95.7

LISNN (Cheng et al., 2020) - - 20 99.45 - - - -

tdBN (Zheng et al., 2021) - - - - 10 67.8 40 96.87

LIAF-Net (Wu et al., 2021) - - - 10 70.40 60 97.56

PLIF (Fang et al., 2021c) - - 10 99.61 20 74.80 20 97.57

LIF RSNN (Cramer et al., 2020) 2,000 73.3 - - - - - -

Hetero. RSNN (Perez-Nieves et al.,

2021)

- 83.5 - 97.5 - - - 82.9

RELU SRNN (Yin et al., 2020) 250 88.93 - - - - - -

Adaptive SRNN (Yin et al., 2021) 250 90.4 - - - - - -

SEW-ResNet (Fang et al., 2021b) - - - - 16 74.4 16 97.92

TA-SNN (Yao et al., 2021) 15 91.08 - - 10 72.00 20 98.61

Dspike (Li et al., 2021) - - - - 10 75.45 - -

SALT (Kim and Panda, 2021) - - - 20 67.1 - -

TET (Deng et al., 2022) - - - - 10 83.32 - -

DSR (Meng et al., 2022) - - - - 10 77.41 - -

TCJA (Zhu et al., 2022) - - - - 10
80.7(MSE)

83.3(TET)

20 99.0

STSC (this work) 15 92.36 10 99.64 10 81.4(MSE) 20 98.96

The bold values indicate the best outcomes for each dataset.

obtain the SOTA result by adding the proposed STSC module.

For the first time, our model obtained CNN-like performance

on the SHD dataset, which represents a substantial effort to

illustrate the SNNs’ potential.

3.3. Control experiments and ablation
study

To analyze the impact of each component on performance,

we conduct control experiments on SHD. The SHD experiment

is based on the fully-connected (FC) structure (see Table 3),

with STSC modules strategically placed in front of the FC

layers. There are seven insertion strategies designated P1, P2,

P3, P12, P13, P23, and P123 (see Figure 6A). Figures 6B, C

show the effect of varying receiving fields when TRF and FLI

are used individually. TRF reaches 85.38% at P13 and RF =

7, while FLI reaches 90.72% at P12 and RF = 11. Comparing

the two modules reveals that the FLI module plays a major

role in performance improvement; thus, it is crucial to offer a

gating mechanism that introduces non-linear expressions to FC

layers. Figures 6B, C demonstrate that when the FLI or TRF

modules are positioned in the first layer (P1/P12/P13/P123),

they have a greater impact on performance than when they are

positioned in the deep layer (P2/P3/P23). This suggests that

the extraction of temporal features is more advantageous in

shallow layers. As shown in Figure 7, we evaluated the impact

of varying STSC receptive fields on SHD performance. Notably,

raising the receptive field suitably will increase performance,

whereas an overly broad receptive field setting would reduce
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FIGURE 6

Control experiments on SHD. (A) Policies of inserting STSC layers; (B) Accuracy comparison of TRF module via di�erent RFs; (C) Accuracy

comparison of FLI module via di�erent RFs.

accuracy. We claim the performance drop is a result of the

model’s excessive expressive capacity, which overfits the train

data. This phenomenon is analogous to the usage of spatial

2D convolutions, in which the kernel size must be carefully

determined. Figure 7 indicates that the combination of TRF

and FLI modules improves performance, demonstrating their

complementarity. Under the P1 strategy, setting TRF’s RF = 5

and FLI’s RF = 3 yields the best result of 92.36%, with just one

STSC added after the input layer.

3.4. Analysis of temporal modules in
SNNs

In the vanilla SNNs, only neurons perform temporal

operations; hence, its temporal feature extraction is predicated

solely on the temporal dependence inside each neuron. In

order to assess the influence of temporal modules, we conduct

the ablation study with LIF neurons and STSC modules on

SHD datasets (see Figure 8), based on the same FC structure

(see Table 3). Experiments comparing “FC(ReLU)” and “SNN”

demonstrate that utilizing LIF neurons to replace the activation

function in the FC structure can definitely increase the

performance of the SHD classification task, proving the LIF’s

capacity to handle temporal information and capture temporal

features. Moreover, the “FCs(Relu) + STSC” and “FCs(non)

+ STSC” structures generated by adding the STSC module

obtain greater performance than the vanilla “SNN” model,

demonstrating that our STSC module has superior temporal

feature extraction capacity than LIF; hence, the utilization of

time relationships within synaptic connections is valid and

meaningful. Furthermore, integrating the STSC module and

LIF concurrently inside the “SNN + STSC” model achieves the

highest performance, proving that time-dependent interactions

in both synapses and neurons could coexist and be coordinated

to perform better temporal information processing.

4. Discussion

The incorporation of temporal operations inevitably

increases the model’s complexities and the analysis of trade-off
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FIGURE 7

Influence of receptive fields on SHD. The di�erent experimental results via RFs with P1/P12/P13/P123.

value. Here, we explore the time and space complexity induced

by the TRF and FLI modules in convolutional layers for 3D

cases. Assuming the STSC modules are inserted prior to a

spatial 2D convolution, the input and output tensor dimensions

are RT×C×H×W and RT×Cout×H×W , and the size of the

convolution kernel is O(Kc × Kc). Temporal convolution

(Equation 6) needs just O(KF) time complexity per element

for a TRF module with a KF receptive field, and the total time

complexity isO(T×C×H×W×KF). For the FLI module with

a KG receptive field, each time slot requires a computational

complexity ofO(C× C
r ×KG+C× C

r ) = O(C× C
r × (KG+1)),

and overall time complexity is O(T × C × C
r × (KG + 1)).

In contrast to the O(T × C × Cout × H × W) time

complexity required for spatial 2D convolution operations, the

O(H × W × Kc × Kc) and O(T × C × C
r × (KG + 1)) time

complexity of TRF and FLI are acceptable. In addition, spatial

2D convolution needs O(C × Cout × Kc × Kc) parameters,

whereas TRF requires merely O(C × KF) parameters and

FLI requires O(C × C
r × (KG + 1)) parameters. In general,

the space complexity of TRF is substantially less than

that of FLI, and its additional parameters are negligible

when compared to 2D convolution; the time complexity

of TRF and FLI is relatively efficient in comparison to

2D convolution.

Notably, both the TRF and FLI modules are based on the

sliding of time windows, and the computations for distinct time

frame inputs are identical; thus, there is potential parallelism

in the time dimension, and hardware implementation and

optimization are possible. In the meanwhile, the computation

of STSC-SNN depends on floating-point multiplication, which

may reduce the energy efficiency of hardware based on the

binary nature of spike transmission. Nevertheless, there is a good

reason to believe that binary signals are not a strict constraint

for the development of neuromorphic computing, as the carrier

(electrical signal or neurotransmitter) used to transmit the spike

signal in the biological synapse is not a binary information

representing just presence or absence of spike activities

(Rothman, 2013); in fact, a substantial amount of research
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FIGURE 8

Ablation study of temporal modules in SNNs. The accuracy

comparison of di�erent models via training epochs on SHD.

“FCs(Non)” denotes the FC structure without LIFs and activation

functions, “FCs(ReLU)” denotes the FC structure with ReLU

functions behind the first two FC layers, and “SNN” denotes the

FC structure with LIFs behind all three FC layers. Then, STSC

modules are added just behind input (P1) in three models as a

comparison.

has moderately loosened the binary constraint (Shrestha and

Orchard, 2018; Fang et al., 2020a; Wu et al., 2021; Yao et al.,

2021; Yu et al., 2022; Zhu et al., 2022). We believe that with the

development of neuromorphic chips, spiking neural networks

based on analog circuits and in-memory computing will be

capable of surpassing the binary constraints and reconcile the

biological plausibility and computational complexity of synaptic

operations (Roy et al., 2019; Fang et al., 2021a; Tao et al., 2021).

5. Conclusion

In conclusion, this work proposes to endow synaptic

structures with spatio-temporal receptive fields and additional

temporal dependencies in an effort to enhance the temporal

information processing capabilities of SNNs. We propose the

STSC module from the standpoints of both computational

models and biological realities, which consists of TRF

and FLI, implemented with temporal convolution and

attention mechanisms. We verified the method’s reliability on

neuromorphic datasets of SHD, N-MNIST, CIFAR10-DVS, and

DVS-Gesture. Notably, the STSC supports SNNs in reaching the

SOTA result (92.36%) on the SHD dataset, which is comparable

to ANNs’ methods (89 and 92.4%), validating the potential of

SNNs in the spatio-temporal data processing.
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