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Introduction

Cognitive processes engage multiple interacting brain regions. To study these

interactions, researchers analyze neural data with “connectivity” methods, that capture

the temporal co-variation between the fluctuations in the responses at different locations

in the brain. The responses at any given location can depend jointly on the responses at

multiple other locations. Despite this, a vast majority of connectivity studies only focus

on univariate interactions, either between one voxel and another, or between the average

response in one region and the average response in another. By neglecting multivariate

signals, univariate approaches to connectivity lead to inevitable information loss. In

addition, to the extent that information is encoded by multivariate patterns of response,

multivariate connectivity could provide more than just increased sensitivity, offering

a qualitatively different understanding of the transformations of information between

brain regions (Anzellotti and Coutanche, 2018; Basti et al., 2020).

In order to leverage multivariate information in the study of interactions between

brain regions, several new techniques have emerged over the past decade. While in this

article we focus on applications to fMRI, these techniques can be applied to a variety

of data modalities (e.g., EEG, MEG, multi-site electrophysiology). Current techniques

mainly differ in two aspects: (1) whether they are applied directly to BOLD responses

or to derivative measures (e.g., decoding accuracy), and (2) how they model statistical

dependence between regions. Some approaches are applied directly to BOLD responses.

For example, a recent technique (Geerligs and Henson, 2016) estimates the statistical

dependence between two regions by computing the multivariate distance correlation

between their response patterns over time. This measure takes into account the BOLD

signal across multiple voxels within each region, thus avoiding the information loss

that would have occurred if those voxels had been averaged. Another technique uses

transfer entropy (Lizier et al., 2011) as a measure of multivariate statistical dependence.

Computing transfer entropy for high-dimensional patterns is computationally costly,

therefore this technique is typically applied on small numbers of voxels or using

approximations (see Bossomaier et al., 2016). Transfer entropy has the advantage that

it can capture linear as well as nonlinear interactions. Another method that can capture

both linear and nonlinear interactions—multivariate pattern dependence (MVPD)

(Anzellotti et al., 2017; Fang et al., 2022)—trains a predictive model of the relationship
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between multivariate responses in different regions using part

of the data (either directly or using principal components), and

then tests the model’s accuracy on the left-out data, using it as

a measure of statistical dependence. Note that if a nonlinear

relationship between two brain regions has a linear component,

it can also be detected by linear methods.

Some techniques compute multivariate dependence and

then apply additional analysis steps. Multivariate integration

(Sasai et al., 2016) uses multivariate responses at a given

timepoint to predict responses in future timepoints, and then

compares the performance achieved by combining multiple

predictor regions to that achieved with individual predictor

regions in isolation to capture the interactions between multiple

brain areas. Multi-Connection Pattern Analysis (MCPA, Li et al.,

2017) characterizes the relationship between two brain regions

during two different tasks using two separate models. Then, it

tests whether the relationship is task-sensitive by comparing the

model’s predictive accuracy when trained during that same task

than that during the other task.

Certain approaches compute the statistical dependence

between measures derived from multivariate responses—such

as the accuracy of a classifier. This strategy is adopted by

informational connectivity (Coutanche and Thompson-Schill,

2013), which trains a multivariate classifier, and then tests

the correlation between classification accuracies across multiple

trials (or fluctuations in trials’ similarity with prototypical

patterns for the conditions). This offers the opportunity to

evaluate multivariate dependence along specific dimensions

of interest to the experimenter. Derivative measures are also

used in representational connectivity (Kriegeskorte et al., 2008;

Henriksson et al., 2015), which tests the similarity between

representational dissimilarity matrices (RDMs) computed for

different regions. A recent study extended this approach

using Riemannian distance (Shahbazi et al., 2021), which

can potentially capture nonlinear interactions. The features of

different multivariate connectivity methods are summarized in

Table 1. Comprehensive reviews of multivariate connectivity

methods can be found elsewhere (Anzellotti and Coutanche,

2018; Basti et al., 2020), here we focus on selected examples to

illustrate the variety of their possible applications.

Examples of applications

Since multivariate connectivity methods have been

introduced, they have yielded a variety of results across different

areas of Cognitive Neuroscience. In one application, they have

been used to show that representations of the same stimuli vary

across different trials in a coordinated fashion across multiple

brain regions (Henriksson et al., 2015). The authors compared

RDMs across visual areas either during the same trial, or across

different trials (Henriksson et al., 2015), and reported that

RDMs were more similar when they were compared within the

same trial, providing evidence for trial-by-trial fluctuations in

the regions’ response patterns.

Recent work studied what kinds of information

transformations occur between brain regions. Basti et al.

(2019) used multivariate linear models to predict response

patterns in a target region based on response patterns in

a predictor region, and computed three distinct metrics to

characterize each interaction: goodness-of-fit, sparsity, and

pattern deformation. Thanks to this approach, they observed

that different dimensions of the responses in the predictor

region are affected differentially (e.g., amplified or dampened)

by the transformation that maps them onto responses in the

target region.

Other studies used multivariate connectivity to investigate

how information is combined across multiple brain regions.

In a pioneering study, Coutanche and Thompson-Schill (2015)

analyzed the convergence of shape and color information in

the anterior temporal lobe (ATL). They showed participants

images of visual noise and instructed them to look for objects

varying in color and shape, and found that across trials,

the accuracy of decoding objects from response patterns in

ATL could be predicted by jointly analyzing the accuracy of

decoding color from response patterns in area V4 and shape

from patterns in lateral occipital cortex. A related approach—

“feature specific informational connectivity”—has been used to

investigate episodic memory representations (Bone et al., 2020).

More recently, Fang et al. (2019) used an extension of

MVPD based on artificial neural networks to show that the

angular gyrus is characterized by joint statistical dependence

with multiple category-selective regions, suggesting that it might

play a role in combining information about different kinds of

objects. MVPD has also been used to study the multivariate

dependence between fMRI responses across participants (Li

et al., 2019).

Direct comparisons between multivariate and univariate

connectivity methods indicate that multivariate methods are

more sensitive (Coutanche and Thompson-Schill, 2013; Geerligs

and Henson, 2016; Anzellotti et al., 2017). In addition, these

methods have the potential to uncover not only whether but

also how brain regions interact. In an elegant example (Basti

et al., 2019), estimating explicitly a linear transformation matrix

made it possible to determine not just the presence but the

type of interactions between brain regions. These advantages

come at a cost: the implementation of multivariate connectivity

methods is more complex, hindering their broader adoption

in the research community. To address this issue, a growing

number of toolboxes have been recently developed.

Available toolboxes

One of the first toolboxes—the Informational

Connectivity Toolbox (https://lrdc.pitt.edu/coutanche/
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TABLE 1 Summary of di�erent multivariate connectivity methods.

Method Measurement of
neural responses

Can be applied
to resting state
data

Captures
nonlinearities

Predicts
timeseries in
independent
data

Multivariate distance

correlation

Response patterns Yes Yes No

Multivariate transfer

entropy

Response patterns Yes Yes No

MVPD Response patterns Yes Yes (selecting a

nonlinear mapping)

Yes

Multivariate integration Response patterns Yes Potentially No

MCPA Response patterns No Yes Yes

Informational connectivity Decoding accuracy or

correlations to mean

responses

No Potentially No

Representational

connectivity

RDMs Yes Potentially No

Under the heading “Captures nonlinearities”, the entry “Potentially” indicates that the method can be extended in a straightforward manner to a version that captures nonlinearities.

informationalconnectivity)—provides a collection of MATLAB

scripts to run informational connectivity analysis. More

recently, a toolbox for multidimensional connectivity

implemented in MATLAB has been made available with

the article “Multi-dimensional connectivity: a conceptual and

mathematical review” (Basti et al., 2020). This toolbox (https://

github.com/RikHenson/MultivarCon) has been developed to

be flexibly applicable to both fMRI and EEG. Another recently

introduced toolbox developed in Python, PyMVPD (Fang

et al., 2022, https://github.com/sccnlab/PyMVPD), implements

MVPD. This toolbox enables users to train multivariate

models of the interactions between brain regions, and to

test their accuracy on left-out data. PyMVPD offers linear

regression models as well as artificial neural networks, and it

is designed to enable users to customize their own models and

evaluation metrics to suit specific research needs. Thanks to this

functionality, PyMVPD makes it possible to compute linear as

well as nonlinear multivariate statistical dependence.

When it comes to measures of transfer entropy, a fully

multivariate approach that preserves the information in

all voxels is computationally intractable. Various toolboxes

help researchers compute multivariate transfer entropy

with suitable approximation techniques. For example, the

Java Information Dynamics Toolkit (JIDT) (Lizier, 2014)

is a Google code project which provides open-source

code for multiple information-theoretic measures. It offers

classic information-theoretic measures as well as higher-

level measures of information dynamics. MuTE (Montalto

et al., 2014) is a MATLAB toolbox that implements three

estimators of multivariate transfer entropy (i.e., linear

estimator, binning estimator, nearest neighbor estimator) under

either the classical uniform embedding or the non-uniform

embedding. Finally, the Information Dynamics Toolkit

(IDTxl) (Wollstadt et al., 2019; https://github.com/pwollstadt/

IDTxl) is a Python toolbox that implements multivariate

transfer entropy estimation for the effective inference of

network dynamics.

The puzzle of nonlinearity

As discussed in previous sections, an important way that

multivariate techniques can offer novel insight into complex

neural dynamics is by examining the type of interactions

between brain regions, not just their presence. A key goal of

connectivity is to study how information is transformed from

brain region to brain region. A growing body of research has

demonstrated that at a cellular level, information is nonlinearly

transformed (Xu et al., 2012; Tran-Van-Minh et al., 2015; Gidon

et al., 2020; Beniaguev et al., 2021; Lafourcade et al., 2022). For

example, the input/output function of a single pyramidal neuron

can be best approximated by a deep nonlinear neural network

(Beniaguev et al., 2021). Nonlinearities are also observed at

the level of local field potentials (Sotero et al., 2010; but see

Ito et al., 2017). Therefore, it is important for connectivity

methods to be able to capture nonlinear interactions between

regions. As an additional argument, high-performing models

of perception heavily rely on nonlinearities (Khaligh-Razavi

and Kriegeskorte, 2014; Yamins et al., 2014; Balestriero and

Baraniuk, 2018), suggesting that they are an essential part

of neural computation. Therefore, if connectivity measures

aim to elucidate the transformations of representations that

underlie cognition, they need to also capture nonlinear statistical

dependence. On these grounds, recent work has called into
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question whether linear models of neural activity are sufficient

to fully understand the relationship between the activity in

regions across the brain (Anzellotti et al., 2017): models of the

transformation of information across the cortex should offer the

flexibility needed to capture nonlinearities.

To avoid confusion, we need to note that even though

the mapping between the spiking activity of neurons and the

observed BOLD response is also nonlinear, here we focus

instead on nonlinear relationships between the responses in

one region and those in another region. Several methods have

the potential to capture such nonlinear interactions, including

transfer entropy, multivariate distance correlation, MVPD,

and functional coordinates (Lizier et al., 2011; Geerligs and

Henson, 2016; Anzellotti et al., 2017; Poskanzer and Anzellotti,

2022). Informational connectivity (Coutanche and Thompson-

Schill, 2013), if paired with nonlinear decoding techniques,

could also detect nonlinear interactions, and multivariate

integration (Sasai et al., 2016) can also be extended naturally

to capture nonlinearities. Nonlinear methods have the flexibility

to capture a broader variety of interactions between regions

(since typically they can also capture linear interactions), and

the input-output relationships in individual neurons are better

captured by nonlinear functions (e.g., Hodgkin-Huxley models

for individual neurons, or sigmoid models for mean-field

activation). Therefore, the most biologically plausible nonlinear

models of neural interactions are likely to be more biologically

plausible than the most biologically plausible linear models.

While linear models of connectivity are most commonly

used to characterize regional interactions, several studies have

reported evidence of significant nonlinear relationships between

brain areas (Friston et al., 1994; Stephan et al., 2008; Marinazzo

et al., 2011; Poskanzer et al., 2022). Despite nonlinear dynamics

having been found across the brain, however, linear models

remain popular due to sufficient performance and enhanced

interpretability. To add to the interpretability of nonlinear

models, we recently developed a method using a basis set of

Hermite polynomials to estimate the functional relationship

between brain regions (Poskanzer et al., 2022)—it is our

hope that the ability to explicitly define the function that

relates the activity between two brain regions will provide

increased transparency to the future evidence of nonlinear

cortical interactions.

Although there is a strong theoretical grounding for

the study of nonlinear statistical dependence between brain

regions, fMRI evidence is still limited (Cox and Savoy, 2003;

Hlinka et al., 2011; Poskanzer et al., 2022). If nonlinear

interactions should be widespread in theory, why are they

difficult to identify? There are several obstacles to identifying

these types of interregional interactions. For example, fMRI

responses are subject to hemodynamic filtering (De Zwart

et al., 2009), affecting the latency of the BOLD signal. In

addition, fMRI signal is noisy—this noise could overshadow

nonlinear dependencies. Finally, fMRI has limited temporal

and spatial resolution. In particular, the averaging of the signal

across thousands of neurons within each voxel can conceal

the presence of nonlinearities. This problem is compounded

by connectivity methods that investigate univariate dependence

between brain regions by averaging across multiple voxels.

Although multivariate methods cannot overcome the difficulties

inherent to fMRI as an imaging technique, by using multivoxel

patterns of response instead of averaging across voxels to

obtain a univariate timecourse we can avoid compounding the

spatial smoothing.

Discussion

A growing body of multivariate and nonlinear methods

for examining connectivity provide a promising starting point

for future work. However, capturing nonlinear relationships

between the representations encoded in different brain regions

will require additional steps. First, noise could obfuscate such

relationships. While popular denoising techniques have been

shown to remove some spurious nonlinear interactions between

brain areas (Poskanzer et al., 2022), improvements in denoising

could reveal previously hidden nonlinear interactions. When

applying denoising, it will be important to proceed with

caution and to include control analyses to ensure that the

denoising is not introducing artifactual nonlinear relationships.

Second, nonlinear models tend to have more parameters

than linear models. Hlinka et al. (2011) reported finding

evidence of subtle nonlinear interactions when using large

amounts of data; experiments including larger amounts of

data for each participant (e.g., Allen et al., 2022) could

help improve the parameter estimates, making it easier

to detect nonlinearities. Finally, applying multivariate and

nonlinear connectivity methods to data with higher spatial

and temporal resolution, such as multi-site electrophysiology,

could overcome the limitations due to the limited spatial and

temporal resolution of fMRI. FMRI responses correlate with

local field potentials and with spatial averages of single unit

measurements (Issa et al., 2013), thus studying connectivity

through multi-site single unit recordings (Bosman et al., 2012;

Hart and Huk, 2020; Fernández-Ruiz et al., 2021) could

potentially help to understand where the nonlinear interactions

are lost in the steps from single unit recordings to fMRI,

and to evaluate whether it is possible to recover them with

adequate analyses.

Understanding the nonlinear transformation of information

across the brain is a fundamental topic in the study of

brain connectivity. By leveraging a wide array of multivariate

analyses to study rich, high dimensional neural data, researchers

can improve upon their ability to map the computational

topography of the brain.
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