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Energy efficiency and coding of
neural network
Shengnan Li, Chuankui Yan* and Ying Liu

College of Mathematics and Physics, Wenzhou University, Wenzhou, China

Based on the Hodgkin-Huxley model, this study explored the energy

efficiency of BA network, ER network, WS network, and Caenorhabditis

elegans neural network, and explained the development of neural network

structure in the brain from the perspective of energy efficiency using energy

coding theory. The numerical simulation results showed that the BA network

had higher energy efficiency, which was closer to that of the C. elegans

neural network, indicating that the neural network in the brain had scale-

free property because of satisfying high energy efficiency. In addition,

the relationship between the energy consumption of neural networks and

synchronization was established by applying energy coding. The stronger the

neural network synchronization was, the less energy the network consumed.

KEYWORDS

Hodgkin-Huxley neuronal model, neural network, energy efficiency, energy coding,
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1. Introduction

Neural networks are widely studied. In the human brain, neurons are connected by
synapses to form structurally complex and computationally efficient neural networks. In
processing various sensory information, the brain consumes a large amount of metabolic
energy (Kety, 1957). Data show that the weight of the mammalian brain accounts for
only 2% of the total body weight, but consumes about 20% of the total metabolic energy
(Rolfe and Brown, 1997). Moreover, more than 70% of the energy consumed in the
cortex is used directly for neural signal processing within subcellular cortical circuits
(Howarth et al., 2012). For example, the opening or closing of ion channels in APs
and the release of neurotransmitters in synaptic transmission (Laughlin et al., 1998;
Valente et al., 2016). This metabolic energy expenditure may be large enough to affect
the design, function and evolution of the brain, suggesting that the brain has to operate
with extremely high energy efficiency (Aiello and Wheeler, 1995; Niven and Laughlin,
2008). Therefore, it is important to study the energy efficiency of neural networks. In
the past decades, many studies have revealed strategies used by the nervous system
to improve energy efficiency, including optimizing ion channel dynamics (Alle et al.,
2009; Schmidt-Hieber and Bischofberger, 2010), optimizing the number of channels
on individual neurons and the number of neurons in neuronal networks (Schreiber
et al., 2002; Yu and Liu, 2014), maintaining a stable somatic temperature to minimize
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the energy consumed by individual action potentials (Yu et al.,
2012; Wang et al., 2015), sparse coding (Olshausen and Field,
2004; Lörincz et al., 2012; Yu et al., 2014), neurotransmitter
release at synapses with low probability (Levy and Baxter, 2002;
Harris et al., 2012), etc. In addition, the structure of neural
networks must also evolve to meet high energy efficiency due
to the limited total metabolic energy in the brain (Corty and
Freeman, 2013). However, due to the sheer number of neurons
and synapses and the complex structure of connections, the
calculation of the energy efficiency of neural networks remains
one of the long-term challenges of modern neuroscience.

In recent years, the ratio of information rate to energy
consumption rate has been mostly used to evaluate energy
efficiency. It describes how much effective information is
delivered by the network for each unit of energy consumed.
The method needs to calculate the amount of energy consumed
and the amount of information transmitted by the neural
network. Methods for calculating the energy consumption
of neurons are constantly being developed. Currently, there
are sodium ion quantity estimation method (Stein, 2002;
Crotty et al., 2006), cable energy equation estimation method
(Carter and Bean, 2009), equivalent circuit method (Moujahid
et al., 2011), and energy function method (Wang et al., 2008;
Torrealdea et al., 2009). For the calculation of information,
Shannon’s information theory is mainly applied. The entropy
was introduced to quantify the amount of information
transmitted by the system (Aczél and Daróczy, 1975). In
addition to the method of evaluating network efficiency
by the ratio of information rate and energy consumption
rate, the study by Yuan et al. (2019) also explored the
relationship between network efficiency and synaptic density.
It was shown that the network efficiency could be evaluated
by the inverse of the product of the average shortest path
length of the neural network and the synaptic density.
The larger the reciprocal, the more efficient the network
is.

Some studies have shown that neural networks follow simple
design rules similar to those of other networks (Laughlin and
Sejnowski, 2003). In the field of complex network research,
Erdös and Rényi (1959) first proposed the ER network model,
which was considered for a long time as the most appropriate
network to describe real systems. With the development of
information technology, Watts and Strogatz (1998) constructed
an intermediate network between a regular network and ER
network, namely WS network. Then Barabási and Albert
(1999) proposed a BA network based on the form of degree
distribution having power-law functions (Barabási et al., 1999).
And some studies found that neural networks have small-world
property (Bullmore and Sporns, 2009; Park and Friston, 2013).
In addition, neural networks in certain regions of the brain
have scale-free property (Eguíluz et al., 2005). This indicates
that neural networks are also in line with the direction of
complex network development when choosing the network

structure. A neural system can be viewed as a network formed
by a large number of neurons interconnected by nerve fibers.
Understanding how neural networks are organized and evolve
can be combined with knowledge from the field of complex
networks.

Researchers have been keenly exploring the mysteries of
the human brain, and neural networks have been a hot topic
of research. The generation, encoding and transmission of
neural network information are extremely energy-consuming
at the physiological-metabolic level. Energy efficient coding is
an important problem facing neural networks. The evolution
of neural network structure can be seen as an energy efficient
way of coding. In order to cope with the complex system
environment, the effective information capacity of the network
transmission should be maximized, while the energy consumed
by the network during the transmission should be minimized.
This is the key principle to be followed by neural networks
in the evolution process, and also the basic principle to be
observed by the brain in the cognitive process. Therefore,
energy coding theory can be used to study the evolution of
neural networks. The energy coding theory proposed by Wang
et al. (2018) shows that the membrane potential of a neuron
corresponds to the neural energy it consumes. Currently, in
the field of neuroscience, several traditional coding theories are
followed, such as the group coding theory studied by Amari
and Nakahara (2005), the neural group coding theory studied by
Purushothaman and Bradley (2005) and the coding theory that
can represent dynamic information in neural systems studied by
Natarajan et al. (2008). Energy coding theory is superior to these
traditional coding theories. It can study the global neural coding
of brain function from the energy characteristics of neuronal
activity. In addition, energy coding has superposition, which
brings great simplicity to computation and analysis (Wang
et al., 2018). In this paper, we calculate the energy efficiency
of the neural network of Caenorhabditis elegans, ER network,
WS network and BA network, and use energy coding theory
to explain the reason why the neural network has the current
development trend. It is also shown that energy efficiency can
be used to evaluate a network, which is of great significance for
studying the development and evolution of neural networks.

The paper is organized as follows: Section “2 Models and
methods” describes the Hodgkin-Huxley neuronal model, and
introduces the calculation methods of energy consumption
rate, information rate and energy efficiency of neural networks.
Section “3 Simulation results and analysis” shows the results
of the simulations. We calculate the energy consumption rate,
information rate and energy efficiency of the BA network, ER
network, WS network, and C. elegans neural network under
different electric synaptic coupling strengths. In addition, the
effects of time box length on the information rate of the
networks and the effects of noise on the energy efficiency of
the networks are discussed. Conclusions are made in Section “4
Conclusion.”
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2. Models and methods

2.1. Neuron electrical model

The study is based on the classical HH model (Moujahid
et al., 2011), as shown in the following differential equation:

C
dV
dt
= −gNam3h (V − ENa)

−gKn4 (V − EK)− gl (V − El)+ I, (1)

dm
dt
= αm (V) (1−m)− βm (V)m, (2)

dn
dt
= αn (V) (1− n)− βn (V) n, (3)

dh
dt
= αh (V)

(
1− h

)
− βh (V) h. (4)

where V is the membrane potential of the neuron. C is
the membrane capacitance. I is the external stimulation
current. gNa, gK , and gl are the maximum conductance of
each ion channel, respectively. m, n, and h are dimensionless
variables indicating gating variables for potassium and sodium
channels. ENa, EK , and El are the reversal potentials of each ion
channel of the neuron in the resting state, also known as the
Nernst potential. Equations 5–10 are the rate functions of ion
channel opening and closing, and these functions can describe
the change in the proportion of open channels over time.

αm (V) =
0.1 (V + 40)

1− e−(V+40)/10 , (5)

βm (V) = 4e−(V+65)/18, (6)

αn (V) =
0.01 (V + 55)

1− e−(V+55)/10 , (7)

βn (V) = 0.125e−(V+65)/80, (8)

αh (V) = 0.07e−(V+65)/20, (9)

βh (V) =
1

1+ e−(V+35)/10 . (10)

The values of the relevant parameters in the HH model are
shown in Table 1.

2.2. The method of calculating neural
network energy consumption rate and
information rate

Based on the HH model, the paper (Moujahid et al., 2011)
proposes a method to estimate the energy consumption of

neurons from the perspective of neuronal equivalent circuits.
The energy consumption is calculated as follows:

E (t) =
1
2
CV2
+HNa +HK +Hl. (11)

The left side of the equal sign of Eq. 11 indicates
the total electrical energy accumulated in the neuronal
circuit. The first term to the right of the equal sign is
the energy stored by the capacitor in the circuit, and the
last three terms indicate the energy of each ion power
source. Since the electric power is equal to the product
of the current and the electric potential, derivation of
Eq. 11 with respect to time yields Eq. 12 as follows:

·

E (t) = CV
·

V +iNaENa + iKEK + ilEl. (12)

According to the first equation in the HH model

C
·

V = −iNa − iK − il + I. (13)

Where,
iNa = gNam3h (V − ENa) , (14)

iK = gKn4 (V − EK) , (15)

il = gl (V − El) . (16)

Substitute Eq. 13 into Eq. 12 to obtain Eq. 17,

·

E = VI − iNa (V − ENa)− iK (V − EK)− il (V − El) . (17)

Putting Eqs 14–16 into Eq. 17, we can get the energy
consumption rate of change equation as,

.
E = VI − gNam3h (V − ENa)2

−gKn4 (V − EK)2
− gl (V − El)2 . (18)

The first term on the right side of the equal sign in Eq. 18
represents the electrical power applied to the neuron by external
stimulation, and the last three terms represent the electrical
power of the ion channel, i.e., the energy consumed by the ion
channel per second. Therefore, the energy consumed by the
neuron can be calculated by Eq. 18.

Next, we explored the energy consumption of a neuron
on action potentials. Figure 1A represents the sequence of
action potentials generated by the neuron within 100 ms in
the presence of current I = 20 µA. The membrane potential
changes from about −65 to about 20 mV after depolarization.
Figure 1B shows the variation of WI = VI with time. It
describes the energy provided or consumed per second by
the external stimulation current, with a minimum value of
about 1,400 nJ/s and a peak value of about 500 nJ/s. This
suggests that the external stimulation current is sometimes
energy-consuming and sometimes energy-providing. Figure 1C
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TABLE 1 Parameters in the HH model.

Parameter Value Parameter Value Parameter Value Parameter Value

C 1µF/cm2 gNa 120 mS/cm2 gK 36 mS/cm2 gl 0.3 mS/cm2

ENa 50 mV EK −77 mV El −54.5 mV V0 −65 mV

FIGURE 1

(A) The action potential delivered at I = 20 µA. (B) The electrical power provided by the external stimulus current. (C) The energy consumed per
second by the ion channel. (D) The total energy consumed by the neuron.

depicts the variation of the last three terms of Eq. 18 with
time. Let

Wion = −gNam3h (V − ENa)2
− gKn4 (V − EK)2

−gl (V − El)2 . (19)

which indicates the energy consumed per second by the ion
channel. As can be seen in Figure 1C, the peak of the
electrochemical energy consumption of the ion channel is nearly
90,000 nJ/s, which is much higher than the energy of WI . It
indicates that the energy consumption of the whole circuit is
mainly on the energy consumption of the ion channel. The
consumed energy is provided by hydrolyzing ATP molecules
to maintain neuronal activity. Figure 1D represents integration
of Eq. 18 over the total time, depicting the variation of energy
consumed by the neuron with time. By comparing the firing
of neuronal action potentials, it can be found that the neuron
consumes little energy during the resting state, but consumes a
lot of energy when generating action potentials. This is due to
the fact that the transmembrane movement of ions generates
a large amount of metabolic energy consumption. Signals are

propagated in neural networks with action potentials as carriers,
indicating that the generation and transmission of information
requires a large amount of metabolic energy. This also suggests
that neural energy can encode neural signals.

Gap junctions are a form of direct intercellular
communication between cells, and are special connectivity
structures that exist between cells. Gap junctions are present in
almost all tissues of the body, except for fully developed skeletal
muscle and mobile cell types in adults. Gap junctions located in
neurons are often referred to as electrical synapses (Moujahid
et al., 2011). When two or more neurons are coupled together,
electrical synapses are frequent and play an important role in
the synchronization of cellular activity. In particular, they are
very efficient in transferring and synchronizing the information
of neural networks (García-Pérez et al., 2004).

The current at the gap junction of two neurons in a neural
network can be expressed as IJunction = k

(
Vi − Vj

)
. Where the

parameter k is the conductance at the connection or the coupling
strength, in the unit of mS/cm2. V i and Vj represent the
membrane voltage of the ith neuron and the jth neuron in the
neural network, respectively, in the unit of mV . The current at
the gap junction is provided by a unity-gain amplifier, and the
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electrical power provided by the amplifier to the jth neuron in
the neural network is

∑n
i=1 CijViIJunction. Therefore,

·

Ej (t) = CVj
·

Vj+ijNaENa + ijKEK

+ijlEl +
n∑

i=1

CijViIJunction. (20)

The equation for the membrane potential of the jth neuron
in the neural network is

C
·

Vj = Ij − ijNa − ijK − ijl +
n∑

i=1

CijIJunction. (21)

Substituting Eq. 21 into Eq. 20, the energy change rate
formula of the jth neuron can be obtained as follows:

.
Ej = VjIj − gNam3

j hj
(
Vj − ENa

)2
− gKn4

j
(
Vj − EK

)2

−gl
(
Vj − El

)2
+

n∑
i=1

kCijVj(Vi − Vj)

+

n∑
i=1

kCijVi(Vi − Vj) (22)

where C is the adjacency matrix of the neural network, and n
is the number of neurons in the neural network. The first term
on the right side of the equation represents the energy consumed
by the external stimulation current of the jth neuron, and the last
three terms represent the energy consumed by the ion channel
per second. The last two terms correspond to the sum of the
energy consumption at all connections with the jth neuron as the
postsynaptic neuron, and they represent the energy consumed
by the current at the gap junction and the energy provided
by the amplifier, respectively. The connection is not necessarily
consuming energy, it may also be supplying energy. The energy
consumption rate of the whole neural network is EN =

〈∑
j Ej
〉
t

. Where Ej is the integral of the energy change rate over the total
time, and 〈 〉t represents the average over time t.

In order to quantify the amount of information transmitted
in a neural network, the information entropy in Shannon’s
information theory is used to estimate the information content
of the neural network.

The specific calculation is performed using the method
mentioned by Strong et al. (1996). Firstly, the relevant
parameters of the neuron model are set, and the firing sequence
of the neuron is obtained. The sequence is then placed into
a time bin of length 4t, and set to “1” if a release occurs in
the box, and “0” if no release occurs. Then the sequence is
transformed into a “word” of l characters with a sliding time
window of size T, and the length of the “word” is l = T

4t . The
non-overlapping time window T is slid over the entire firing
sequence, resulting in a sequence of words represented by ωi.
Finally, the probability of each word appearing in the sequence
is counted, which is represented by p (ωi). Eq. 23 represents

the information entropy rate.

HT
= −

1
T

∑
i

p (ωi) log2 p (ωi) . (23)

Calculate the information entropy rate of all neurons in
the neural network using the above formula. The amount of
information transmitted by the neural network per second is
the sum of the information entropy rates of all neurons in the
network, denoted by IN .

Finally, we define the energy efficiency of a neural network
as the ratio of the information rate to the energy consumption
rate, i.e., εN =

IN
EN . It indicates how much effective information

is delivered by the neural network for a unit of energy consumed.

3. Simulation results and analysis

This part is a simulation experiment. Three classical artificial
networks, ER network, WS network, and BA network are
selected for the experiment. The neural network of C. elegans
is used as the reference network. Due to the large number
of neurons in the organism and the complex structure of
neural network connections, the research on general biological
neural network is not thorough enough. In contrast, researchers
have found that C. elegans possesses only about 300 neurons,
and about 1,000 cells. And it also has a clearer structure of
connections between neurons. Therefore, C. elegans is suitable
for the study of biological neural network problems. The neural
network structure of C. elegans has been largely explored, which
is of great help for the study of neural network simulation and
kinematic properties. In addition, it is capable of exhibiting
learning, memory, exploration, and complex locomotion (Cho,
2011). The present artificial neural networks are still difficult
to achieve these abilities. Therefore, the neural network of
C. elegans is chosen as the reference network for the experiment.

There are 297 nodes in the experimentally selected neural
network of C. elegans, and the network contains 2,345 connected
edges. The adjacency matrices of the ER network, WS network,
and BA network were obtained with reference to C. elegans
neural network. The adjacency matrices of all networks are
directed matrices with about 2,345 contiguous edges. In the
following simulation experiments, we added the same external
stimulus currents, all of which were uniform random numbers
between 7 and 30 µA.

3.1. Energy consumption rate

In this section, the energy consumption rates of the BA
network, ER network, WS network, and neural network of
C. elegans are calculated. We integrated Eq. 22 over the total time
and took the opposite sign of the actual calculation to obtain
the energy consumed by a single neuron. The energy consumed
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FIGURE 2

The energy consumption rate of the BA network, ER network,
WS network, and Caenorhabditis elegans neural network at
different coupling strengths. The external stimulus current is
7∼30µA.

by the neural network is the sum of the energy consumed
by 297 neurons, which is due to the linear superposition of
the energy encoding. The total energy of the neural network
after superposition can be used to reflect the synchronization
state of the whole network. Therefore, the analysis of intricate
perceptual cognition can be simplified from the perspective of
neural energy (Wang et al., 2018). The energy consumption
rate is the average of the total energy over the total time. The
calculation time is 1,000 ms and the coupling strength is k ∈
[0.1, 2]. The calculation results are shown in Figure 2.

From Figure 2, it can be found that the energy consumption
of both the BA network and the C. elegans neural network
gradually increases as the coupling strength increases, and
decreases gradually after reaching a maximum value. However,
with the increase of coupling strength, the energy consumption
of the BA network tends to be stable, while that of the C. elegans
neural network is still decreasing. The energy consumption rate
of WS and ER network decreases with the increase of coupling
strength, and the decreasing trend tends to be steady. And the
ER network consumes less energy per unit of time. In contrast,
it is found that the BA network and the neural network of
C. elegans consume more energy. The high energy consumption
represents that the network transmits more information, which
can be reflected in the information rate in the next section.

Furthermore, Figure 2 shows that increasing the coupling
strength appropriately can reduce the energy consumption
of the neural network. This may be influenced by the
synchronization of the network. Some experimental results
have shown that thalamocortical neurons have high synaptic
strength in early sleep and show well-synchronized activity,
but in late sleep neurons show weak synchronization due to
reduced synaptic strength (Esser et al., 2008). Since neuronal

energy consumption can reflect the law of brain activity,
the synchronization of neural networks is closely related to
the energy consumption of the network. For this reason, we
recorded the peak firing of the BA network, ER network, WS
network, and neural network of C. elegans within 100 ms, as
shown in Figure 3. The left side of Figure 3 indicates the peak
firing of the four networks at coupling strength k = 0.1 mS/cm2

and the right side is k =1.5 mS/cm2. The more stripy the
record is, the more synchronized the network is. Therefore, it
can be found from Figure 3 that the networks have stronger
synchronization at higher coupling strengths. This is an intuitive
prediction from the image, which cannot quantitatively estimate
the network synchronization. Therefore, we chose the negative
energy ratio, a synchronization index, to quantitatively analyze
the synchronization of the network. The negative energy ratio
can be used to describe the dynamic properties and energy
encoding of the network, which helps to further explore the
operation of the network (Zhu et al., 2018).

The negative energy ratio is defined as the ratio of the
negative energy consumed by the network to the sum of the
positive and energy consumed during the period from moment
0 to t, i.e.,

α (t) =
Enegative

Epositive + Enegative
× 100%, (24)

Enegative =
n∑
j=1

∫ t

0
Pj (t) · sgn

(
−Pj (t)

)
dt, (25)

Epositive =
n∑
j=1

∫ t

0
Pj (t) · sgn

(
Pj (t)

)
dt. (26)

where Pj (t) is the energy consumption power of the jth neuron
at time t. The integral of Pj (t) during [0, t] represents the energy
consumed by the neuron. sgn (x) is the sign function defined

as sgn (x) =

{
1, x > 0
0, x ≤ 0

. Enegative and Epositive represent the

negative and positive energy consumed by the neural network
in [0, t], respectively.

We re-expressed Eq. 22 as Eq. 27, as follows:
.
Ej = VjIj + PjNa + PjK + Pjl − Vj(ijNa + ijK + ijl)

+

n∑
i=1

kCijVj
(
Vi − Vj

)
+

n∑
i=1

kCijVi
(
Vi − Vj

)
. (27)

The electrical power consumed at the ion channel is
divided into two parts, PjNa+PjK+Pjl is the power of the
voltage source represented by the Nernst potential (reversal
potential). The other part Vj

(
ijNa+ijK+ijl

)
represents the

electrical power consumed driven by the membrane potential
gradient (electric field force), which can be considered as the
power of passive transport. The ion pump, during the operation,
transports three sodium ions out of the cell and two potassium
ions into the cell from the membrane (Crotty et al., 2006;
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FIGURE 3

The spike record of the neural network with external stimulation current 7∼30µA. Panels (A–D) show the spike record of the BA network, ER
network, WS network, and Caenorhabditis elegans neural network within 100ms, respectively. The left side shows the spike record when the
coupling strength is k = 0.1 mS/cm2, and the right is k = 1.5 mScm2.

Corty and Freeman, 2013). The ion pump constantly transports
ions, which directly consume biological energy. Since the power
represented by PjNa+PjK+Pjl is approximately equal to the
biological power of the ion pump, the power consumed by
the ion pump can be calculated using the electrical power

represented by the Nernst potential. It can be considered that the
voltage source represented by the Nernst potential of the sodium
ion is storing energy, while the reverse voltage source such as the
potassium ion is consuming energy. We calculated the energy
consumption by considering that this part is only consuming
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TABLE 2 The corresponding negative energy ratio for Figure 3.

k = 0.1 mS/cm2 k = 1.5 mS/cm2

BA 2.2839% 2.0860%

ER 2.2621% 2.1242%

WS 2.2581% 2.1032%

Caenorhabditis elegans 2.3329% 3.3974%

energy (Zhu et al., 2018), while in the calculation of the negative
energy ratio PjNa+PjK+Pjl is expressed as the following Eq. 28.

Pj = PjNa + PjK + Pjl =
∣∣ijKEK ∣∣+ ∣∣ijlEl∣∣− ∣∣ijNaENa∣∣ . (28)

Applying Eq. 28 and the formula of negative energy ratio,
we obtained the negative energy ratios of the BA network, ER
network, WS network, and C. elegans neural network within
100 ms. The results are shown in Table 2. Combining with
Figure 3, it can be found that when the coupling strength is
larger, the negative energy ratio of the BA network, ER network,
and WS network is smaller, while the negative energy ratio
of the neural network of C. elegans is larger. It can be found
that the negative energy ratios of the actual biological and
artificial networks are differently influenced by the coupling
strength. But all four networks show strong synchronization
at higher coupling strengths. In summary, when the coupling
strength is high, the synchronization of the network is strong,
and the network consumes less energy. Therefore, the energy
consumption of the network can be reduced by increasing the
coupling strength appropriately.

3.2. Information rate

According to Eq. 23, we analyzed the effect of coupling
strength on the information rate of different neural networks.
The total release duration is set to 9,000 ms, the time box
length to 4t = 3 ms, and the sliding time window length
to T = 30 ms. The presence or absence of spikes in one of the
boxes was coded as 1 or 0, respectively, so that each window
represents a symbol in the binary alphabet. To estimate the
amount of information transmitted by the network, 300 “words”
were obtained experimentally. The calculation results are shown
in Figure 4.

From Figure 4, it can be seen that the trend of the
information rate of the BA network is basically the same as
that of the C. elegans neural network. After a decreasing trend,
the information rate increases steadily with the increase of
the coupling strength. The trend of the information rate of
the WS and ER networks with the coupling strength is the
same. The higher the coupling strength is, the smaller the
information rate is. In addition, the information rate of WS
network is higher than that of ER network. BA network and
C. elegans neural network transmit much more information

FIGURE 4

The information rate of the BA network, ER network, WS
network, and Caenorhabditis elegans neural network at different
coupling strengths. The external stimulus current added is
7∼30µA.

per unit of time than WS and ER network. Since both the
BA network and the C. elegans neural network have the scale-
free property, but WS and ER network do not, it indicates
that the connection structure of the network determines the
information transfer function of the network. The network
with scale-free property transmits more information per unit of
time.

3.3. Energy efficiency

Figure 5 depicts the effect of coupling strength on the
energy efficiency of the neural network. The change in the
energy efficiency of the BA network is more similar to
that of the C. elegans neural network when the coupling
strength k increases. The energy efficiency decreases gradually
at first and increases gradually after producing a minimum
value. The difference is that when the coupling strength is
larger, the energy efficiency of the C. elegans neural network
still shows an increasing trend, while the energy efficiency of BA
network hardly changes anymore. WS network and ER network
have lower energy efficiency, and the larger the coupling
strength is, the lower the energy efficiency is. Compared to
Figure 4, the energy efficiency of networks has roughly the
same trend as the information rate, which indicates that the
information rate is the main factor to determine their energy
efficiency.

From the above results, it can be seen that the BA
network transmits more information per unit of time
and is more energy efficient compared to the WS and
ER network. Therefore, in order to ensure the efficient
operation of the brain, some neural networks in the
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FIGURE 5

The energy efficiency of the BA network, ER network, WS
network, and Caenorhabditis elegans neural network at different
coupling strengths. Energy efficiency is defined as the ratio of
information rate and energy consumption rate, i.e., εN =

IN
EN

.

brain will have scale-free properties. The theory of energy
coding is used to link energy efficiency and network
structure evolution, and the evolution direction of neural
network structure is explained from the perspective of
energy efficiency.

3.4. Parameter impact

3.4.1. Time box length 1t
The information entropy depends on the time box

length 4t. Therefore, we explored the effect of the time box
length on the information rate of the neural network. The
length of the “word” is set to 10, the length of the time
box is 4t ∈ [1 : 1 : 10], and the length of the sliding time
window is T ∈ [10 : 10 : 100]. By adjusting the calculation
time, 300 “words” were obtained for each calculation. The
information rate of the C. elegans neural network, BA
network, WS network, and ER network were calculated.
The coupling strength at the neuron gap connection is set
to k = 1.5 mS/cm2 at this time.

In Figure 6, it is observed that as the length of the time
box 4t increases, the trend of the information rate of the
four networks is basically similar and the information rate
gradually decreases in all of them. The choice for 4t in the
calculation of the information rate of the issuance sequence
is arbitrary. Since an accurate measurement of the issuance
time can yield more information rate, for this reason, it is
expected that a smaller time box length conveys a larger
amount of information rate. The information rate does
increase with decreasing 4t as can be seen in Figure 6. We
chose 4t to be small enough so that the issued sequence can

FIGURE 6

The information rate of the neural network at different time box
lengths. The coupling strength at the gap junction is
k = 1.5 mS/cm2. The external stimulus current added is
7∼30µA.

FIGURE 7

The energy efficiency of the BA network, ER network, WS
network, and Caenorhabditis elegans neural network at different
coupling strengths k when Gaussian white noise with mean 0
and variance 1 is added. Take the standard deviation of the
results of five experiments. The calculation time of energy
consumption rate is 1,000 ms, and the calculation time of
information rate is 1,500 ms. The external stimulus current is
7∼30µA.

be converted into a binary sequence. It also has to be large
enough to ensure that a good enough “word” sequence is
obtained.

3.4.2. Noise Inoise
The actual network environment is affected by noise, and it

is necessary to explore the effect of noise on the energy efficiency
of the network. To better simulate the signal transmission
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FIGURE 8

Bar graph of the energy efficiency of the BA network (A), ER network (C), WS network (D), and Caenorhabditis elegans neural network (B) with
and without white Gaussian noise.

environment of neurons in the network, we added Gaussian
white noise with a mean of 0 and a variance of 1. The added
noise is denoted by Inoise in µA. At this point, the first equation
of the HH model becomes

C
dV
dt
= −gNam3h (V − ENa)− gKn4 (V − EK)

−gl (V − El)+ I + Inoise. (29)

We took the standard deviation of the results of five
experiments, as shown in Figure 7. It can be observed
that the noise has little effect on the trend of energy
consumption rate of the WS network, ER network, and
C. elegans neural network with coupling strength, however,
it has a great influence on that of BA network. It can be
found that the energy efficiency of the BA network fluctuates
greatly after adding noise. But the relationship between the
energy efficiency of the BA network and C. elegans neural
network and that of the WS and ER network has not
changed.

In order to compare the change in energy efficiency of
the network with and without noise more visually, the energy
efficiency is shown in a bar graph, as shown in Figure 8.

Figure 8 visualizes the effect of noise on the energy efficiency
of the network. From the graph, it can be found that at certain
values of coupling strength, adding noise can improve the
energy efficiency of the network, while sometimes noise can
reduce the energy efficiency of the network. However, the noise
has little effect on the overall trend of network energy efficiency
with coupling strength. It can also be seen from the standard
deviation that the fluctuation of the network energy efficiency
by the noise is less. Therefore, the experimental model has good
stability.

4. Conclusion

We investigated the energy efficiency of the BA network,
ER network, WS network, and C. elegans neural network based
on the HH neuron model. Energy efficiency is defined as the
ratio of the information rate and energy consumption rate. Also,
a method to calculate the energy consumption of the neural
network is constructed. We found that the energy efficiency of
the BA network was higher and closer to that of the neural
network of C. elegans. This is consistent with the fact that neural
networks in the brain have scale-free properties (Eguíluz et al.,
2005), which can indicate that the evolutionary process of the
brain satisfies high energy efficiency (Aiello and Wheeler, 1995;
Niven and Laughlin, 2008).

We used energy coding and energy efficiency to further
elucidate the effect of network structure on brain evolution. The
relevant conclusions were also obtained in the study.

When exploring the energy consumption of neurons, more
energy is consumed in generating action potential delivery
and less energy is consumed in the resting state. Since
information is transmitted in the neural network in terms of
action potentials, this suggests that neurons consume a lot of
energy when processing information. There is a correspondence
between the energy consumption of the neural network
and the synchronization of the network. The stronger the
synchronization, the less energy the neural network consumes.

Comparing the trend of energy consumption rate,
information rate and energy efficiency of the networks
affected by the coupling strength, it can be found that the
energy efficiency is mainly determined by the information rate.
Since the BA network and the neural network of C. elegans
have scale-free characteristics, their information rates are much
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higher than those of the WS and ER network. It indicates that
the connection structure of the networks has a great influence
on the information transfer function of the networks.

We also considered the effects of time box length and noise.
It was found that the information rate of the neural network
was higher when the time box length was shorter. In addition,
the effect of Gaussian white noise on the energy efficiency of the
neural network was explored. Gaussian white noise with a mean
value of 0 and a variance of 1 was added, and the stability of the
model was better at this noise intensity.

In summary, our study shows that the BA network has
higher energy efficiency and is consistent with the requirement
that the structural evolution of the neural networks in the
brain should meet high energy efficiency. Our work explains
why, in terms of energy efficiency, the evolutionary direction of
neural networks in the brain selects for scale-free properties, and
may contribute to further understanding of the structure and
evolution of neural networks in the brain.
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