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Background: Spatial transcriptomics (STs) simultaneously obtains the location and amount of gene expression within a tissue section. However, current methods like FindMarkers calculated the differentially expressed genes (DEGs) based on the classical statistics, which should abolish the spatial information.

Materials and methods: A new method named spatial analysis of spatial transcriptomics (saSpatial) was developed for both the location and the amount of gene expression. Then saSpatial was applied to detect DEGs in both inter- and intra-cross sections. DEGs detected by saSpatial were compared with those detected by FindMarkers.

Results: Spatial analysis of spatial transcriptomics was founded on the basis of spatial statistics. It was able to detect DEGs in different regions in the normal brain section. As for the brain with ischemic stroke, saSpatial revealed the DEGs for the ischemic core and penumbra. In addition, saSpatial characterized the genetic heterogeneity in the normal and ischemic cortex. Compared to FindMarkers, a larger number of valuable DEGs were found by saSpatial.

Conclusion: Spatial analysis of spatial transcriptomics was able to effectively detect DEGs in STs data. It was a simple and valuable tool that could help potential researchers to find more valuable genes in the future research.
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Introduction

Spatial transcriptomic (ST) is a revolutionary technology that enables us to obtain information on spatial location and amount of gene expression within a tissue section (Stahl et al., 2016). It provides us with a unique opportunity to elucidate the cellular heterogeneity in tissues with a variety of biological conditions such as tumor and ischemia. Thus, enormous progress in the fields of embryology, oncology, and neuroscience has been made in recent years (Maniatis et al., 2019; Baccin et al., 2020).

Detection of differentially expressed genes (DEGs) among the different biological situations is the fundamental for microarray analysis including ST (Dries et al., 2021). Tools such as FindMarkers or FindAllMarkers, originally designed for single-cell RNA sequencing (scRNA-seq), have been applied in ST data (Stahl et al., 2016). FindMarkers is based on the Wilcoxon rank-sum test, a non-parametric test that belongs to classical statistics (Dutta and Datta, 2016). The essential assumption of classical statistics is that each individual must be independent (Griffith, 2005). Gene expression of one spot is very likely to be affected by the nearby ones, which indicates that the individuals of ST data are not independent. It has been demonstrated by recent studies (Svensson et al., 2018; Xia et al., 2019). In this way, the ST data was not suitable for classical statistics. It is necessary to develop a novel method for DEGs detection that simultaneously considers spatial context and gene expression.

Spatial statistics, or called spatial analysis, is a method primarily used in Geography to analyze the effect of spatial location on certain features (Griffith, 2005). For Health science, it is widely used in epidemiology. Unlike classical statistics, there is an essential assumption in spatial statistics: spatial data gathered from nearby areas are dependent on each other. Therefore, recent studies have noted the value of spatial statistics on the analysis of ST data (Xia et al., 2019; Hirz et al., 2022). There are a lot of parameters in spatial statistics and Moran’s index (Moran’s I) is a measure of spatial autocorrelation, which is characterized by a correlation in a signal among nearby locations. Moran’s I are classified into two categories: global and local. The global Moran’s I is a measure of the overall clustering of the spatial data, and the local Moran’s I is developed to evaluate the local spatial autocorrelation analysis (Li and Calder, 2007). Previous studies used the global Moran’s I to determine if there was global autocorrelation of ST data (Xia et al., 2019; Hirz et al., 2022). How to explore the DEGs via spatial statistics remained unclear.

Spatial statistics can be performed using geographical information systems (GIS) (Kistemann et al., 2002). Direct application of GIS for detection of DEGs in ST data was not yet available. Here we described a method named spatial analysis of spatial transcriptomics (saSpatial) to identify the DEGs in both inter- and intra-cross sections.



Materials and methods


Animal preparation

Adult C57BL/6 mice (8 weeks old, 25–35 g), provided by Animal Center of Southern Medical University (Guangzhou, China), were used in the present study. The animals were housed for at least 1 week before surgery under controlled environmental conditions with ambient temperature of 25°C, relative humidity of 65%, and 12/12 h light-dark cycle. The animals were free access to gain food and water. The protocol was reviewed and approved by the Institution Animal Care and Use Committee of The Second Affiliated Hospital of Guangzhou Medical University (NO. B2019-037).



Distal MCAO mouse model

The mice were anesthetized using isoflurane (1–2%/oxygen). A cortical stroke model was made by occlusion of the distal middle cerebral artery using a previously reported method (Wen et al., 2019). In brief, a 1 cm skin incision was made between the ear and eye (usually right side). The temporal muscle was removed from the skull. A hole was made by the drill right above the MCA and the artery was coagulated by the electrocoagulation forceps proximal and distal to the bifurcation. The temporal muscle was relocated to cover the burr hole. Suture the wound and place the animal in a nursing box at 32°C to recover from anesthesia and return it to the cage.



Magnetic resonance imaging

Magnetic resonance imaging (MRI) scanning was performed 6 h after stroke onset using a Bruker Biospec 7.0 T system (PharmaScan, Bruker Biospin, Rheinstetten, Germany) with a mouse brain array coil and a transmit only volume coil. The anesthetized animals were secured within the cradle by tooth and ear bars, and a mouse head four-channel phased array surface receiver coil was placed on the head. Body temperature was maintained at 37 ± 0.5°C during the MRI scanning procedure by a closed circuit thermal jacket.

T2 weighted scans using a fast-spin echo sequence: echo time (TE) 33 ms, repetition time (TR) 8,000 ms, field of view (FOV) 30 mm × 30 mm, acquisition matrix 512 × 512, acquiring 0.4 mm thick slices. A four-shot spin-echo planar imaging DWI scan (TE 30.5 ms, TR 8,000 ms, FOV 25 mm × 25 mm, acquisition matrix 96 × 96, three directions x, y, z, B-values = 0 and 1,000 s/mm2, 50 contiguous thick, 0.4 mm thick). The PWI can be performed non-invasively by tagging protons in the arterial blood supply with an inversion pulse by using a T2*-weighted echo-planar sequence: TE 76 ms, TR 11,482 ms, FOV 24 mm × 24 mm, acquisition matrix 128 × 128, 1 excitation, repetition 50 times. All MR images were processed on a commercial workstation (ParaVision Acquisition 6.0.1).



Spatial transcriptomics


Tissue section preparation

The mice were sacrificed under deep anesthesia immediately after MRI scanning. The animals were perfused transcardially with 0.1 M PBS (pH 7.4) only, and brains were surgically removed rapidly and embedded in optimal cutting temperature (OCT) compound (SAKURA). The brains with OCT compound were quick-frozen on dry ice immediately and stored at −80°C until cryosectioning process. The cryosectioning placed in a cryostat (Leica, CM1950) to cryosection the OCT embedded tissue blocks into appropriately sized sections for Visium Spatial slides while keeping the samples frozen. Tissue sections were 10 μm thick each. Tissue sections were placed within the frames of Capture Areas on Visium Spatial slides (10X Genomics).



Fixation, staining, and imaging

Tissue section slides were incubated 1 min at 37°C then were fixed in methanol at −20°C for 30 min. For staining, the slides were incubated in Hematoxylin for 7 min and in Bluing Buffer for 2 min. Then, Eosin was added to the slides and incubated for 1 min. After each staining steps, slides were washed with DNase and RNase free water. Stained tissue sections are imaged by the microscope (Pannoramic MIDI, 3DHISTECH).



Tissue pre-permeabilization

Pre-permeabilization was performed to optimal the suitable permeabilization time. Visium Spatial Tissue Optimization Slides and Reagent Kits (10X Genomics) were used for pre-permeabilization. The tissues were permeabilized in Permeabilization Enzyme for varying amounts of time then the Fluorescent RT Master Mix was added to the tissue sections. For tissue removal, the tissue sections were incubated in Tissue Removal Mix for 60 min at 56°C. The best permeabilization time was selected through the fluorescent microscope (Pannoramic MIDI, 3DHISTECH).



Tissue permeabilization and spatial transcriptomic sequencing

Tissue permeabilization and ST sequencing were performed using Visium Spatial Gene Expression Slides and Reagent Kits. The stained slides were incubated in RT Master Mix for 45 min at 53°C for reserve transcription after permeabilization for appropriate time. Next, Second Strand Mix was added to the tissue sections on the slide and incubated for 15 min at 65°C to initiate second strand synthesis. After transfer of cDNA from the slides, barcoded-cDNA was purified and amplified. The amplified barcoded cDNA was fragmented, A-tailed, ligated with adaptors and index PCR amplified. The final libraries were quantified using the Qubit High Sensitivity DNA assay (Thermo Fisher Scientific, Waltham, MA, USA) and the size distribution of the libraries were determined using a High Sensitivity DNA chip on a Bioanalyzer 2200 (Agilent). All libraries were sequenced by illumina sequencer (Illumina, San Diego, CA, USA) on a 150 bp paired-end run.



Differentially expressed genes detected by spatial transcriptomic analysis

We applied fastp with default parameter filtering the adaptor sequence and removed the low-quality reads to achieve the clean data (Chen et al., 2018). Then the feature-barcode matrices were obtained by aligning reads to the mouse genome using SpaceRanger v1.1.0. In order to minimize the sample batch, we applied the down sample analysis among samples sequenced according to the mapped barcoded reads per spot of each sample and finally achieved the aggregated matrix.

Seurat package (version: 3.2)1 was used for spot normalization and regression. PCA was constructed based on the scaled data with all high variable genes. Utilizing graph-based cluster method, we acquired the unsupervised the cell cluster result based the PCA top 10 principal and we calculated the marker genes by FindAllMarkers function with Wilcoxon rank sum test algorithm under following criteria: logFC > 0.25; p-value < 0.05; min.pct > 0.1.




Process of spatial analysis of spatial transcriptomics


Construction of spatial map

(a) Read a file with the.bz2 extension in the ST data folder including the contents of gene expression and coordinate of each individual spot (R Script 1).

(b) Export the data to a CSV file with columns of Barcode ID, gene name, standardized expression level (named as 1.csv), and another CSV file with x- and y-coordinate (named 2.csv) (R Script 1).

(c) Modify the coordinates in the 2.csv file. The value of x-coordinate was plus 40,531,000 and the value of y-coordinate is plus 3,460,000.

(d) Construct the spatial map using software Arcmap 10.8 (ESRI 2019. ArcGIS Desktop: Release 10.8. Redlands, CA, USA: Environmental Systems Research Institute). Create a new map document and choose the Add XY Data; import the 2.csv; the coordinate system was using CGCS2000_3_Degree_GK_Zone_40; export the spatial map data to a file with extension.shp (named without.shp in our experiment).



Data pre-processing

(a) Spilt the 1.csv into files, each of which include one single gene expression. The files are usually named as gene name like A_AQP4.xlsx following the gene of Aqp4, a marker of astrocyte cell. It should be added with “A_” before the gene name. It is realized by R Script 2.

(b) Each excel filename is read by Python Script 1 to exclude the potential errors.

(c) Create a new document in Arcmap 10.8 and import all the excel files by Python Script 2. The document is named and saved as T.gdb.

(d) Create another new map document named Joined.gdb. Add T.gdb to without.shp. This adds the gene expression information to spatial map. It was realized by Python Script 3.



Global Moran’s index calculation

(a) The global Moran’s I statistic is given as:
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where Zi is the deviation of an attribute for feature I from its mean (Xi-[image: image]), ωi,j is the spatial weight between feature i and j, n is equal to the total number of features, and S0 is the aggregate of all the spatial weights:
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The Zi-score for the statistic is computed as:
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where:
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It was realized by Python Script 3.

(b) Extract the data of global Moran’s I, expected index, variance, z-score and P-value of each gene into one excel file (Python Script 4).



Local Moran’s I calculation

(a) The local Moran’s I statistic is given as:
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Where Xi is an attribute for feature i, [image: image] is the mean of the corresponding attribute, ωi,j is the spatial weight between feature i and j, and:
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With n equating to the total number of features.

The ZIi-score for the statistics are given as:
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where:
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(b) The local Moran’s I of each spot is realized by Python Script 5 using the files of Step “Construction of spatial map” (d), Step “Data pre-processing” (c and d) (without.shp, T.gdb and Joined.gdb).

(c) The information includes local Moran’s I, P-value, ZIi-score and spatial cluster type (CO type).



Comparison between region of interest and other regions

(a) Using the spatial map constructed in the Step “Construction of spatial map,” the ROI is circulated. The spot barcode in the ROI is obtained.

(b) The number of high-to-high (H-H) or low-to-low (L-L) spots in the ROI is extracted and compare with other regions using Chi-Squared Test. It is realized by R Script 3.

(c) Top 20 genes of each comparison are used for bubble plot.



Visualization

(a) For any specific gene identified by the above analysis, add the CSV file to spatial map.

(b) Run Hot Spot analysis by Arcmap 10.8.

(c) Use the Legend, and convert it into graphics.

(d) Export the figure.





Results


Flow of spatial analysis of spatial transcriptomics method

As shown in Figure 1A, the spatial maps were constructed based on the spot barcodes derived from the ST data. The gene expression quantities were then connected to the corresponding spots. Global Moran’s I was calculated to determine whether it was clustered. If not, the gene was aborted for further analysis. Next, the ROI was circled in the ST maps and the spot barcodes of the ROI were obtained. Then, local Moran’s I was used to determine the CO type, which was group into five categories: non-significant, H-H, L-L, high-to-low (H-L), and low-to-high (L-H) spots (Figure 1B). The number of H-H and/or L-L spots were used for the following statistics. Finally, visualization of DEGs was performed using Hot Spot analysis with Arcmap 10.8.


[image: image]

FIGURE 1
Spatial analysis of spatial transcriptomics (saSpatial) flow chart. (A) Flow chart of saSpatial. (B) Spatial cluster type. ST, spatial transcriptomics; ROI, region of interest; H-H, high-to-high; L-L, low-to-low; H-L, high-to-low; L-H, low-to-high.




Spatial autocorrelation patterns revealed by global Moran’s I

Global Moran’s I measures the spatial autocorrelation based on both the locations and the quantities of features. A value of 0 for Moran’s I indicated no autocorrelation. In the brain section, no gene showed no autocorrelation. Z-score and P-value were used to evaluate the significance of global Moran’s I (Figure 2). Based on the global Moran’s I, z-score and P-value, the spatial pattern were group into: clustered, random and dispersed (Figure 2). If global Moran’s I was close to + 1 and z-score was more than 1.65, the pattern was clustered, which means elevated gene expression had similar elevation values close to each other like Nrgn (Figure 2). If global Moran’s I was close to −1 and z-score was less than −1.65, the pattern was dispersed, which means dissimilar values were next to each other like a checkerboard (Figure 2).


[image: image]

FIGURE 2
Global Moran’s index revealing three spatial autocorrelation patterns. Clustered, z > 1.65 and P < 0.1; random, –1.65 < z < 1.65 and P > 0.1; dispersed, z < –1.65 and P < 0.1. ST, spatial transcriptomic; CI, confidence interval.




Differentially expressed genes of different regions in normal brain revealed by spatial analysis of spatial transcriptomics

Spatial transcriptomic data of normal brain section was obtained from the 10X Genomics dataset. The brain hemisphere was divided into sensorimotor cortex, basal ganglia, cingulate gyrus, entorhinal cortex, hippocampus, thalamus, and hypothalamus (Figure 3A). The ratio of H-H spots in the sensorimotor cortex was calculated and is shown in Figure 3E. Then we determined the proportion of H-H spots (more than 50% in Figure 3E) in the other brain regions (Figure 3F). For instance, Arpp19 mostly enriched in the sensorimotor cortex while it also was found in the cingulate gyrus and entorhinal cortex, which was verified in ST map (Figures 3B–D,F). DEGs in other brain regions were also identified and typical genes are shown in Figure 3G. All these results indicated that saSpatial was able to detect DEGs of ROI within a section.
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FIGURE 3
Differentially expressed genes (DEGs) in the different brain regions. (A) Brain region. ROI indicates sensorimotor cortex. (B) Yellow area indicates sensorimotor cortex in HE images. (C) Arpp19 of ST map. (D) Hotspot of Arpp19. (E) DEGs in the sensorimotor cortex. Ratio = The number of H-H spots in sensorimotor cortex/The total number of spots in the section. (F) Septicity of DEGs in the sensorimotor cortex. Ratio = The number of H-H spots in each region/The total number of H-H spots. (G) Marker genes of each brain region. ST, spatial transcriptomic.




Up-regulated differentially expressed genes of ischemic penumbra and core

Spatial analysis of spatial transcriptomics was then applied to determine the DEGs in the brain section from ischemic stroke. Ischemic stroke was induced in a mouse model by occlusion of the distal middle cerebral artery. MRI scanning was performed 6 h after stroke onset to determine the ischemic penumbra (mismatch of perfusion- and diffusion-weighted imaging) and core. Penumbra has been defined as brain tissue at a risk of infarction (Albers et al., 2018). The brains were then harvested for ST sequencing. Ischemic core and penumbra and the corresponding area in the normal brain section were marked with reference to HE and MRI images (Figure 4B).
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FIGURE 4
Upregulated DEGs revealed by saSpatial. (A) Bubble plots of top20 DEGs. P-values are indicated by circle size; scale adjacent to the plot. The rate difference between stroke and NC group is indicated by color. NC, normal control. P, penumbra. (B) Ischemic brain area. Ischemic core (red), penumbra (yellow), and normal area (green) in the sensorimotor cortex. (C) Typical DEGs of ischemic core and penumbra. N = 3. CI, confidence interval.


Considering numerous gene expressions were similar in the ischemic penumbra and core, which was also proved by the following data (Figure 4A), there were three comparisons of the number of H-H spots: between the ischemic penumbra or core and the corresponding area in the normal brain sections; between the ischemic penumbra or core and the normal region in the ischemic stroke brain section; and between ischemic core and penumbra (Figure 4A). Bubble plots of the top 20 DEGs for each comparison identified by saSpatial are shown in Figure 4A. For instance, Gm42418 was highly expressed in the ischemic hemisphere while there was no significant difference between ischemic ore and penumbra. In contrast, Cdk5r2 was significantly increased in the ischemic core but not in the penumbra (Figure 4C). Hence, Cdk5r2 but not Gm42418 was a marker gene for ischemic core. As for ischemic penumbra, saSpatial identified the up-regulated DEGs like Hspa1a, which was like a thin loop around the core (Figure 4C).



Down-regulated differentially expressed genes of ischemic penumbra and core

Substantial attention was paid to the up-regulated expression, while expression of numerous genes were halted by ischemia. In contrast to the up-regulated DEGs as described above, the number of L-L spots was used for detection of down-regulated DEGs. Bubble plots of the top 20 DEGs for each comparison are shown in Figure 5A. There were a lot of genes down-regulated in ischemic area while most of them showed no significant differences between ischemic core and penumbra such as Vps8 and Sparc (Figure 4A). For the ischemic core, Lrrc77 was a marker gene (Figure 5B). As for the ischemic penumbra, down-regulated DEGs like Prkcb were identified (Figure 5C).
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FIGURE 5
Downregulated DEGs revealed by saSpatial. (A) Bubble plots of top20 DEGs. P-values are indicated by circle size; scale adjacent to the plot. The rate difference are indicated by color. NC, normal control. P, penumbra. Typical DEGs of (B) ischemic core and (C) penumbra. N = 3. ST, spatial transcriptomic; CI, confidence interval.




Comparation of spatial analysis of spatial transcriptomics with FindMarkers

Differentially expressed genes detected by saSpatial were compared with that detected by FindMarkers (Figure 6). For the ischemic core, FindMarkers found only 210 DEGs while there were 1,021 DEGs identified by saSpatial (Figure 6A and Supplementary Table 1). The majority of DEGs detected by FindMarkers could be also found by saSpatial (Figure 6A) while numerous genes like Itm2a, Foxp1, Cbln2, Mtus2, Nab2, and Cnp were not detected by FindMarkers (Figure 6B). For the ischemic penumbra, FindMarkers can only find 44 DEGs and the majority of DEGs were missed (Figure 6C). saSpatial found that there were 497 potentially valuable DEGs in the ischemic penumbra (Figure 6C) such as Gng13, Cyr61, Fosb, Gadd45g, S100b, and Gadd45b, which were confirmed by ST maps (Figure 6D).


[image: image]

FIGURE 6
Comparison between saSpatial and FindMarkers. (A) Venn map of ischemic core. (B) DEGs only found by saSpatial in the ischemic core. (C) Venn map of penumbra. (D) DEGs only found by saSpatial in the penumbra. N = 3. CI, confidence interval.




Differentially expressed genes of different cortical layers

The sensorimotor cortex is composed of six layers. DEGs in each layer were revealed by saSpatial and the top 3 DEGs in each layer are shown in Figure 7A. Layer V is the internal pyramidal layer and contains large pyramidal neurons, the axons of which form the corticospinal tract. saSpatial showed that Ighm was a marker gene in Layer V (Figure 7B).
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FIGURE 7
Differentially expressed genes (DEGs) in the cortex layers. (A) Top 3 DEGs in the layers. (B) Typical DEGs. ST, spatial transcriptomic.




Differentially expressed genes of different cortical layers in the ischemic core

Different cortical layers responded differently to ischemic insult. Six layers of ischemic core and that in the normal brain section were marked with reference to the HE images (Figure 8A). The fraction of DEGs in each layer is shown in Figure 8B. The ST and Hotspot maps are shown in Figure 8C. For example, Cbln4, which was not found in the normal brain, was up-regulated in the ischemic core and enriched mainly in the Layer III. Scn4b was up-regulated in the Layer V while it was down-regulated in other layers (Figures 8B,C).


[image: image]

FIGURE 8
Heterogenicity of DEGs within the ischemic cortex. (A) Six layers of cortex in the ischemic cortex. (B) Typical DEGs. (C) ST map and Hotspot of typical DEGs. ST, spatial transcriptomic.





Discussion

In the present study, we developed a simple, reliable and reproduceable method, named saSpatial, to detect the DEGs in ST data. DEGs from different biological situations within the same section or across the different sections can be clearly detected by saSpatial. Heterogenicity of a particular region can also be characterized by saSpatial. In comparison to the traditional method, saSpatial was able to detect more valuable DEGs.

Classical statistics-based methods such as FindMarkers detected the DEGs only referred to the value of gene expression (Dries et al., 2021). It neglects a basic fact that gene expression of cells is effected by the other cells especially the nearby ones. Several other methods such as SpatialDE have been developed to explore the variable genes from the spatial context while they failed to detect the DEGs of any specific ROI (Svensson et al., 2018; Xu and McCord, 2021; Zhu et al., 2021). Based on the spatial statistics, the CO types of any individual spot included information about both the effect of spatial location on gene expression and gene expression quantity. The chi-squared test was used to compare the number of H-H or L-L spots between the ROI and the other regions. This simple approach provided a tool for analyzing the ST data to detect the DEGs and characterize their heterogeneity within the ROI. To the best of our knowledge, it was the first tool to detect the DEGs in ST data with regard to location and value of gene expression simultaneously. We then used this tool to investigate the expression and distribution of genes in the normal and ischemic stroke brain sections.

Firstly, we used saSpatial to detect the DEGs in different regions of the normal brain section. Many previous studies have used ST to characterize the genetic heterogeneity in brain section. Usually, they used snRNA data to find the gene expressions in certain regions and projected the findings onto ST data like the multimodal intersection analysis (MIA) method (Baccin et al., 2020; Moncada et al., 2020). In contrast, saSpatial detected DEGs directly and quickly. In the present study, saSpatial found various DEGs in the different brain regions, such as Arpp19 for sensorimotor cortex and Cabp7 for hippocampus.

Then, saSpatial was used to detect the DEGs in the ischemic brain. Ischemic stroke was one of the leading causes of mortality and morbidity (Hankey, 2014). Ischemic insult resulted in significant changes of gene expressions (Xu et al., 2017). In the present study, saSpatial found various DEGs in the ischemic brain area. Ischemic brain area was divided into ischemic core and penumbra, of which DEGs was hard to distinguish. saSpatial can successfully distinguish the DEGs in the ischemic core and penumbra including the up- and down-regulated ones. Furthermore, more DEGs were found by saSpatial than that by FindMarkers.

Finally, saSpatial characterized heterogenicity of the gene expressions in the normal and ischemic cortex. Cortex genetic heterogenicity has been proved by many other studies (Stahl et al., 2016). Cortex was made up of six layers, each of which was a limited area like Layer I. How to identify the heterogenicity within a small region in ST data remained challenge. We used saSpatial and found that Cfh dominated in the Layer I and Ighm was the marker gene of Layer V. As for the ischemic cortex, Cbln4 was up-regulated in the ischemic core and enriched mainly in the Layer III while Scn4b was up-regulated in the Layer V and down-regulated in other layers.


Limitations

Spatial analysis of spatial transcriptomics was based on the ST data. Hence, the resolution of saSpatial relied on the raw ST data. A spot in ST data represented genes of an area including about 10 cells. Thus, saSpatial cannot reveal the cellular types. Secondly, CO types of spots mainly consider the effect of adjacent spots while some genes were affected by remote ones. Finally, the DEGs identified by saSpatial needs to be verified by the additional biological experiment.




Conclusion

In conclusion, saSpatial was constructed based on local Moran’s I and successfully detected the DEGs in ST data. It would help the potential researchers to find more valuable DEGs in the future study.



Data availability statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request. ST data was available in the GEO site: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199066 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199067. The code was provided in the Supplementary material.



Author contributions

ZQ and SL collected the data and prepared the first draft. ML helped perform the animal model and MRI scanning. SZ and ZW analyzed as part of the data. YJ designed the whole study and approved the final manuscript. All authors contributed to the article and approved the submitted version.



Funding

This study was financially supported by the National Science Foundation of China (81870933), Guangdong Basic and Applied Basic Research Foundation (2021A1515011351), Guangzhou Science and Technology Project (202102010127), and the Opening Lab Program of Guangzhou Medical University (0506308) to YJ. High Level Project of Medicine in Longhua District, Shenzhen (HLPM201907020102) and Construction funds of key medical disciplines in Longhua District, Shenzhen (MKD202007090208) to SZ.



Acknowledgments

We thanked Dr. Peidong Hua for the using of the ArcGis software.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnins.2022.1086168/full#supplementary-material


Footnotes

1     https://satijalab.org/seurat/


References

Albers, G. W., Marks, M. P., Kemp, S., Christensen, S., Tsai, J. P., Ortega-Gutierrez, S., et al. (2018). Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 378, 708–718.

Baccin, C., Al-Sabah, J., Velten, L., Helbling, P. M., Grunschlager, F., Hernandez-Malmierca, P., et al. (2020). Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48. doi: 10.1038/s41556-019-0439-6

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. doi: 10.1093/bioinformatics/bty560

Dries, R., Chen, J., Del Rossi, N., Khan, M. M., Sistig, A., and Yuan, G. C. (2021). Advances in spatial transcriptomic data analysis. Genome Res. 31, 1706–1718.

Dutta, S., and Datta, S. (2016). A rank-sum test for clustered data when the number of subjects in a group within a cluster is informative. Biometrics 72, 432–440. doi: 10.1111/biom.12447

Griffith, D. A. (2005). “Spatial Autocorrelation,” in Encyclopedia of Social Measurement, ed K. Kempf-Leonard (Amsterdam: Elsevier Science), 581–590

Hankey, G. J. (2014). Secondary stroke prevention. Lancet Neurol. 13, 178–194.

Hirz, T., Mei, S., Sarkar, H., Kfoury, Y., Wu, S., Verhoeven, B. M., et al. (2022). Integrated single-cell and spatial transcriptomic analyses unravel the heterogeneity of the prostate tumor microenvironment. BioRxiv [Preprint]. doi: 10.1101/2022.03.18.484781

Kistemann, T., Dangendorf, F., and Schweikart, J. (2002). New perspectives on the use of Geographical Information Systems (GIS) in environmental health sciences. Int. J. Hyg. Environ. Health 205, 169–181.

Li, H. C. A., and Calder, N. C. (2007). Beyond Moran’s I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model. Geogr. Anal. 39, 357–375.

Maniatis, S., Aijo, T., Vickovic, S., Braine, C., Kang, K., Mollbrink, A., et al. (2019). Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364, 89–93.

Moncada, R., Barkley, D., Wagner, F., Chiodin, M., Devlin, J. C., Baron, M., et al. (2020). Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342.

Stahl, P. L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82.

Svensson, V., Teichmann, S. A., and Stegle, O. (2018). SpatialDE: Identification of spatially variable genes. Nat. Methods 15, 343–346. doi: 10.1038/nmeth.4636

Wen, Z., Jiang, Y., Zhang, L., Xu, X., Zhao, N., Xu, X., et al. (2019). The effect of anterior communicating artery flow on neurovascular injury and neurobehavioral outcomes in mice with recurrent stroke. Brain Res. 1724:146440. doi: 10.1016/j.brainres.2019.146440

Xia, C., Fan, J., Emanuel, G., Hao, J., and Zhuang, X. (2019). Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl. Acad. Sci. U S A. 116, 19490–19499. doi: 10.1073/pnas.1912459116

Xu, X., Wen, Z., Zhao, N., Xu, X., Wang, F., Gao, J., et al. (2017). MicroRNA-1906, a Novel Regulator of Toll-Like Receptor 4, Ameliorates Ischemic Injury after Experimental Stroke in Mice. J. Neurosci. 37, 10498–10515. doi: 10.1523/JNEUROSCI.1139-17.2017

Xu, Y., and McCord, R. P. (2021). CoSTA: Unsupervised convolutional neural network learning for spatial transcriptomics analysis. BMC Bioinformatics 22:397. doi: 10.1186/s12859-021-04314-1

Zhu, J., Sun, S., and Zhou, X. (2021). SPARK-X: Non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 22, 184. doi: 10.1186/s13059-021-02404-0



OPS/xhtml/Nav.xhtml




Contents





		Cover



		Detection of differentially expressed genes in spatial transcriptomics data by spatial analysis of spatial transcriptomics: A novel method based on spatial statistics



		Introduction



		Materials and methods



		Animal preparation



		Distal MCAO mouse model



		Magnetic resonance imaging



		Spatial transcriptomics



		Tissue section preparation



		Fixation, staining, and imaging



		Tissue pre-permeabilization



		Tissue permeabilization and spatial transcriptomic sequencing



		Differentially expressed genes detected by spatial transcriptomic analysis







		Process of spatial analysis of spatial transcriptomics



		Construction of spatial map



		Data pre-processing



		Global Moran’s index calculation



		Local Moran’s I calculation



		Comparison between region of interest and other regions



		Visualization











		Results



		Flow of spatial analysis of spatial transcriptomics method



		Spatial autocorrelation patterns revealed by global Moran’s I



		Differentially expressed genes of different regions in normal brain revealed by spatial analysis of spatial transcriptomics



		Up-regulated differentially expressed genes of ischemic penumbra and core



		Down-regulated differentially expressed genes of ischemic penumbra and core



		Comparation of spatial analysis of spatial transcriptomics with FindMarkers



		Differentially expressed genes of different cortical layers



		Differentially expressed genes of different cortical layers in the ischemic core







		Discussion



		Limitations







		Conclusion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Publisher’s note



		Supplementary material



		Footnotes



		References

















OPS/images/fnins-16-1086168-i000.jpg





OPS/images/cover.jpg
, frontiers ‘ Frontiers in Neuroscience

Detection of differentially
expressed genes in spatial
transcriptomics data by spatial
analysis of spatial
transcriptomics: A novel
method based on spatial
statistics












OPS/images/logo.jpg
'frontiers ‘ Frontiers in Neuroscience







OPS/images/cross.jpg
@ Check for updates.





OPS/images/fnins-16-1086168-g004.jpg
Control

Sitx1a
Snap25-
Slc17a7-
Shank1 -

Serf2 -

Septd -
Sema7a-

Rps27 -

Rapgef4 -

Qdpr

2etetadatatetes
TR HHHH

elel
OO0
yeesesse]

Area

mt-Nd5 -

mt-Nd4 -
mt-Nd3 -
mt-Nd2 -

ST

mt-Co2 -

Kif5a -

000¢° 000000200000 - Qoo coo000e @
Ischemic core

Gm47283+
Gm42418-
Fti1 -
Fth1 -

Hotspot

Enpp2 -

Csrp1 -

Cox8a -
Cox6al -
Cnp -
Clstn1 -
Cldn11 A
Chn1 -
Cdlk5r2-
Cck -
Camk2n1-
Atp2b2 A
Atp1at
Arpp19 -
Arc -
Apod -

ST

1
1
1
1
L

Penumbra

|
1000000200200 -200 @90:--000°0--0000000000000200000:°0000° -000000°

1000000 °00000000000°2°0000¢°¢° 000000 ¢°°00°0000°°000000000000000000°¢°
1
@

3

>

5]

>
@-o'oo.oti.;oooo.ooooﬁQoooo.o.ioo...o.‘“.‘.....ooooo.o.oo.ooo...

/ - 00000000 -0 0@

"o-o.ooooo000.0..0o.o..‘o0............‘.......000000000...0000.
L4

P Q &
‘0

00

Hotspot

-log10(Pvalue) Rate difference
® 40

® 30 -

@ Cold99%CI O Hot90%CI
@ 120 0.0 ®Cold95%Cl ®Hot95%Cl
® <o ik ©Cold90%Cl ®Hot99%Cl
@Non






OPS/images/fnins-16-1086168-e001.jpg
So= ii‘“w

i=1 j=1





OPS/images/fnins-16-1086168-g003.jpg
©®Cold99%ClI
©@Cold95%ClI
OCold90%ClI
ONon
(Hot90%ClI
©@Hot95%ClI
@®Hot99%CI
E F | Mo
l'llplal
g e
vau'."lu
C:‘b,:‘i
Tmem.;:'a:;:
Tmem132a .
Snap25 I Sensorimotor cortex
AtplaT IiBasal ganglia
Ctxn1 ]
Cabp1 I Cingulate gyrus
FE%‘,';? I Entorhinal cortex
D,sy,"ﬁ . Hippocampus
igap1
FbxI16 B Thalamus
l"llﬁ'
Dclk1 I Hypothalamus
oyt1
'v"_;n:'f
Sp.;i::;;z
K‘ll’l"
Zipses
celiad
Osbpl1a
Arpp 21 |
Cx3cl1 .
1
<
e
.|
i B >50%
Nars - -
b — - 10-50%
ef m - o
A — B <10%
Npy 1r-jm , ,
0.0 0.5 1.0
G Cingulate gyrus Entorhinal cortex Hippocampus Basal ganglia Thalamus Hypothalamus
Ll
-
-
N

Hotspot






OPS/images/fnins-16-1086168-e002.jpg





OPS/images/fnins-16-1086168-g006.jpg
Penumbra

Ischemic core

A

1a

saSpat

ST analysis

Cyr61

Gadd45g

Gadd45b

Gng13

3 S
& AT
.
- ‘e
ogitete .
..‘
- e
. 2 o E
onette . e
R R )
s .
3
3
5
o .
A
=
"..-n.»nnnnlu (T
.....u.«mtumn-...&mauwmm o
SEEIRCC R
‘..mm s .mmm..

2505
s

e

Fosb

. £33 5
. 2 3
35 . . .
%se .
.

. . o g ®
ouo sertce 3
o.nuo-auo- % L e e
*ee .

.
.
. . o
-
-
.
. 3 A
.
. .
. .
.

:

S100b

saSpatial

ST analysis

Foxp1

Mtus2

Cnp

Itm2a

Cbin2

Nab2






OPS/images/fnins-16-1086168-e003.jpg
Elll =






OPS/images/fnins-16-1086168-g005.jpg
A Zzip365-
Vps8 -
Vamp2 -
Tspyl1 -
Tpi1 -
Tmem132a -
Syt1 -
Syn1 -
Sv2b -
Stxbp1 A
Stk32c
Sptbn2 4
Sparc
Snap25-
Sle17a7+
Sh3gl2
Serinc1
Scn1b A
Rpsa -
Rps8 -
Rps29 -
Rps27a-
Rps26
Rps24-
Rps21-
Rps12-
Rpl9 A
Rpl37 -
Rpl35a -
Rpl26 -
Rpl21 -
Rpl11 1
Rgs4 -
Resp18-
Rab6a
Rab3a -

Prkar1b -
Ppp3ca-
Phactr1-

Pde1a -
Pcsk2A
Nnat -
Nap115 -
Mef2c -
Mapk1 -
L7
Krt12 -
Kalrn -
Hap1 -
Gpmé6a
Foxg1 -
Epop -
Ensa -
Enc1 -
Dnm1 -
Dbi A
Dact2 -
Cyfip2 A
Cx3cl1 -
Cplx2 -
Clstn1 -
Chn1 A
Cdk5r2 A

Camk2a-
Calm2 -
Calm1 -

Atpbv1b2-
Atp2b2 -

Arf3 -

Aldoa -

Agt
AC161763.1 -

© @ ) @
. G @
© @ ®
e & & e
@ ® 2]
@ ® L @
® @ ® ®
© @ ® ®
@ @ ® °
@ L] ]
® ° ® @
@) s} o @
@ O
o © @) @
o @ © ©
@] ® 8 ®
@ ] e
® O @ ®
e O ® O
. O @ ©
& © o @)
° . ® .
e © ® &)
o . @ &
® . S )
-} . @ .
° . ® @)
® . ® @
- e - e
° S ® ©
L ] . ® .
- @ o
® 5] O ®
@ @)
® @ L] @
@ o ® o
® ° ®
s __@___e_ _ "
® [52) -]
o O @ @
@ @ ° ]
] ® ® @
® ® ® @
S | Lo
@ @)
o @ @) ®
@] @ @ ®
@ _______&_]
@ ®
° O @) ®
O O
@ &} L] ®
O ® © ®
=} ] ] ®
@] @ [} °
e @ @ @
&) ] ° °
® © e ]
(&) ] [} L]
@ [ ] ()
° . . (@]
® &) & ®
® @ ) ®
© @ ® @
) . . @
° & @] ®
@ @ ® (5]
B & @ ®
@ ® 5] [
- @ e e
@ @ @) ®
@ ® °
O O
° ‘ ) O

B
Ischemic core
MIGAS Control
- Lrre17
-
(/)]
-log10(Pvalue) ‘
@50 HE
@
@100
@12
e
Rate difference| O
.
05 3
(@)
00 T
-05
: Penumbra
MEAD Control
=°::~"°‘::'-:f:;‘5';':5‘.§.‘:::§':’-:§5:5 é%g%‘:g .E%%}%%}%g . ‘.:E.: )
“ el
)
” e
(7p)
i
(@)
o
7y}
it
@)
"

NC Core P Normal Core Normal
Stroke Core P Core P P

@®Cold99%ClI O Hot90%ClI
@Cold95%CI @Hot95%CI
©Cold90%ClI @®Hot99%ClI
@Non






OPS/images/fnins-16-1086168-e004.jpg
v (1] = E[] - EUP





OPS/images/fnins-16-1086168-g002.jpg
Clustered Random Dispersed

Moran’s Index

Significance Level Critical Value

(P-value) (Z-score)
0.01 9 < -2.58
0.05 1 -2.58-- -1.96
0.10 1 -1.96-- -1.65

- [1-1.65--1.65

0.10 1 1.65--1.65
0.05[=F 1.96--2.58
0.01 = >2.58

Significant

P
Significant Random

Random \ Significant Random

Significant

ST

Ecosc3

i
" {iégig :
i

Sk LR bR

] o
s Sl P
- A .

Hotspot

“®Cold99%CI
®Cold95%Cl
©1Cold90%CI

@®Hot99%Cl






OPS/images/fnins-16-1086168-i001.jpg





OPS/images/fnins-16-1086168-g001.jpg
A 1.Construct a spatial ma 2.Add gene expression 3.Global Moran’s /I calculation

Significan Significant

| 5.Local Moran’s I calculation 4.ROIl obtained from ST data

6.Comparison between ROI
and other regions

I Chi-square test P<0.05 |






OPS/images/fnins-16-1086168-e000.jpg
o 1 T S 0y
% >z






OPS/images/fnins-16-1086168-e009.jpg
viL]

=E[?]-

E[L)?





OPS/images/fnins-16-1086168-g008.jpg
MCAO

Control

MCAO
Control

ST

Hotspot

Hotspot

Zdhhc18

¢

Zdhhc18
MCAO
Control |
Cbin4

mcaoy

Control |
Cartpt
MCAO
Control
Prpf38b
mcAo I
Control | 1
Scn4b
MCAO
Control
Gadd45a

MCAO |

Controly 1

[
|
[
[
[ Hba'-velzéAo _____________
[
[
[
[
|

Crct1

MCAO [

Mtus2
MCAO
Control
Sic36a1
MCAO| |
Control
bin2
MCAO
Control
Scrt1
MCAO
Control
Kcna2
MCAO

iri24a-1hg
MCAO
Control

Midn
MCAOIEEE = .
vil,,

0.0 0.5 1.0
| |l 1 mmiv






OPS/images/fnins-16-1086168-e005.jpg





OPS/images/fnins-16-1086168-g007.jpg
mil Il miV BV mvV

ST Hotspot ST Hotspot
e _ Gm12371) ...

Cfh
Prg4
Cdc42ep3

| [

A m |
Atp1a2
L

Gm12371
Slc25a25

Cacnalg : Bcl6] ..
||||: Uhrf1bp1 L |
Rspo1
Mylip
|V[ Nsmf=
Bcl6

- Ighm .

SR Ty
pRa

esped Tmem88b .
%ﬁ;w.}% . :

Ighm
V[ Rps16
Rpil11

Dbndd2
VI[ Tmem88b

Lpar1

Pam
T [ Prag1
Evc2

Cbin2
/1l I: Acot5
Pich2

... lPacsin2

Hsb6st2

m/lv[ Pacsing
Tdg

Lypd6b

VIV [ Amn
Ndufa11

Ttr
VIV I[ Rpl30
Penk
Anxa2
v |[ Txnip
Ptgds

Acvric . Acvr1c

|-"|[ Nupr1 B

Glg1
Boc
II-IV[ Reep2
Epha4
Scrt1
III-V[ Cend1
Adgra1

Myh3
IV-VI[ Arhgap25
Aldh1b1






OPS/images/fnins-16-1086168-e006.jpg





OPS/images/fnins-16-1086168-e007.jpg





OPS/images/fnins-16-1086168-e008.jpg





